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This paper proposes a definition of generalized offsets for curves and surfaces, which have the variable offset distance and direction,
by using the local coordinate system. Based on this definition, some analytic properties and theorems of generalized offsets are put
forward. The regularity and the topological property of generalized offsets are simply given by representing the generalized offset
as the standard offset. Some examples are provided as well to show the applications of generalized offsets. The conclusions in this
paper can be taken as the foundation for further study on extending the standard offset.

1. Introduction

Offset curves/surfaces, also called parallel curves/surfaces,
are defined as locus of the points which are at con-
stant distance along the normal vector from the generator
curves/surfaces. In the field of computer aided geometric
design (CAGD), offset curves and surfaces have got consider-
able attention since they are widely used in various practical
applications such as tolerance analysis, geometric optics, and
robot path-planning [1, 2]. The study on the offset of curve
and surface has been one of the hotpots in CAGD [3].

In some of the engineering applications, we need to
extend the concept of standard offset, which has constant
distance along the normal vector from the generator such
as geodesic offset where constant distance is replaced by
geodesic distance (distance measured from a curve on a
surface along the geodesic curve drawn orthogonally to the
curve) and generalized offset where offset direction is not
necessarily along the normal direction. Generalized offset
surfaces were first introduced by Brechner [3] and have
been extended further, from the differential geometric as
well as algebraic points of view, by Pottmann [4]. Arrondo
et al. [5] presented a formula for computing the genus of
irreducible generalized offset curves to projective irreducible
plane curves with only affine ordinary singularities over

an algebraically closed field. Lin and Rokne [6] defined
the variable-radius generalized offset parametric curves and
surfaces. The envelopes of these variable offset parametric
curves and surfaces are computed explicitly. J. R. Sendra
and J. Sendra [7] presented a complete algebraic analysis of
degeneration and the existence of simple and special com-
ponents of generalized offsets to irreducible hypersurfaces
over algebraically closed fields of characteristic zero. A notion
of a similarity surface offset was introduced by Georgiev [8]
and applied to different constructions of rational generalized
offsets. There are also some literatures on generalized offsets
which primarily focus on solving some concrete problems
[4, 9, 10]. But the general definition, properties, and complete
analytic conclusions for generalized offsets have not yet been
presented.

Some algebraic properties on standard offsets are known
to classical geometers. The study of algebraic and geometric
properties on offsets has been an active research area since
it arises in practical applications. Farouki and Neff [11, 12]
analyzed the basic geometric and topological properties of
plane offset curves and provided algorithm to compute the
implicit equation. We expect that generalized offsets would
have more interesting properties and practical applications.
In this paper, a strict definition of generalized offsets, which
have the variable offset distance and direction, is given. The
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offset distance anddirection are determined by the local coor-
dinate systems.Though using the local coordinate systems to
define a curve is not new [13], the definition of offset curves
and surfaces by the local coordinate systems has never been
presented before. According to this definition, similar to the
standard offsets, we are concerned with the enumeration of
certain fundamental geometric and algebraic characteristics
for generalized offsets.The relationships between generalized
and standard offsets are discussed.

This paper studies the generalized offsets of curves and
surfaces in two primary segments. In each segment, we firstly
give the definition and regularity of generalized offsets which
can be explicitly expressed by the local coordinate systems,
secondlywe analyze the relationship between generalized and
standard offsets, then we discuss some major properties of
generalized offsets, and finally some examples are given to
illustrate the applications of generalized offsets. The results
in this paper will be the foundation for further study on
extending the standard offset. Most analytic and topological
properties of the generalized offset are addressed in this
paper, which provide a series of fundamental conclusions for
further study in the related field of generalized offsets.

2. Generalized Offset Curves

2.1.TheDefinition andRegularity of GeneralizedOffset Curves.
For a planar parametric curve r = r(𝑡), the well-known Frenet
[14, 15] equations are given as follows:

𝑑e
𝑑𝑠

= −𝑘n, 𝑑n
𝑑𝑠

= 𝑘e, (1)

where 𝑘 is the curvature, 𝑠 is the arc length such that 𝑑𝑠/𝑑𝑡 =
|r|, and e and n are, respectively, the unit tangent vector and
the normal vector at each point of the curve r(𝑡). For the
convenience of representation, we define a unit vector z such
that

e = r





r


, z = n × e, e = z × n, n = e × z. (2)

So we have

𝑘 =

(r × r) ⋅ z





r


3
. (3)

Based on the local coordinate system (e,n) in the plane, a
generalized curve offset with the variable offset distance and
offset direction can be defined.

