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This paper studies axiom systems of supermatroids. Barnabei et al.’s base axioms concerning poset matroids (i.e., distributive
supermatroids) are generalized to modular supermatroids, and a mistake in the proof of base axioms of poset matroids is pointed
out.

1. Introduction

Matroids, as an important combinatorial structure, have
been generalized by many authors, such as polymatroids
(Edmonds [1]), supermatroids (Dunstan et al. [2]), greedoids
(Korte et al. [3]), and fuzzy matroids (Goetschel and Voxman
[4]).

One of the most natural extensions may be superma-
troids, which generalize the underlying sets of matroids to
arbitrary finite partially ordered sets. Supermatroids connect
closely with other extensions; for example, integral poly-
matroids are essentially supermatroids on a special class of
finite distributive sublattices of R𝑛 and greedoids are strong
supermatroids on graded posets. As supermatroids, Faigle’s
ordered geometries [5] combine the exchange properties
with finite posets, meanwhile, ordered geometries generalize
a particular interest case of supermatroids and distributive
supermatroids (i.e., supermatroids on distributive lattices).
Tardos [6] showed an intersection theorem for distributive
supermatroids. Moreover, Barnabei et al. [7] studied dis-
tributive supermatroids in more detail (in the name of poset
matroids). Another approach to generalizing the concept of
distributive supermatroids was proposed by Fujishige et al.
[8]; they studied supermatroids on lattices of closed sets
of convex geometries (cg-matroids). For a related general
framework, see [3, 9].

To study axiom systems of generalized matroidal struc-
tures are fundamental problems, no matter finite or infinite
extensions of matroids (see, e.g., [8, 10–12]). Barnabei et al.

[7] gave many equivalent axiomatizations of distributive
supermatroids. The main missing axiom in [7], that is, flat
lattice axioms of distributive supermatroids, was completed
byWild [9].The present work studies mainly bases axioms of
supermatroids onmodular lattice (namedmodular superma-
troids). We give two equivalent characterizations of modular
supermatroids in terms of bases and the importance of the
condition of modular lattices reflected in the proofs. We note
here that, without further mention, all sets and structures in
this paper are finite.

2. Preliminaries

In this section, we introduce some basic concepts and results
on matroids, lattices, and supermatroids. For a more detailed
exposition of these topics, refer to [3, 13, 14], respectively.

Definition 1 (Welsh [13]). A matroid 𝑀 is an ordered pair
(𝐸,I) consisting of a finite set 𝐸 and a nonempty collection
I of subsets of 𝐸 having the following two properties.

(I1) If 𝐼
1
∈ I, 𝐼

2
⊆ 𝐼
1
, then 𝐼

2
∈ I.

(I2∗) If 𝐼
1
, 𝐼
2
∈ I and |𝐼

1
| < |𝐼
2
|, then there is an element

𝑒 ∈ 𝐼
2
− 𝐼
1
such that 𝐼

1
∪ {𝑒} ∈ I.

Let 𝑀 = (𝐸,I) be a matroid; then the members of
I are the independent sets of 𝑀, and we call a maximal
independent set in 𝑀 a base of 𝑀. Definition 1 defines a
matroid via independent sets; we now present base axioms
of matroids.
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Theorem 2 (Welsh [13]). Let B be a set of subsets of a finite
set 𝐸. Then B is a collection of bases of a matroid on 𝐸 if and
only if it has the following properties.

(B1) B is nonempty.
(B2∗) If 𝐵

1
, 𝐵
2
∈ B and 𝑥 ∈ 𝐵

1
−𝐵
2
, then there is an element

𝑦 of 𝐵
2
− 𝐵
1
such that (𝐵

1
− {𝑥}) ∪ {𝑦} ∈ B (base

exchange axiom).

Axiom (B2∗) can be replaced by the following middle base
axiom.

Theorem 3 (White [15]). Let B be a set of subsets of a finite
set 𝐸. Then B is a collection of bases of a matroid on 𝐸 if and
only ifB satisfies (B1) and the following conditions.

(B2) For 𝐴 ⊆ 𝐵 ⊆ 𝐸, if B has members 𝐵
1
, 𝐵
2
such that

𝐴 ⊆ 𝐵
1
, 𝐵
2
⊆ 𝐵, then B has a member 𝐵

3
such that

𝐴 ⊆ 𝐵
3
⊆ 𝐵 (middle base axiom).

(B3) If 𝐵
1
, 𝐵
2
∈ B and 𝐵

1
⊆ 𝐵
2
, then 𝐵

1
= 𝐵
2
.

Remark 4. Matroids have several equivalent descriptions.
Extensions of matroids are used to generalize different axiom
systems of matroids. For example, Goetschel and Voxman
fuzzymatroids generalize (I2∗) to fuzzy sets. It can be verified
that (I2) in Definition 1 can be replaced by the following
condition.

