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The truncated 𝑞-Bernstein polynomials 𝐵
𝑛,𝑚,𝑞
(𝑓; 𝑥), 𝑛 ∈ N, and 𝑚 ∈ N

0
emerge naturally when the 𝑞-Bernstein polynomials of

functions vanishing in some neighbourhood of 0 are considered. In this paper, the convergence of the truncated 𝑞-polynomials on
[0, 1] is studied. To support the theoretical results, some numerical examples are provided.

1. Introduction

Let 𝑞 > 0. For any nonnegative integer 𝑛, the 𝑞-integer [𝑛]
𝑞
is

defined by

[𝑛]
𝑞
:= 1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞

𝑛−1

(𝑛 = 1, 2, . . .) , [0]
𝑞
:= 0, (1)

and the 𝑞-factorial [𝑛]
𝑞
! is defined by

[𝑛]
𝑞
! := [1]

𝑞
[2]
𝑞
⋅ ⋅ ⋅ [𝑛]

𝑞
(𝑛 = 1, 2, . . .) , [0]

𝑞
! := 1. (2)

For integers 0 ≤ 𝑘 ≤ 𝑛, the 𝑞-binomial coefficient is defined
by

[
𝑛

𝑘
]

𝑞

:=
[𝑛]
𝑞
!

[𝑘]
𝑞
![𝑛 − 𝑘]

𝑞
!
. (3)

Clearly, for 𝑞 = 1,

[𝑛]
1
= 𝑛, [𝑛]

1
! = 𝑛!, [

𝑛

𝑘
]

1

= (
𝑛

𝑘
) . (4)

We also use the following standard notations:

(𝑎; 𝑞)
0
:= 1, (𝑎; 𝑞)

𝑘
:=

𝑘−1

∏

𝑠=0

(1 − 𝑎𝑞
𝑠

) ,

(𝑎; 𝑞)
∞
:=

∞

∏

𝑠=0

(1 − 𝑎𝑞
𝑠

) .

(5)

These notations and definitions can be seen in [1, Chapter
10].The following generalization of the Bernstein polynomials
based on the 𝑞-integers has been introduced by Phillips in [2].

Definition 1. For any𝑓 ∈ 𝐶[0, 1], the 𝑞-Bernstein polynomials
of 𝑓 are defined by

𝐵
𝑛,𝑞
(𝑓; 𝑥) =

𝑛

∑

𝑘=0

𝑓(
[𝑘]
𝑞

[𝑛]
𝑞

)𝑝
𝑛𝑘
(𝑥) , 𝑛 ∈ N, (6)

where

𝑝
𝑛𝑘
(𝑥) := [

𝑛

𝑘
]

𝑞

𝑥
𝑘

(𝑥; 𝑞)
𝑛−𝑘
, 𝑘 = 0, 1, . . . , 𝑛. (7)

Whereas one can obtain the classical Bernstein polyno-
mials for 𝑞 = 1, the name “𝑞-Bernstein polynomials” will be
used to refer to the case 𝑞 ̸= 1. Formore information and open
problems related to the 𝑞-Bernstein polynomials the reader is
referred to [3].

The 𝑞-Bernstein polynomials as well as the classical
Bernstein polynomials have some common properties (cf. [4]
and references therein), such as the end-point interpolation
property,

𝐵
𝑛,𝑞
(𝑓; 0) = 𝑓 (0) , 𝐵

𝑛,𝑞
(𝑓; 1) = 𝑓 (1) ∀𝑞 > 0, 𝑛 ∈ N,

(8)

and the shape-preserving properties in the case 0 < 𝑞 <
1. Similar to the Bernstein polynomials, the 𝑞-Bernstein
polynomials are degree reducing on the set of polynomials.