Definition 1. For a planar smooth parametric curve r =
r(𝑡) with the regular parameter 𝑡 ∈ [0, 1], its generalized
offset curve r

𝑜
(𝑡) with the variable offset distance and offset

direction is defined by

r
𝑜
(𝑡) = r (t) + 𝑑

1
(t) e + 𝑑

2
(t)n, (4)

where 𝑑
1
(𝑡) and 𝑑

2
(𝑡) are the functions of 𝑡.

Thus the offset direction depends on 𝑑
2
(t)n and 𝑑

1
(𝑡)e,

and the offset distance is √𝑑2
1
(𝑡) + 𝑑

2

2
(𝑡). From the above

definition, the related parametric derivatives of r
𝑜
can be

obtained by

r
𝑜
= r + 𝑑

1
⋅ e + 𝑑

1
⋅ e + 𝑑

2
⋅ n + 𝑑

2
⋅ n

= (







r



+ 𝑑



1
+ 𝑑
2
⋅ 𝑘 ⋅







r



) e + (𝑑
2
− 𝑑
1
⋅ 𝑘 ⋅







r



)n.
(5)

Let 𝛼 = |r| +𝑑
1
+𝑑
2
⋅ 𝑘 ⋅ |r| and let 𝛽 = 𝑑

2
−𝑑
1
⋅ 𝑘 ⋅ |r|; we get

r
𝑜
= 𝛼 ⋅ e + 𝛽 ⋅ n,

r
𝑜
= 𝛼


⋅ e + 𝛼 ⋅ e + 𝛽 ⋅ n + 𝛽 ⋅ n

= (𝛼


+ 𝛽 ⋅ 𝑘 ⋅







r



) e + (𝛽 − 𝛼 ⋅ 𝑘 ⋅ 



r



)n.

(6)

Therefore we have

e
𝑜
=

r
𝑜






r
𝑜






=

𝛼e + 𝛽n

√𝛼

2
+ 𝛽

2

,

n
𝑜
= e
𝑜
× z = 𝛼 (e × z) + 𝛽 (n × z)

√𝛼

2
+ 𝛽

2

=

𝛼n − 𝛽e

√𝛼

2
+ 𝛽

2

,

𝑘
𝑜
=

(r
𝑜
× r
𝑜
) ⋅ z






r
𝑜






3

=

(𝛼


𝛽 − 𝛼𝛽


) + (𝛼

2
+ 𝛽

2
) ⋅ 𝑘 ⋅







r



(𝛼

2
+ 𝛽

2
)

3/2
.

(7)

Regarding the regularity of generalized offset curves, we
have the following theorem.

Theorem 2. If there exists 𝑡
0
∈ [0, 1] to satisfy the equation

𝑑



1
(𝑡
0
) 𝑑
1
(𝑡
0
) + 𝑑



2
(𝑡
0
) 𝑑
2
(𝑡
0
) + 𝑑
1
(𝑡
0
) ⋅







r (𝑡
0
)







= 0, (8)

and for any arbitrary small positive number 𝛿,

𝑘 =

{
{
{
{

{
{
{
{

{

−

1

𝑑
2
(𝑡
0
)

[1 +

𝑑



1
(𝑡
0
)






r (𝑡
0
)






] , when 


𝑑
2






≥ 𝛿 > 0,

1

𝑑
1
(𝑡
0
)

[

𝑑



2
(𝑡
0
)






r (𝑡
0
)






] , when 


𝑑
1






≥ 𝛿 > 0,

(9)

then r
𝑜
(𝑡
0
) is a nonregular point of the generalized offset curve

r
𝑜
.