(I2) If 𝑋 ⊆ 𝐸, 𝐼
1
, 𝐼
2
are maximal members of {𝐼 |

𝐼 ∈ I and 𝐼 ⊆ 𝑋}, then |𝐼
1
| = |𝐼

2
|. Supermatroids use

an extension of (I2) in posets. As mentioned above, poset
matroids are equivalent to distributive supermatroids, but
the original definition of poset matroids extends middle base
axiom to posets.

Now we summarize some facts of posets and lattices
needed in this paper.

Let𝑋 be a poset, 𝑥, 𝑦 ∈ 𝑋. If 𝑥 < 𝑦 and 𝑥 ≤ 𝑧 ≤ 𝑦 implies
𝑧 = 𝑥 or 𝑧 = 𝑦, we say that 𝑦 covers 𝑥 (denoted by 𝑥 ≺ 𝑦

or 𝑦 ≻ 𝑥). An ideal of a poset is a subset 𝐴 ⊆ 𝑋 such that
𝑦 ∈ 𝐴, 𝑥 ≤ 𝑦 implies 𝑥 ∈ 𝐴. Down(𝑋) denotes the set of
all ideals of 𝑋. Dually, a filter 𝐴 is a subset such that 𝑦 ∈ 𝐴,
𝑥 ≥ 𝑦 implies 𝑥 ∈ 𝐴. Let ↓ 𝑥 = {𝑦 ∈ 𝑋 | 𝑦 ≤ 𝑥}); this
ideal is called the principal ideal generated by𝑥, and principal
filters are defined analogously. The intersection of a principal
ideal ↓ 𝑦 and a principal filter ↑ 𝑥 is an interval [𝑥, 𝑦]; that
is, [𝑥, 𝑦] = {𝑧 ∈ 𝑋 | 𝑥 ≤ 𝑧 ≤ 𝑦}. A subset 𝐶 ⊆ 𝑋 such
that any two elements of 𝐶 are comparable (incomparable) is
a (an) chain (antichain).The length of the chain is |𝐶|−1.The
height ℎ(𝑥) of an element 𝑥 is the length of the longest chain
from 0 to 𝑥.

An element 𝑢 is the meet of 𝑥 and 𝑦 (denoted by 𝑥 ∧ 𝑦) if
for any 𝑧we have that 𝑧 ≤ 𝑢 if and only if 𝑧 ≤ 𝑥 and 𝑧 ≤ 𝑦. An
element𝑤 is the join of 𝑥 and 𝑦 (denoted by 𝑥∨𝑦) if for any 𝑧
we have that 𝑧 ≥ 𝑤 if and only if 𝑧 ≥ 𝑥 and 𝑧 ≥ 𝑦. A poset 𝑋
is a lattice if any two elements 𝑥, 𝑦 ∈ 𝑋 have 𝑥∨𝑦 and 𝑥∧𝑦. A
lattice𝑋 is said to satisfy the upper covering condition if 𝑎 ≺ 𝑏
implies 𝑎 ∨ 𝑐 ≺ 𝑏 ∨ 𝑐 or 𝑎 ∨ 𝑐 = 𝑏 ∨ 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑋. The
lower covering condition is the dual. A lattice𝑋 is a modular
lattice if𝑋 satisfies both the lower covering condition and the
upper covering condition.The following theorem gives some
equivalent forms of modular lattice.

Theorem 5 (Roman [14]). For a lattice 𝑋, the following
conditions are equivalent.

(1) 𝑋 is modular.
(2) 𝑋 does not contain𝑁

5
(also called a pentagon).

(3) For all 𝑥, 𝑦 ∈ 𝑋, ℎ(𝑥) + ℎ(𝑦) = ℎ(𝑥 ∨ 𝑦) + ℎ(𝑥 ∧ 𝑦).

In 1972, Dunstan et al. [2] introduced a generalization of
matroids to partial sets as follows.

Definition 6 (Dunstan et al. [2]). Let 𝑋 be a poset with a
minimal element 0 and height function ℎ. 𝜍 ⊆ 𝑋 is a
supermatroid if 𝜍 satisfies the following three conditions.

(LI0) 0 ∈ 𝜍.
(LI1) If 𝑥 ∈ 𝜍, 𝑦 ≤ 𝑥, then 𝑦 ∈ 𝜍.
(LI2) For any 𝑥 ∈ 𝑋, all maximal elements of ↓ 𝑥 ∩ 𝜍 have

the same height.

The elements of 𝜍 are called independent elements of the
supermatroids; otherwise an element is dependent. A base of
𝜍 is a maximal independent element.

We now introduce another matroidal structure on poset
sets proposed by Barnabei et al. in 1998.