As for the convergence properties of the 𝑞-Bernstein
polynomials, they demonstrate a striking difference from
those of the Bernstein polynomials. In general terms, this
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is true for various Bernstein-type operators based on the 𝑞-
integers, and it is exactly the occurrence of new phenomena
and insights that makes the study of the convergence of these
operators attractive and challenging. During the last decade,
the approximation by operators based on the 𝑞-integers has
been investigated by many researchers (see, e.g., [5–10]).

In this paper, the convergence of the truncated 𝑞-
Bernstein polynomials is addressed. Such polynomials come
into the picture once the 𝑞-Bernstein polynomials are con-
sidered for the functions vanishing in some neighbourhood
of 0. The truncation of functions and operators is a well-
known and widely used tool in functional analysis and
approximation theory. See, for example, a recent paper [11]
where it has been used to prove a Daugavet-type inequality.
As for the truncation of the classical Bernstein polynomials,
it has been used by Cooper and Waldron in [12].

Definition 2 (see [13]). For any 𝑓 : [0, 1] → R, 𝑚 ∈ N
0
, and

𝑛 ≥ 𝑚, the𝑚-truncated 𝑞-Bernstein polynomials of 𝑓 are

𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥) :=

𝑛

∑

𝑘=𝑛−𝑚

𝑓(
[𝑘]
𝑞

[𝑛]
𝑞

)𝑝
𝑛,𝑘
(𝑥) . (9)

In this paper, the properties of polynomials (9) are studied
only in the case 𝑞 > 1. Throughout the paper, and unless
stated otherwise, it is assumed that 𝑞 > 1 is fixed. For the
sake of simplicity, the notations

J
𝑞
:= {0} ∪ {𝑞

−𝑗

}
∞

𝑗=0

(10)

and 𝑥
𝑘
= [𝑘]
𝑞
/[𝑛]
𝑞
for 𝑘 = 0, . . . , 𝑛 will be used.

For 𝑓 : [0, 1] → R,𝑚 ∈ N
0
, the function

𝑓
𝑚
(𝑥) :=

{

{

{

0 for 𝑥 ∈ [0, 𝑞−(𝑚+1)) ,

𝑓 (𝑥) for 𝑥 ∈ [𝑞−(𝑚+1), 1] ,
(11)

will be called the𝑚-truncation of 𝑓. Clearly, 𝑓(𝑥) = 𝑓
𝑚
(𝑥) if

and only if 𝑓(𝑥) = 0 for 𝑥 ∈ [0, 𝑞−(𝑚+1)).
The paper is organized as follows. The next section is

devoted to the main results, which, finally, are illustrated in
Section 3 using numerical examples.

2. Results

In this section, the results are presented pertaining the
convergence of the truncated 𝑞-Bernstein polynomials. The
following simple assertion reveals that the truncated 𝑞-
Bernstein polynomials appear naturally when we consider
those functions vanishing in some neighbourhood of 0.

Theorem 3. If 𝑛 ≥ ln ([𝑚 + 1]
𝑞
)/ ln 𝑞, then 𝐵

𝑛,𝑚,𝑞
(𝑓; 𝑥) =

𝐵
𝑛,𝑞
(𝑓
𝑚
; 𝑥), where 𝑓

𝑚
is given by (11).

Proof. Since 𝑓
𝑚
(𝑥
𝑘
) = 0, for 𝑥

𝑘
< 𝑞
−(𝑚+1), one has

𝐵
𝑛,𝑞
(𝑓
𝑚
; 𝑥) = ∑

{𝑘:𝑥𝑘≥𝑞
−(𝑚+1)}

𝑓 (𝑥
𝑘
) 𝑝
𝑛,𝑘
(𝑥) (12)

while
𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥) = ∑

𝑘≥𝑛−𝑚

𝑓 (𝑥
𝑘
) 𝑝
𝑛,𝑘
(𝑥) . (13)

The right sides of (12) and (13) are identical if and only if

𝑞
−(𝑚+1)

≤ 𝑥
𝑛−𝑚

< 𝑞
−𝑚

. (14)

The inequality on the right holds for all 𝑞 > 1, while the one
on the left is true if and only if 𝑛 ≥ ln([𝑚 + 1]

𝑞
)/ ln 𝑞.