Proof. Let r
𝑜
(𝑡
0
) be any non-regular point of the offset curve

r
𝑜
(𝑡); then |r

𝑜
(𝑡
0
)| = √𝛼

2
+ 𝛽

2
= 0. We get 𝛼 = 𝛽 = 0. Thus

𝑑
2
⋅







r



⋅ 𝑘 + 𝑑



1
+







r



= 0, (10)

−𝑑
1
⋅







r



⋅ 𝑘 + 𝑑



2
= 0. (11)

We discuss the following two cases.

(i) When |𝑑
2
| ≥ 𝛿 > 0, from (10) it follows that

𝑘 = −

1

𝑑
2

(1 +

𝑑



1






r


) . (12)
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Substituting it into (11), we have

𝑑



1
𝑑
1
+ 𝑑



2
𝑑
2
+ 𝑑
1







r



= 0. (13)

(ii) When |𝑑
1
| ≥ 𝛿 > 0, from (11) it follows that

𝑘 =

1

𝑑
1

⋅

𝑑



2






r


. (14)

Substituting it into (10), we also have

𝑑



1
𝑑
1
+ 𝑑



2
𝑑
2
+ 𝑑
1







r



= 0. (15)

Hence we proveTheorem 2.

2.2. Relationship between Generalized and Standard Offset
Curves. We will prove that the generalized offset curve can
be represented as the standard offset curve.

Theorem 3. The generalized offset r
𝑜
= r + 𝑑

1
e + 𝑑
2
n can be

represented as a standard offset: r
𝑜
= r
1
+ 𝑑n
1
, where r

1
is a

new planar smooth parametric curve, 𝑑 is constant, and n
1
is

the unit normal vector of r
1
.

Proof. Let

r
𝑜
= r + 𝑑

1
e + 𝑑
2
n

= (r + 𝐴e + 𝐵n) + (𝑑
1
− 𝐴) e + (𝑑

2
− 𝐵)n

≜ r
1
+ 𝑑n
1
,

(16)

where 𝐴 and 𝐵 are the functions of 𝑡,

𝑑 =
√
(𝑑
1
− 𝐴)

2

+ (𝑑
2
− 𝐵)

2

,

n
1
=

𝑑
1
− 𝐴

𝑑

e + 𝑑2 − 𝐵
𝑑

n,

r
1
= r + 𝐴e + 𝐴e + 𝐵n + 𝐵n

= (







r



+ 𝐴


+ 𝐵 ⋅ 𝑘 ⋅







r



) e

+ (𝐵


− 𝐴 ⋅ 𝑘 ⋅







r



)n.

(17)

In order to establish the above relationship, the following two
conditions must be satisfied.

(i) The inner product of vectors 𝑑n
1
and r
1
must be zero.

That is,

(𝑑
1
− 𝐴) (







r



+ 𝐴


+ 𝐵 ⋅ 𝑘 ⋅







r



)

+ (𝑑
2
− 𝐵) (𝐵


− 𝐴 ⋅ 𝑘 ⋅







r



) = 0.

(18)

(ii) (𝑑
1
− 𝐴)

2
+ (𝑑
2
− 𝐵)

2 must be constant. That is,

(𝑑
1
− 𝐴) (𝑑



1
− 𝐴


) + (𝑑

2
− 𝐵) (𝑑



2
− 𝐵


) = 0. (19)

Our goal is to get the values of 𝐴 and 𝐵 by solving the above
differential equations.

From (18) and (19), we get

(







r



+ 𝑑
2
⋅ 𝑘 ⋅







r



+ 𝑑



1
)𝐴 = (𝑑

1
⋅ 𝑘 ⋅







r



− 𝑑



2
) 𝐵

+ (𝑑
1







r



+ 𝑑



1
𝑑
1
+ 𝑑



2
𝑑
2
) .

(20)

Note that

𝑑
1







r



+ 𝑑



1
𝑑
1
+ 𝑑



2
𝑑
2

= 𝑑
1







r



+ 𝑑



1
𝑑
1
+ 𝑑
2
(𝛽 + 𝑑

1
⋅ 𝑘 ⋅







r



)

= 𝑑
1
𝛼 + 𝑑
2
𝛽,

(21)

and we have

𝛼 (𝑑
1
− 𝐴) + 𝛽 (𝑑

2
− 𝐵) = 0. (22)

Analyzing the following four cases, we can get the values of𝐴
and 𝐵.