Definition 7 (Barnabei et al. [7]). A poset matroid on the
partial set 𝑋 is a family B of filters of 𝑋, called bases, and
satisfies the following axioms.

(DLB1) B ̸= 0.
(DLB2) For 𝐴 ⊆ 𝐵 ⊆ 𝐸, if B has members 𝐵

1
, 𝐵
2
such that

𝐴 ⊆ 𝐵
1
, 𝐵
2
⊆ 𝐵, then B has a member 𝐵

3
such that

𝐴 ⊆ 𝐵
3
⊆ 𝐵.

(DLB3) If 𝐵
1
, 𝐵
2
∈ B and 𝐵

1
⊆ 𝐵
2
, then 𝐵

1
= 𝐵
2
.

Remark 8. Poset matroids deal with filters of posets, which
seems different from supermatroids that concern mainly
elements of partial sets. However, by a fundamental theorem
of Birkhoff (every finite distributive lattice is isomorphic
to the lattice of all filters of a finite partially ordered set.
Conversely, every finite partially ordered set is isomorphic to
the partially ordered set of the meet-irreducible elements of a
distributive lattice), poset matroids are just supermatroids on
distributive lattices. Though supermatroids were introduced
before poset matroids, unfortunately, Barnabei et al.’s paper
[7] never mentioned the name “supermatroids.”

3. Base Axioms of Modular Supermatroids

In this section,wewill characterizemodular supermatroids in
terms of bases. First, we will prove some properties of bases
of modular supermatroids.

Theorem 9. Let (𝑋, 𝜍) be a supermatroid on a lattice 𝑋 and
let 𝛽 be the set of bases of (𝑋, 𝜍); then 𝛽 satisfies the following
condition.

(LB2) Suppose 𝑏
1
, 𝑏
2
∈ 𝛽; then for every pair 𝑥, 𝑦 ∈ 𝑋

satisfying 𝑦 ≤ 𝑏
1
, 𝑏
2
≤ 𝑥, and 𝑦 < 𝑥, there exists 𝑧 ∈ 𝛽

such that 𝑦 ≤ 𝑧 ≤ 𝑥.
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Proof. (LB2) obviously holds if 𝑦 = 𝑏
1
or 𝑏
2
= 𝑥. In the

following, we assume 𝑦 < 𝑏
1
and 𝑏
2
< 𝑥. It follows from

(LI2) that ℎ(𝑏
1
) = ℎ(𝑏

2
); thus, ℎ(𝑦) < ℎ(𝑏

2
). Since maximal

elements of ↓ (𝑦∨𝑏
2
) ∧ 𝜍 have the same height, there is 𝑧

1
∈ 𝜍

such that 𝑦 < 𝑧
1
≤ 𝑦 ∨ 𝑏

2
≤ 𝑥.

If ℎ(𝑧
1
) < ℎ(𝑏

2
), similarly, it follows from (LI2) that

there exists 𝑧
2
∈ 𝜍 satisfying 𝑧

1
< 𝑧
2
≤ 𝑧
1
∨ 𝑏
2
≤ 𝑥.

If ℎ(𝑧
2
) < ℎ(𝑏

2
), then there exists 𝑧

3
∈ 𝜍 satisfying

𝑧
2
< 𝑧
3
≤ 𝑧
2
∨ 𝑏
2
≤ 𝑥.

If ℎ(𝑧
3
) < ℎ(𝑏

2
), we continue the above process. After

finite steps, we have 𝑧
𝑛
∈ 𝜍, 𝑦 < 𝑧

1
< ⋅ ⋅ ⋅ < 𝑧

𝑛
≤

𝑧
𝑛−1

∨ 𝑏
2
≤ 𝑥, and ℎ(𝑧

𝑛
) = ℎ(𝑏

2
). Note that maximal

elements of 𝜍 have the same height; thus, 𝑧
𝑛
∈ 𝛽; this

concludes the proof.

Remark 10. (B2) characterizes matroids (Theorem 3), and
this fact can be extended to distributive supermatroids (poset
matroids are actually defined by generalized formof (B2), and
then independence axioms of posetmatroids, i.e., generalized
forms of (I2∗), and equivalent descriptions of independence
axioms of poset matroids were proved in [7]). However, an
antichain with (LB2) cannot define a supermatroid on a
lattice, as the following example shows.

Example 11. Consider the lattice 𝑋 in Figure 1(a). 𝜍 is the set
of black-filled points. Let 𝛽 = Max 𝜍; then 𝛽 satisfies (LB2),
but (𝑋, 𝜍) is not a supermatroid. Note that the two elements in
𝛽 have different heights, and the following result tells us that
this cannot happen when𝑋 is a modular lattice.

Lemma 12. Suppose that 𝑋 is a modular lattice; 𝜍 ∈

𝐷𝑜𝑤𝑛(𝑋). Let 𝛽 = Max 𝜍; if 𝛽 satisfies (LB2), then all elements
in 𝛽 have the same height.