Remark 4. If 𝑞 ≥ 2, then 𝐵
𝑛,𝑞
(𝑓
𝑚
, 𝑥) = 𝐵

𝑛,𝑚,𝑞
(𝑓; 𝑥) for all

𝑛 ≥ 𝑚.

Corollary 5. If𝑓(𝑥) = 0 for 𝑥 ∈ [0, 𝑞−(𝑚+1)), then 𝐵
𝑛,𝑞
(𝑓; 𝑥) =

𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥).

Theorem 2.1 of [7] states that, for any 𝑓 ∈ 𝐶[0, 1], 𝑗 ∈ N
0
,

and 𝑞 > 1, lim
𝑛→∞

𝐵
𝑛,𝑞
(𝑓; 𝑞
−𝑗

) = 𝑓(𝑞
−𝑗

).That is, when 𝑞 > 1,
the sequence of polynomials 𝐵

𝑛,𝑞
(𝑓) converges to 𝑓 on J

𝑞
.

The following lemma, which can be inferred from Lemma
3.1 of [13], is needed to investigate the convergence of the
truncated 𝑞-Bernstein polynomials.

Lemma 6. Let 𝑥
0
∈ [0, 1] \ J

𝑞
. Then

lim
𝑛→∞

𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑥
0
)

(𝑞𝑘𝑥
0
)
𝑛

= 𝐶
𝑘
(𝑥
0
) , (15)

where 𝐶
𝑘
(𝑥
0
) = (−1)

𝑘

𝑞
−𝑘(𝑘−1)/2

(𝑥
0
; 𝑞)
𝑘
/[(𝑞; 𝑞)

𝑘
𝑥
𝑘

0
] ̸= 0.

Note that 𝐶
𝑘
(𝑥) = 0 if and only if 𝑥 ∈ J

𝑞
\ {0}. Thus, the

following holds.

Lemma 7. For any 𝑓 ∈ 𝐶[0, 1] and 𝑥 ∈ [0, 𝑞
−𝑚

),
lim
𝑛→∞

𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥) = 0. Moreover, the convergence is
uniform on any compact subset of [0, 𝑞−𝑚).

Proof. Since 𝑓 is continuous on [0, 1], there exists 𝑀 > 0

such that |𝑓(𝑥)| ≤ 𝑀 for all 𝑥 ∈ [0, 1]. In addition, from
the definition of 𝑝

𝑛,𝑘
, one can obtain

𝑝𝑛,𝑛−𝑘 (𝑥)
 ≤

𝑞
𝑘(𝑛−𝑘)

(1 − 1/𝑞) (1 − 1/𝑞2) ⋅ ⋅ ⋅ (1 − 1/𝑞𝑘)

⋅ 𝑥
𝑛−𝑘

⋅ (1 + 𝑞) ⋅ ⋅ ⋅ (1 + 𝑞
𝑘−1

)

≤
(−1/𝑞; 1/𝑞)

∞

(1/𝑞; 1/𝑞)
∞

(𝑞
𝑘

𝑥)
𝑛−𝑘

≤
(−1/𝑞; 1/𝑞)

∞

(1/𝑞; 1/𝑞)
∞

(𝑞
𝑚

𝑥)
𝑛−𝑚

(16)

for 𝑛 ≥ 2𝑚. Hence, for any 𝑥 ∈ [0, 𝑞−𝑚),


𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥)

=



𝑚

∑

𝑘=0

𝑓 (𝑥
𝑘
) 𝑝
𝑛,𝑛−𝑘

(𝑥)



≤ 𝑀
𝑞
(𝑚 + 1) (𝑞

𝑚

𝑥)
𝑛−𝑚

,

(17)

where 𝑀
𝑞
= 𝑀(−1/𝑞; 1/𝑞)

∞
/(1/𝑞; 1/𝑞)

∞
. This yields the

desired result.