(1) When 𝛼 = 𝛽 = 0, 𝐴 and 𝐵 only need to satisfy (19).
That is,

(𝑑
1
− 𝐴)

2

+ (𝑑
2
− 𝐵)

2

= 𝐶
1
, (23)

where 𝐶
1
> 0 is an arbitrary constant. Thus one of 𝐴

and 𝐵 can be determined arbitrarily. For instance, if
𝐴 = 𝑔(𝑡) is given, then

𝐵 = 𝑑
2
±
√
𝐶
1
− (𝑑
1
− 𝑔 (𝑡))

2

.
(24)

(2) When 𝛼 ̸= 0 and 𝛽 = 0, from (22) it follows that
𝐴 = 𝑑

1
and 𝐴 = 𝑑

1
. Substituting it into (19), we have

(𝑑
2
− 𝐵)(𝑑



2
− 𝐵


) = 0. Since 𝑑

2
̸= 𝐵, then 𝑑

2
= 𝐵

.
Therefore 𝐵 = 𝑑

2
(𝑡) + 𝐶

2
, where 𝐶

2
is an arbitrary

nonzero constant.

(3) When 𝛼 = 0 and 𝛽 ̸= 0, from (22) it follows that
𝐵 = 𝑑

2
and 𝐵 = 𝑑

2
. Substituting it into (19), we have

(𝑑
1
− 𝐴)(𝑑



1
− 𝐴


) = 0. Since 𝑑

1
̸= 𝐴, then 𝑑

1
= 𝐴

.
Therefore 𝐴 = 𝑑

1
(𝑡) + 𝐶

3
, where 𝐶

3
is an arbitrary

nonzero constant.

(4) When 𝛼 ̸= 0 and 𝛽 ̸= 0, by solving (19) and (22), we get

𝐴 = 𝑑
1
−

𝛽𝐶

√𝛼

2
+ 𝛽

2

, 𝐵 = 𝑑
2
+

𝛼𝐶

√𝛼

2
+ 𝛽

2

, (25)

where 𝐶 is an arbitrary constant.
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Therefore, in any case there exist two functions 𝐴 and 𝐵 to
guarantee that the generalized offset r

𝑜
= r + 𝑑

1
e + 𝑑
2
n can

be expressed as the standard offset r
𝑜
= r
1
+ 𝑑n
1
, where

r
1
= r + 𝐴e + 𝐵n

= r +(𝑑
1
−

𝛽𝐶

√𝛼

2
+ 𝛽

2

) e +(𝑑
2
+

𝛼𝐶

√𝛼

2
+ 𝛽

2

)n,

𝑑 =
√
(𝑑
1
− 𝐴)

2

+ (𝑑
2
− 𝐵)

2

= |𝐶| ,

n
1
=

𝛽

√𝛼

2
+ 𝛽

2

e − 𝛼

√𝛼

2
+ 𝛽

2

n.

(26)

That is, we can find r
1
(𝑡) so that r

𝑜
(𝑡) becomes the standard

offset of r
1
(𝑡).

So far we have proved that the generalized offset can
be represented as the standard offset. Based on the current
results of standard offsets, we can continue the research on
the regularity and integral properties of generalized offset
curves. This theorem also helps us to obtain the simpler and
conciser expressions. The following paragraph explains the
details.

2.3. Properties of Generalized Offset Curves. Let 𝜆 = |𝑟|+𝐴+
𝐵⋅𝑘⋅|𝑟


| and𝜔 = 𝐵−𝐴⋅𝑘⋅|𝑟|. From the expression of standard

offsets r
𝑜
= r
1
+ 𝑑n
1
, where

r
1
= r + 𝐴e + 𝐵n, n

1
=

𝑑
1
− 𝐴

𝑑

e + 𝑑2 − 𝐵
𝑑

n, (27)

𝑑 = const, and 𝑑
1
, 𝑑
2
, 𝐴, 𝐵 are the functions of 𝑡, we have

r1 = 𝜆e + 𝜔n,

𝑘
1
=

(𝜆


𝜔 − 𝜆𝜔


) + (𝜆

2
+ 𝜔

2
) ⋅ 𝑘 ⋅







r



(𝜆

2
+ 𝜔

2
)

3/2
,

e
1
=

r
1






r
1






=

𝜆e + 𝜔n
√
𝜆

2
+ 𝜔

2

, n
1
=

𝜆n − 𝜔e
√
𝜆

2
+ 𝜔

2

.