Proof. Suppose 𝑏
1
, 𝑏
2
∈ 𝛽; we apply induction on ℎ[𝑏

1
∧𝑏
2
, 𝑏
1
∨

𝑏
2
]. Obviously, ℎ[𝑏

1
∧𝑏
2
, 𝑏
1
∨𝑏
2
] ≥ 2 and for ℎ[𝑏

1
∧𝑏
2
, 𝑏
1
∨𝑏
2
] =

2 the assertion is true. Assume that 𝑏
1
and 𝑏
2
have the same

height when ℎ[𝑏
1
∧𝑏
2
, 𝑏
1
∨𝑏
2
] ≤ 𝑛. Let ℎ[𝑏

1
∧𝑏
2
, 𝑏
1
∨𝑏
2
] = 𝑛+1.

Choose 𝑥 ∈ [𝑏
1
∧𝑏
2
, 𝑏
2
] and 𝑥 ≺ 𝑏

2
; then 𝑥 ≥ 𝑏

1
∧𝑏
2
. Consider

the following two cases.

Case 1 (𝑥 = 𝑏
1
∧ 𝑏
2
(thus 𝑏

1
∧ 𝑏
2
≺ 𝑏
2
)). By the upper covering

condition, 𝑏
1
= 𝑏
1
∨ (𝑏
1
∧𝑏
2
) ≺ 𝑏
1
∨𝑏
2
(𝑏
1
= 𝑏
1
∨𝑏
2
contradicts

the fact that 𝑏
1
, 𝑏
2
are maximal elements of 𝜍). Choose 𝑦 ∈

[𝑏
1
∧𝑏
2
, 𝑏
1
] and𝑦 ≺ 𝑏

1
. If𝑦 = 𝑏

1
∧𝑏
2
, thenℎ(𝑏

2
) = ℎ(𝑏

1
∧𝑏
2
)+1 =

ℎ(𝑏
1
). We now consider the case 𝑦 > 𝑏

1
∧ 𝑏
2
.

Since 𝑦 ≺ 𝑏
1
, it follows from the upper covering condition

that 𝑦 ∨ 𝑏
2
≺ 𝑏
1
∨ 𝑏
2
or 𝑦 ∨ 𝑏

2
= 𝑏
1
∨ 𝑏
2
. If 𝑦 ∨ 𝑏

2
= 𝑏
1
∨ 𝑏
2
, it

is easy to verify that the sublattice {𝑏
1
∧ 𝑏
2
, 𝑏
1
∨ 𝑏
2
, 𝑦, 𝑏
1
, 𝑏
2
} of

𝑋 is just a pentagon, contrary to the fact that 𝑋 is a modular
lattice. Thus, 𝑦 ∨ 𝑏

2
≺ 𝑏
1
∨ 𝑏
2
.

Since 𝑦 ≤ 𝑏
1
, 𝑏
2
≤ 𝑦 ∨ 𝑏

2
, and 𝑦 ≤ 𝑦 ∨ 𝑏

2
, it follows from

(LB2) that there exists 𝑧 ∈ 𝛽 such that 𝑦 ≤ 𝑧 ≤ 𝑦∨𝑏
2
. Because

[𝑧 ∧ 𝑏
2
, 𝑧 ∨ 𝑏

2
] ⊆ [𝑦 ∧ 𝑏

2
, 𝑦 ∨ 𝑏

2
], we have

ℎ [𝑧 ∧ 𝑏
2
, 𝑧 ∨ 𝑏

2
] ≤ ℎ [𝑦 ∧ 𝑏

2
, 𝑦 ∨ 𝑏

2
]

= ℎ [𝑏
1
∧ 𝑏
2
, 𝑏
1
∨ 𝑏
2
] − 1 = 𝑛.

(1)

By the induction hypothesis, we have ℎ(𝑧) = ℎ(𝑏
2
). 𝑧 ∧ 𝑏

1
= 𝑦

and 𝑧 ∨ 𝑏
1
≤ 𝑏
1
∨ 𝑏
2
imply [𝑧 ∧ 𝑏

1
, 𝑧 ∨ 𝑏

1
] ⊆ [𝑦, 𝑏

1
∨ 𝑏
2
]. Note

𝑦 > 𝑏
1
∧ 𝑏
2
, so

ℎ [𝑧 ∧ 𝑏
1
, 𝑧 ∨ 𝑏

1
] ≤ ℎ [𝑦, 𝑏

1
∨ 𝑏
2
]

≤ ℎ [𝑏
1
∧ 𝑏
2
, 𝑏
1
∨ 𝑏
2
] − 1 = 𝑛.