Abstract and Applied Analysis 3

Clearly, for𝑚 = 0, the truncated 𝑞-Bernstein polynomials
have the form

𝐵
𝑛,0,𝑞
(𝑓; 𝑥) = 𝑓 (1) 𝑥

𝑛

, (18)

whence

lim
𝑛→∞

𝐵
𝑛,0,𝑞
(𝑓; 𝑥) = {

0 for 𝑥 ∈ [0, 1) ,
𝑓 (1) for 𝑥 = 1.

(19)

As the next theorem reveals, the case 𝑚 ̸= 0 is not
straightforward.

Theorem 8. Let 𝑓 ∈ 𝐶[0, 1],𝑚 ≥ 1. If 𝑓(𝑞−𝑚) ̸= 0, then

lim
𝑛→∞

𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥) = {
0 𝑓𝑜𝑟 𝑥 ∈ [0, 𝑞

−𝑚

) ,

𝑓 (𝑥) 𝑓𝑜𝑟 𝑥 = 1, 𝑞
−1

, . . . , 𝑞
−𝑚

,

(20)

lim
𝑛→∞


𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥)

= 0 𝑓𝑜𝑟 𝑥 ∈ [𝑞

−𝑚

, 1] \ J
𝑞
. (21)

Proof. The assertion (20) is obvious by Lemma 7 and the
convergence on J

𝑞
. To see (21), let 𝑥 ∈ [𝑞−𝑚, 1] \ J

𝑞
. Then,

Lemma 6 implies that

𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑥) ∼ 𝐶
𝑘
(𝑥) (𝑞

𝑘

𝑥)
𝑛

as 𝑛 → ∞. (22)

Moreover, it is easy to see that 𝑥
𝑛−𝑘

→ 𝑞
−𝑘 as 𝑛 → ∞.

Therefore,

𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥) =

𝑚

∑

𝑘=0

𝑓 (𝑥
𝑛−𝑘
) 𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑥)

∼

𝑚

∑

𝑘=0

𝑓 (𝑞
−𝑘

) 𝐶
𝑘
(𝑥) (𝑞

𝑘

𝑥)
𝑛

∼ 𝑓 (𝑞
−𝑚

) 𝐶
𝑚
(𝑥) (𝑞

𝑚

𝑥)
𝑛 as 𝑛 → ∞.

(23)

Since 𝑓(𝑞−𝑚) ̸= 0 and 𝐶
𝑚
(𝑥) ̸= 0, the statement follows.

In the case when 𝑓(𝑞−𝑚) = 0, the truncated 𝑞-Bernstein
polynomials behave differently as the following theorem
indicates.

Theorem 9. Let 𝑓 ∈ 𝐶[0, 1] with 𝑓(𝑞−𝑚) = 0, and suppose
that, for each 𝑘 = 1, . . . , 𝑚, there exists 𝛼

𝑘
> 0 such that

lim
𝑛→∞

𝑓 (𝑥
𝑛−𝑘
)

(𝑞−𝑘 − 𝑥
𝑛−𝑘
)
𝛼𝑘
= 𝛽
𝑘
̸= 0. (24)

Setting 𝑠 = max
𝑘=1,...,𝑚

{𝑘 − 𝛼
𝑘
}, one has the following:

(i) if 𝑠 > 0, then

lim
𝑛→∞

𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥) = 0 𝑤ℎ𝑒𝑛 𝑥 ∈ [0, 𝑞
−𝑠

] ,

lim
𝑛→∞


𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥)

= ∞ 𝑤ℎ𝑒𝑛 𝑥 ∈ (𝑞

−𝑠

, 1) \ J
𝑞
,

(25)

except possibly at most at𝑚 points, outside of J
𝑞
;

(ii) if 𝑠 ≤ 0, then lim
𝑛→∞

𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥) = 0 for all 𝑥 ∈ [0, 1].