(28)

Moreover

r
𝑜
= (1 + 𝑑𝑘

1
) ⋅
√
𝜆

2
+ 𝜔

2
⋅ e
1
,

𝑘
𝑜
=

1






1 + 𝑑𝑘
1






𝑘
1
,

e
𝑜
= sgn (1 + 𝑑𝑘

1
) e
1
,

n
𝑜
= sgn (1 + 𝑑𝑘

1
)n
1
,

(29)

where 𝑘
𝑜
and 𝑘
1
are the curvatures of r

𝑜
and r
1
at each point,

respectively. In the above case, there is another expression for
the nonregular point of r

𝑜
. Since







r
𝑜







=






1 + 𝑑𝑘
1






⋅







r
1







=






1 + 𝑑𝑘
1






⋅
√
𝜆

2
+ 𝜔

2
, (30)

r(𝑡
0
) is a nonregular point if 𝑘

1
= −1/𝑑, and 𝜆, 𝜔 are not both

zero.
Therefore we can study the properties of the generalized

offsets by using the similar approaches as what Farouki and
Neff [12] had done for the standard offsets.

(i) Evolute
We construct

r
𝜀
(𝑡) = r

1
(𝑡) − 𝜌

1
(𝑡) ⋅ n

1
, (31)

where 𝜌
1
≡ 𝜌
1
(𝑡) = 1/𝑘

1
(𝑘
1
̸= 0). At the nonregular point

r(𝑡
0
), it follows that 𝜌

1
= 1/𝑘

1
= − 𝑑; hence we also have

r
𝑜
(𝜏) = r

1
(𝜏) + 𝑑n

1
= r
1
(𝜏) − 𝜌

1
n
1
= r
𝜀
(𝜏) . (32)

On the other hand, we have

r
𝜀
= r −

𝑑
1
− 𝐴 (1 + 𝑑𝑘

1
)

𝑑𝑘
1

e −
𝑑
2
− 𝐵 (1 + 𝑑𝑘

1
)

𝑑𝑘
1

n. (33)

Moreover, from

r
𝑜
−

1

𝑘
𝑜

n
𝑜
= r
1
−

1

𝑘
1

n
1
, (34)

we can get the relations as follows:

𝑑
1
+

𝛽

𝑘
𝑜
√𝛼

2
+ 𝛽

2

= 𝐴 +

𝜔

𝑘
1
√
𝜆

2
+ 𝜔

2

,

𝑑
2
−

𝛼

𝑘
𝑜
√𝛼

2
+ 𝛽

2

= 𝐵 −

𝜆

𝑘
1
√
𝜆

2
+ 𝜔

2

.

(35)

(ii) Turning point, inflection, and vertex

Let r(𝑡) = (𝑥(𝑡), 𝑦(𝑡))𝑇; then r(𝑡
0
) is called a turning point

[16] if 𝑥(𝑡
0
) = 0 and 𝑦(𝑡

0
) ̸= 0, or 𝑥(𝑡

0
) ̸= 0 and 𝑦(𝑡

0
) = 0,

and r(𝑡
0
) is called an inflection if 𝑘(𝑡

0
) = 0 and r(𝑡

0
) are called

a vertex if 𝑑𝑘(𝑡
0
)/𝑑𝑠 = 0.

Theorem 4. If 𝑘
1
̸= − 1/𝑑, and 𝜆, 𝜔 are not both zero, then

(1) the turning point, inflection, and vertex on r
𝑜
(𝑡) are,

respectively, in one-to-one correspondence to those on
r
1
(𝑡);

(2) the turning point on r
𝑜
(𝑡) is in one-to-one correspon-

dence to that on r(𝑡) as 𝜔 = 0;
(3) the inflection on r

𝑜
(𝑡) is in one-to-one correspondence

to that on r(𝑡) as 𝜆𝜔 = 𝜆𝜔.