(2)

Thus ℎ(𝑧) = ℎ(𝑏
1
) holds by the induction hypothesis. As a

result, we get ℎ(𝑏
1
) = ℎ(𝑏

2
) (cf. Figure 1(b)).

Case 2 (𝑥 > 𝑏
1
∧ 𝑏
2
). Since 𝑥 ≺ 𝑏

2
, it holds by the upper

covering condition that 𝑥 ∨ 𝑏
1
≺ 𝑏
1
∨ 𝑏
2
or 𝑥 ∨ 𝑏

1
= 𝑏
1
∨ 𝑏
2
.

If 𝑥 ∨ 𝑏
1
= 𝑏
1
∨ 𝑏
2
, then {𝑏

1
∧ 𝑏
2
, 𝑏
1
∨ 𝑏
2
, 𝑥, 𝑏
1
, 𝑏
2
} forms a

sublattice𝑁
5
of𝑋, contradicting the fact that𝑋 is a modular

lattice.Thus, 𝑥∨𝑏
1
≺ 𝑏
1
∨𝑏
2
. Consider that 𝑥 ≤ 𝑏

2
, 𝑏
1
≤ 𝑥∨𝑏

1
,

and 𝑥 ≤ 𝑥 ∨ 𝑏
1
; it follows from (LB2) that there exists 𝑧 ∈ 𝛽

satisfying 𝑥 ≤ 𝑧 ≤ 𝑥 ∨ 𝑏
1
. The subsequent proof is similar

to Case 1; we can verify ℎ(𝑏
1
) = ℎ(𝑧) = ℎ(𝑏

2
), as desired (cf.

Figure 1(c)).

Now we prove the first base axioms of modular superma-
troids.

Theorem 13 (base axioms of modular supermatroids). Let𝑋
be a modular lattice and 𝛽 ⊆ 𝑋. Then 𝛽 is the set of bases of
supermatroids on𝑋 if and only if it has the following property.

(LB2) Suppose 𝑏
1
, 𝑏
2
∈ 𝛽; then for every pair 𝑥, 𝑦 ∈ 𝑋

satisfying 𝑦 ≤ 𝑏
1
, 𝑏
2
≤ 𝑥, and 𝑦 < 𝑥, there exists 𝑧 ∈ 𝛽

such that 𝑦 ≤ 𝑧 ≤ 𝑥.
(LB3) If 𝑏

1
, 𝑏
2
∈ 𝛽 and 𝑏

1
≤ 𝑏
2
, then 𝑏

1
= 𝑏
2
.

Proof. We have already proved that the collection 𝛽 of bases
of a supermatroid satisfies (LB2) (i.e., Theorem 9) and 𝛽

obviously satisfies (LB3). To show the converse, let 𝜍 = ⋃
𝑥∈𝛽

↓

𝑥. It follows from (LB3) that 𝛽 =Max 𝜍. Assume 𝑥, 𝑦 ∈ 𝜍 and
ℎ(𝑦) < ℎ(𝑥). We will prove the following.

(LI2∗) If 𝑥, 𝑦 ∈ 𝜍, ℎ(𝑦) < ℎ(𝑥), then there exists 𝑧 ∈ 𝜍

such that 𝑦 ≤ 𝑧 ≤ 𝑥 ∨ 𝑦 holds. For (LI2∗)⇒ (LI2) is trivial,
we conclude the proof.

The definition of 𝛽 implies that there exists 𝑏
1
, 𝑏
2
∈ 𝛽 such

that 𝑦 ≤ 𝑏
1
and 𝑥 ≤ 𝑏

2
. Since 𝑦 ≤ 𝑏

1
, 𝑏
2
≤ 𝑦 ∨ 𝑏

2
, and 𝑦 <

𝑦 ∨ 𝑏
2
, it holds from (LB2) that there exists 𝑏

3
∈ 𝛽 satisfying

𝑦 ≤ 𝑏
3
≤ 𝑦∨𝑏

2
. If 𝑥 = 𝑏

2
, then (LI2∗) holds.We now consider

the case 𝑥 < 𝑏
2
. By 𝑦 ≤ 𝑏

3
≤ 𝑦 ∨ 𝑏

2
, we have 𝑏

3
∨ 𝑏
2
= 𝑦 ∨ 𝑏

2
.