Proof. From (24), for each 𝑘 = 1, . . . , 𝑛, one has 𝑓(𝑥
𝑛−𝑘
) ∼

𝛽
𝑘
(𝑞
−𝑘

− 𝑥
𝑛−𝑘
)
𝛼𝑘 as 𝑛 → ∞, which together with Lemma 6

and the fact that 𝑞−𝑘 − 𝑥
𝑛−𝑘

= (𝑞
𝑘

− 1)/[𝑞
𝑘

(𝑞
𝑛

− 1)] yields
that

𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥) − 𝑓 (1) 𝑥
𝑛

=

𝑚

∑

𝑘=1

𝑓 (𝑥
𝑛−𝑘
) 𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑥)

∼

𝑚

∑

𝑘=1

𝛽
𝑘
(𝑞
−𝑘

− 𝑥
𝑛−𝑘
)
𝛼𝑘

𝐶
𝑘
(𝑥) (𝑞

𝑘

𝑥)
𝑛

∼

𝑚

∑

𝑘=1

𝛽
𝑘
𝐶
𝑘
(𝑥) (𝑞

𝑘−𝛼𝑘𝑥)
𝑛

as 𝑛 → ∞,

(26)

where 𝛽
𝑘
= 𝛽
𝑘
(1 − 𝑞

−𝑘

)
𝛼𝑘 . Now, suppose that 𝑘 − 𝛼

𝑘
takes on

its maximum value 𝑠 at 𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑟
∈ {1, . . . , 𝑚} with 𝑘

1
<

𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑟
. Then,

𝐵
𝑛,𝑚,𝑞

(𝑓; 𝑥) − 𝑓 (1) 𝑥
𝑛

∼

𝑚

∑

𝑘=1

𝛽
𝑘
𝐶
𝑘
(𝑥) (𝑞

𝑘−𝛼𝑘𝑥)
𝑛

∼ (𝑞
𝑠

𝑥)
𝑛

𝑟

∑

𝑗=1

𝛽
𝑘𝑗
𝐶
𝑘𝑗
(𝑥) := (𝑞

𝑠

𝑥)
𝑛

𝜑 (𝑥) as 𝑛 → ∞.

(27)

Since 𝑥𝑘𝑟𝜑(𝑥) = 𝑥𝑘𝑟 ∑𝑟
𝑗=1
𝛽
𝑘𝑗
𝐶
𝑘𝑗
(𝑥) is a polynomial of degree

atmost𝑚,𝜑(𝑥) can vanish atmost at𝑚points.This completes
the proof.

3. Numerical Examples

In this part, some numerical examples are given to demon-
strate the theoretical results.

Example 10. Let 𝑞 = 2, 𝑚 = 2. Consider the function 𝑓 :
[0, 1] → R, defined by

𝑓 (𝑥) =

{{{{{{{

{{{{{{{

{

0, 𝑥 <
1

8
,

(𝑥 −
1

8
)

2

,
1

8
≤ 𝑥 <

1

4
,

1

64
, 𝑥 ≥

1

4
.

(28)

Since 𝑓(𝑥) = 0 for 𝑥 ∈ [0, 2−3) and 𝑓(2−2) ̸= 0, byTheorem 8,

lim
𝑛→∞

𝐵
𝑛,2,2
(𝑓; 𝑥) =

{{{{{

{{{{{

{

0, if 𝑥 ∈ [0, 1
4
) ,

𝑓 (𝑥) , if 𝑥 = 1, 1
2
,
1

4
,

±∞, otherwise.

(29)
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Figure 1: Graphs of 𝑓 and 𝐵
𝑛,2,2
(𝑓) on different intervals for some values of 𝑛.

In Figure 1, the graphs of 𝑓 and 𝐵
𝑛,2,2
(𝑓) on some different

intervals are given.