Proof. Based upon the following relationships

e
𝑜
= sgn (1 + 𝑑𝑘

1
) ⋅

𝜆e + 𝜔n
√
𝜆

2
+ 𝜔

2

,

𝑘
𝑜
=

1






1 + 𝑑𝑘
1






⋅

(𝜆


𝜔 − 𝜆𝜔


) + (𝜆

2
+ 𝜔

2
) ⋅ 𝑘 ⋅







𝑟








(𝜆

2
+ 𝜔

2
)

3/2
,

𝑑𝑘
𝑜

𝑑𝑠
𝑜

= (1 + 𝑑𝑘
1
)

−3

⋅

𝑑𝑘
1

𝑑𝑠
1

,

(36)

we can easily proveTheorem 4.
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Figure 1: The area element between r(𝑡) and r
𝑜
(𝑡).

(iii) Length and area

We can calculate the lengths 𝑙
1
and 𝑙
𝑜
of the curves r

1
and

r
𝑜
, respectively. Since 𝑑𝑙

1
= |r1|𝑑𝑡, then

𝑙
1
= ∫

1

0







r
1







𝑑𝑡 = ∫

1

0

√
𝜆

2
+ 𝜔

2
𝑑𝑡,

𝑙
𝑜
= ∫

1

0







r
𝑜







𝑑𝑡 = ∫

1

0






1 + 𝑑𝑘
1






⋅







r
1







𝑑𝑡.

(37)

The area between r(𝑡) and its generalized offset r
𝑜
(𝑡) is

denoted by𝑀 (Figure 1). 𝑑𝑆
1
and 𝑑𝑆

1
are the area elements.

See Figure 4.
At first, we compute

𝑑𝑆
1
=






[r
𝑜
(𝑡) − r (𝑡)] × [r (𝑡 + Δ𝑡) − r (𝑡)]



2

,

𝑑𝑆
2
=






[r
𝑜
(𝑡) − r

𝑜
(𝑡 + Δ𝑡)] × [r (𝑡 + Δ𝑡) − r

𝑜
(𝑡 + Δ𝑡)]






2

.

(38)

Since

r (𝑡 + Δ𝑡) = r (𝑡) + Δ𝑡 ⋅ r (𝑡) + 𝑂 (Δ𝑡2) ,

r
𝑜
(𝑡 + Δ𝑡) = r

𝑜
(𝑡) + Δ𝑡 ⋅ r

𝑜
(𝑡) + 𝑂 (Δ𝑡

2
) ,

(39)

it follows that

𝑑𝑆
1
=







[𝑑
1
e + 𝑑
2
n] × [Δ𝑡 ⋅ r (𝑡)]




2

=

1

2






𝑑
2






⋅







r



𝑑𝑡,

𝑑𝑆
2
=







[Δ𝑡 ⋅ r
𝑜
(𝑡)] × [r (𝑡) − r

𝑜
(𝑡) + Δ𝑡 (r (𝑡) − r

𝑜
(𝑡))]







2

=

1

2

⋅ Δ𝑡 ⋅







𝑑



1
𝑑
2
− 𝑑



2
𝑑
1
+ 𝑑
2
⋅







r



+ (𝑑

2

1
+ 𝑑

2

2
) ⋅ 𝑘 ⋅







r









.

(40)

Therefore 𝑑𝑀 = 𝑑𝑆
1
+ 𝑑𝑆
2
, and

𝑀 = ∫

1

0

𝑑𝑀 =

1

2

[∫

1

0






𝑑
2






⋅







r



𝑑𝑡

+ ∫

1

0







𝑑



1
𝑑
2
− 𝑑



2
𝑑
1
+ 𝑑
2
⋅







r



+ (𝑑

2

1
+ 𝑑

2

2
) ⋅ 𝑘 ⋅







r









𝑑𝑡] .