From Lemma 12, ℎ(𝑏
3
) = ℎ(𝑏

2
) = ℎ(𝑏

1
) > ℎ(𝑥) > ℎ(𝑦) holds;

thus, 𝑦 < 𝑏
3
. Clearly, 𝑦 ∧ 𝑥 ≤ 𝑏

3
∧ 𝑥. To prove 𝑦 ∧ 𝑥 < 𝑏

3
∧ 𝑥,

we assume 𝑦 ∧ 𝑥 = 𝑏
3
∧ 𝑥 and derive a contradiction. 𝑋 is a

modular lattice; thus,

ℎ (𝑥) + ℎ (𝑦) = ℎ (𝑥 ∨ 𝑦) + ℎ (𝑥 ∧ 𝑦) . (3)
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By ℎ(𝑏
3
) = ℎ(𝑏

2
) > ℎ(𝑥) > ℎ(𝑦), so

ℎ (𝑏
3
) − ℎ (𝑦) > ℎ (𝑏

2
) − ℎ (𝑥) . (4)

It follows from (3) and (4) that

ℎ (𝑏
3
) + ℎ (𝑥) > ℎ (𝑏

2
) − ℎ (𝑥) + ℎ (𝑥 ∨ 𝑦) + ℎ (𝑥 ∧ 𝑦) . (5)

And since

ℎ (𝑥) + ℎ (𝑏
3
) = ℎ (𝑥 ∨ 𝑏

3
) + ℎ (𝑥 ∧ 𝑏

3
) , (6)

with (5), we have

ℎ (𝑥 ∨ 𝑏
3
) + ℎ (𝑥 ∧ 𝑏

3
) > ℎ (𝑏

2
) − ℎ (𝑥)

+ ℎ (𝑥 ∨ 𝑦) + ℎ (𝑥 ∧ 𝑦) .

(7)

Note the assumption 𝑦 ∧ 𝑥 = 𝑏
3
∧ 𝑥; (7) implies

ℎ (𝑥 ∨ 𝑏
3
) − ℎ (𝑥 ∨ 𝑦) > ℎ (𝑏

2
) − ℎ (𝑥) . (8)

It holds from 𝑥 ∨ 𝑏
3
≤ 𝑏
2
∨ 𝑏
3
and (8) that

ℎ (𝑏
2
∨ 𝑏
3
) − ℎ (𝑥 ∨ 𝑦) ≥ ℎ (𝑥 ∨ 𝑏

3
) − ℎ (𝑥 ∨ 𝑦)

> ℎ (𝑏
2
) − ℎ (𝑥) .

(9)

Let 𝑥 ≺ 𝑎
1
≺ 𝑎
2
≺ ⋅ ⋅ ⋅ ≺ 𝑎

𝑚
≺ 𝑏
2
. By the upper covering

condition, {𝑎∨𝑦 | 𝑎 ∈ {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
}} forms amaximal chain

from𝑥∨𝑦 to 𝑏
2
∨𝑦.Therefore, ℎ(𝑏

2
)−ℎ(𝑥) ≥ ℎ(𝑏

2
∨𝑦)−ℎ(𝑥∨𝑦),

contrary to (9) (note 𝑏
3
∨ 𝑏
2
= 𝑦 ∨ 𝑏

2
). Thus, 𝑦 ∧ 𝑥 < 𝑏

3
∧ 𝑥 is

proved.
Choose 𝑧 ∈ [𝑦 ∧ 𝑥, 𝑏

3
∧ 𝑥] and 𝑦 ∧ 𝑥 ≺ 𝑧. It is trivial that

𝑦 ∧ 𝑥 = 𝑦 ∧ 𝑧. Since

ℎ (𝑧) + ℎ (𝑦) = ℎ (𝑧 ∨ 𝑦) + ℎ (𝑧 ∧ 𝑦) ,

ℎ (𝑦 ∧ 𝑥) + 1 = ℎ (𝑧) ,

(10)

we have ℎ(𝑦∨𝑧) = ℎ(𝑦)+1; thus, 𝑦∨𝑧 > 𝑦. 𝑦∨𝑧 ≤ 𝑏
3
implies

𝑦 ∨ 𝑧 ∈ 𝜍, and obviously 𝑦 ∨ 𝑧 ≤ 𝑥 ∨ 𝑦, so (LI2∗) holds and
this completes the proof.

Remark 14. Barnabei et al. defined poset matroids in terms
of base axioms. They proved the equivalence of base axioms
and independence axioms for distributive supermatroids
(see Theorem 5.1 in [7]). Our theorem (Theorem 13) actually
generalizes their results about base axioms tomodular super-
matroids.

Remark 15. In the proof of Theorem 5.1 in [7], (LB2∗) ⇒
(LI2∗) was verified by induction ((LB2∗) is equivalent to
(LB2) for distributive supermatroids; see Theorem 4.3 of [7].
We will prove the equivalence of (LB2∗) and (LB2) for mod-
ular supermatroids in the following). Unfortunately, there is
something wrong with the induction. We take a matroid,
that is, a special case of poset matroids, as an example to
verify our assertion. Consider the cyclematroid𝑀(𝐺), where
𝐺 is shown in Figure 2(b). {𝑎, 𝑏} is an independent set and
{𝑐, 𝑑, 𝑒} is a base. Though for every 𝑥 ∈ {𝑐, 𝑑, 𝑒}, obviously,
{𝑎, 𝑏, 𝑥} is an independent set (i.e., we can augment {𝑎, 𝑏}
by an element 𝑥 in {𝑐, 𝑑, 𝑒} − {𝑎, 𝑏}), it is easy to check
that we cannot augment {𝑎, 𝑏} to a larger independent set
by the base exchange axiom. This example shows that the
assertion “if 𝑛 = 0, the thesis follows immediately by the
exchange property and by Theorem 4.1” in the proof of [7,
Theorem 5.1] is not right. We give a direct proof of a more
generalized result of [7,Theorem5.1] inTheorem 13 instead of
the induction approach and our proof presents the important
role of modular properties.