Example 11. Let 𝑞 = 2, 𝑚 = 3, and consider a function 𝑔 ∈
𝐶[0, 1] satisfying

𝑔 (𝑥) =

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

0, 𝑥 ∈ [0,
1

16
) ,

72(1/8 − 𝑥)
2

7
, 𝑥 ∈ [

3

32
,
1

8
) ,

1

4
− 𝑥, 𝑥 ∈ [

3

16
,
1

4
) ,

3 (
1

2
− 𝑥) , 𝑥 ∈ [

3

8
,
1

2
) ,

(30)

and on the rest of [0, 1], 𝑔 is piecewise linear. It is easily seen
that the conditions of Theorem 9 are fulfilled by 𝛼

1
= 1, 𝛼

2
=

1, 𝛼
3
= 2, 𝛽

1
= 3, 𝛽

2
= 1, and 𝛽

3
= 72/7. Here, 𝑠 = 1 and

𝜑(𝑥) = (1 − 𝑥)(1 − 2𝑥)(3 − 4𝑥)/(64𝑥
3

) vanishes at 𝑥 = 1, 1/2,
and 3/4. Therefore,

lim
𝑛→∞

𝐵
𝑛,3,2
(𝑔; 𝑥) =

{{{{{{

{{{{{{

{

0, if 𝑥 ∈ [0, 1
2
) ∪ {

3

4
} ,

𝑔 (𝑥) , if 𝑥 = 1, 1
2
,

±∞, otherwise.

(31)

In Figure 2, the graphs of 𝑔 and 𝐵
𝑔,3,2
(𝑔) on some different

intervals are provided.
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Figure 2: Graphs of 𝑔 and 𝐵
𝑛,3,2
(𝑔) on different intervals for some values of 𝑛.

Example 12. Let 𝑞 = 2, 𝑚 = 5, and consider the function
ℎ : [0, 1] → R with

ℎ (𝑥) =

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

0, 𝑥 ∈ [0,
1

64
) ,

73400320(1/32 − 𝑥)
3

54777
, 𝑥 ∈ [

3

128
,
1

32
) ,

453376(1/16 − 𝑥)
2

7695
, 𝑥 ∈ [

3

64
,
1

16
) ,

1

8
− 𝑥, 𝑥 ∈ [

3

32
,
1

8
) ,

2(
1

4
− 𝑥)

2

, 𝑥 ∈ [
3

16
,
1

4
) ,

1

2
− 𝑥, 𝑥 ∈ [

3

8
,
1

2
) .

(32)

At any other point in [0, 1], ℎ is defined in such a way that it is
continuous. Obviously, the conditions of Theorem 9 are met
by 𝛼
1
= 1, 𝛼

2
= 1, 𝛼

3
= 1, 𝛼

4
= 2, 𝛼

5
= 3, 𝛽

1
= 1, 𝛽

2
= 2, 𝛽

3
=

1, 𝛽
4
= 453376/7695, and 𝛽

5
= 73400320/54777. Now, 𝑠 = 2

and𝜑(𝑥) = (1−𝑥)(1−2𝑥)(1−4𝑥)(25𝑥2−35𝑥+12)/(98496𝑥5).
Therefore,

lim
𝑛→∞

𝐵
𝑛,5,2
(ℎ; 𝑥) =

{{{{{

{{{{{

{

0, if 𝑥 ∈ [0, 1
4
) ∪ {

3

5
,
4

5
} ,

ℎ (𝑥) , if 𝑥 = 1, 1
2
,
1

4
,

±∞, otherwise.

(33)

In Figure 3, the graphs of ℎ and 𝐵
𝑛,5,2
(ℎ) on some different

intervals are depicted.
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Figure 3: Graphs of ℎ and 𝐵
𝑛,5,2
(ℎ) on different intervals for some values of 𝑛.
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