We now give another base axiom of modular superma-
troids.

Theorem 16. Let 𝑋 be a modular lattice, 𝜍 ∈ Down(𝑋), and
𝛽 = Max 𝜍. Then the following are equivalent.

(LB2) Suppose 𝑏
1
, 𝑏
2
∈ 𝛽; then for every pair 𝑥, 𝑦 ∈ 𝑋

satisfying 𝑦 ≤ 𝑏
1
, 𝑏
2
≤ 𝑥, and 𝑦 < 𝑥, there exists 𝑧 ∈ 𝛽

such that 𝑦 ≤ 𝑧 ≤ 𝑥.

(LB2∗) Suppose 𝑏
1
, 𝑏
2
∈ 𝛽; then for every 𝑥 ≺ 𝑏

1
, there exists

𝑦 ≤ 𝑏
2
such that 𝑥 ∨ 𝑦 ∈ 𝛽.
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Proof. (LB2)⇒ (LB2∗). Let 𝑏
1
, 𝑏
2
∈ 𝛽, 𝑥 ∈ 𝑋, satisfying 𝑥 ≺

𝑏
1
. Since 𝑥 ≤ 𝑏

1
, 𝑏
2
≤ 𝑏
2
∨ 𝑥, and 𝑥 ≤ 𝑏

2
∨ 𝑥, it holds from

(LB2) that there exists 𝑏
3
∈ 𝛽 such that 𝑥 ≤ 𝑏

3
≤ 𝑏
2
∨ 𝑥. By

Lemma 12, ℎ(𝑏
1
) = ℎ(𝑏

3
) = ℎ(𝑥) + 1; thus 𝑥 ≺ 𝑏

3
. Then the

lower covering condition implies

𝑥 ∧ 𝑏
2
≺ 𝑏
3
∧ 𝑏
2

or 𝑥 ∧ 𝑏
2
= 𝑏
3
∧ 𝑏
2
. (11)

If 𝑥∧𝑏
2
= 𝑏
3
∧𝑏
2
, observe that 𝑏

3
≤ 𝑏
2
∨𝑥 implies 𝑏

3
∨𝑏
2
=

𝑏
2
∨ 𝑥; then {𝑥, 𝑏

2
, 𝑏
3
, 𝑏
2
∨ 𝑥, 𝑏

2
∧ 𝑥} is the sublattice 𝑁

5
of

𝑋, contradicting the fact that 𝑋 is a modular lattice. Hence,
𝑥 ∧ 𝑏
2
≺ 𝑏
3
∧ 𝑏
2
.

It is easy to check 𝑥∧𝑏
2
= 𝑥∧ (𝑏

3
∧𝑏
2
). Since 𝑏

2
and 𝑏
3
are

incomparable, we have

ℎ (𝑏
3
) = ℎ (𝑥) + 1 > ℎ (𝑏

3
∧ 𝑏
2
) = ℎ (𝑥 ∧ 𝑏

2
) + 1. (12)

Thus,𝑥 > 𝑥∧𝑏
2
.Then it follows from𝑥∧𝑏

2
≺ 𝑏
3
∧𝑏
2
that𝑥 and

𝑏
3
∧𝑏
2
. Because 𝑥 < 𝑥∨(𝑏

3
∧𝑏
2
) ≤ 𝑏
3
and 𝑥 ≺ 𝑏

3
, 𝑥∨(𝑏

3
∧𝑏
2
) =

𝑏
3
, as desired.
(LB2∗) ⇒ (LB2). Let 𝑏

1
, 𝑏
2
∈ 𝛽 and 𝑥, 𝑦 ∈ 𝑋, satisfying

𝑦 ≤ 𝑏
1
, 𝑏
2
≤ 𝑥, and 𝑦 < 𝑥. If 𝑦 = 𝑏

1
or 𝑏
2
= 𝑥, then (LB2)

holds. We now consider the case 𝑦 < 𝑏
1
and 𝑏
2
< 𝑥. In the

subset of 𝛽 that all elements are equal to or greater than 𝑦,
we choose a 𝑏

3
such that the height of 𝑏

3
∧ 𝑏
2
is maximal

(i.e., 𝑏
3
∈ {𝑎 ∈ 𝛽 | 𝑎 ≥ 𝑦} and for all 𝑎

0
∈ {𝑎 ∈ 𝛽 |

𝑎 ≥ 𝑦}, ℎ(𝑏
3
∧ 𝑏
2
) ≥ ℎ(𝑎

0
∧ 𝑏
2
)). Note that 𝑏

3
< 𝑥 or they

are incomparable. We assert 𝑏
3
< 𝑥; then this finishes our

proof. To prove our assertion, we assume that 𝑏
3
and 𝑥 are

incomparable and derive a contradiction.
Since 𝑏

3
∧ 𝑥 > 𝑏

3
, choose 𝑦

0
∈ [𝑏
3
∧ 𝑥, 𝑏
3
], satisfying 𝑦

0
≺

𝑏
3
. By (LB2), there exists 𝑦

1
≤ 𝑏
2
such that 𝑦

0
∨ 𝑦
1
∈ 𝛽. Let

𝑏
4
= 𝑦
0
∨ 𝑦
1
; then 𝑏

4
> 𝑦
0
≥ 𝑏
3
∧ 𝑥 ≥ 𝑦 ∧ 𝑥 = 𝑦. Obviously,

𝑏
3
∨ 𝑏
2
≥ (𝑦
0
∨ 𝑦
1
) ∨ 𝑏
2
= 𝑏
4
∨ 𝑏
2
. We consider the following

two cases.

Case 1 (𝑏
3
∨ 𝑏
2
= 𝑏
4
∨ 𝑏
2
). Note 𝑏

4
∨ 𝑏
2
= (𝑦
0
∨ 𝑦
1
) ∨ 𝑏
2
=

𝑦
0
∨ 𝑏
2
= 𝑏
3
∨ 𝑏
2
, and it is easy to verify 𝑦

0
∧ 𝑏
2
= 𝑏
3
∧ 𝑏
2
;

hence, {𝑏
2
, 𝑏
3
, 𝑦
0
, 𝑏
3
∧ 𝑏
2
, 𝑏
3
∨ 𝑏
2
} forms a sublattice 𝑁

5
of 𝑋,

contradicting the fact that𝑋 is a modular lattice.

Case 2 (𝑏
3
∨ 𝑏
2
> 𝑏
4
∨ 𝑏
2
). In this case, ℎ(𝑏

3
∨ 𝑏
2
) > ℎ(𝑏

4
∨ 𝑏
2
)

holds. Since𝑋 is a modular lattice, we have

ℎ (𝑏
2
) + ℎ (𝑏

3
) = ℎ (𝑏

3
∨ 𝑏
2
) + ℎ (𝑏

3
∧ 𝑏
2
) ,

ℎ (𝑏
2
) + ℎ (𝑏

4
) = ℎ (𝑏

4
∨ 𝑏
2
) + ℎ (𝑏

4
∧ 𝑏
2
) .

(13)

(13) implies

ℎ (𝑏
4
∧ 𝑏
2
) − ℎ (𝑏

3
∧ 𝑏
2
) = ℎ (𝑏

4
) − ℎ (𝑏

3
)

+ ℎ (𝑏
3
∨ 𝑏
2
) − ℎ (𝑏

4
∨ 𝑏
2
) .

(14)

It is easy to check ℎ(𝑏
4
)−ℎ(𝑏

3
) ≥ 0 ((LB2∗) implies (LB2); then

it holds from Lemma 12 that ℎ(𝑏
4
) = ℎ(𝑏

3
). We certainly can

prove directly that (LB2∗) implies that all elements in 𝛽 have
the same height (but not needed here), though the proof is not
trivial); thus it follows from (14) that ℎ(𝑏

4
∧𝑏
2
)−ℎ(𝑏

3
∧𝑏
2
) > 0,

contrary to the definition of 𝑏
3
.

4. Conclusions

This paper establishes the middle base axiom and base
exchange axiom of modular supermatroids. For indepen-
dence axioms, we can prove that (I2∗) and its other equiv-
alent characterizations can also be generalized to modular
supermatroids, and most of these extensions do not need the
restriction of modular lattices. However, we cannot extend
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directly circuit axioms of distributive supermatroids (i.e.,
Theorem9.1 of [7]) tomodular supermatroids.Note that there
are many equivalent descriptions of circuits for matroids;
thus, choosing one proper definition and constructing circuit
axioms of modular supermatroids are our future work. Apart
from axiom systems, the second reason for us to consider
properties of circuits is to study the connectedness of super-
matroids. Connectedness is an important topic in matroid
theory, while few papers concerning extensions of matroids
refer to connectedness. Our work of this paper, meanwhile,
proposes preliminaries for subsequent study about circuits.
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