(41)

(iv) Topological property

Thedistance between a regular curve r
1
= r
1
(𝑡), 𝑡 ∈ [0, 1]

and a point 𝑄 in the same plane is defined as follows:

𝛿 (𝑄, r
1
) = inf
𝑡∈[0,1]






𝑄 − r
1
(𝑡)






. (42)

For the standard offset r
𝑜
= r
1
+ 𝑑n
1
, we have the following

theorm.

Theorem 5. The distance 𝛿(r
𝑜
(𝜏), r) between the point r

𝑜
(𝜏) of

the generalized offset and the curve r = r(𝑡), 𝑡 ∈ [0, 1] satisfies
one of the following conditions:

𝛿 (r
𝑜
(𝜏) , r) = |𝑑| + √𝐴2 + 𝐵2, 𝜏 ∈ (𝑖

𝑘
, 𝑖
𝑘+1
) ,

𝛿 (r
𝑜
(𝜏) , r) < |𝑑| + √𝐴2 + 𝐵2, 𝜏 ∈ (𝑖

𝑘
, 𝑖
𝑘+1
) ,

𝑘 = 0, . . . , 𝑁, 𝑁 ∈ 𝑍

+
.

(43)

Each of the open intervals (𝑖
𝑘
, 𝑖
𝑘+1
) and 𝑘 = 0, . . . , 𝑁. is

delineated by the self-intersections.

Proof. We have the following:

(1) 𝛿(r
𝑜
(𝜏), r
1
) ≤ |𝑑|, 𝜏 ∈ [0, 1];

(2) 𝑖
0
= 0, 𝑖

𝑁+1
= 1, 𝑖

1
, . . . , 𝑖

𝑁
∈ (0, 1), 𝑁 ∈ 𝑍+ are the

self-intersections of r
𝑜
.

Then one of the following propositions holds

𝛿 (r
𝑜
(𝜏) , r
1
) ≡ |𝑑| , 𝜏 ∈ (𝑖

𝑘
, 𝑖
𝑘+1
) ,

𝛿 (r
𝑜
(𝜏) , r
1
) < |𝑑| , 𝜏 ∈ (𝑖

𝑘
, 𝑖
𝑘+1
) ,

𝑘 = 0, . . . , 𝑁

(44)

For the generalized offset r
0
(𝑡), we have






r
1
(𝑡) − r (𝑡)



=
√
𝐴

2
+ 𝐵

2
, 𝑡 ∈ [0, 1] .

(45)

Considering 𝜏 ∈ (𝑖
𝑘
, 𝑖
𝑘+1
), let 𝑝 ∈ r

1
such that






r
𝑜
(𝜏) − 𝑝






= 𝛿 (r
𝑜
(𝜏) , r
1
) , (46)

and 𝑞 ∈ r = r(𝑡), 𝑡 ∈ [0, 1] is the point with the same
parameter 𝑡 of 𝑝 on r; then we have






𝑝 − 𝑞






=
√
𝐴

2
+ 𝐵

2
. (47)
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Figure 2: Topological property of the curves.

Thus

𝛿 (r
𝑜
(𝜏) , r) ≤ 



r
𝑜
(𝜏) − r



≤ 𝛿 (r
𝑜
(𝜏) , r
1
) +
√
𝐴

2
+ 𝐵

2
. (48)

Therefore we prove Theorem 5, which is shown in Figure 2.

According to Theorem 5, each of the segments {r
𝑜
(𝑡), 𝑡 ∈

(𝑖
𝑘
, 𝑖
𝑘+1
)} of the offset curve among its self-intersections

should either be retained or rejected in its entirety when
forming the trimmed offset.

2.4. Remark. The curves in three-dimensional space can
also be discussed analogously. As we know, a curve is not
planar if and only if the torsion of the curve is not zero.
Therefore, different from a planar parametric curve, the
Frenet equations for a spatial parametric curve r(𝑡) are

𝑑e
𝑑𝑠

= −𝑘n, 𝑑n
𝑑𝑠

= 𝑘e + 𝜏z, 𝑑z
𝑑𝑠

= −𝜏n, (49)

where 𝜏 is the torsion, and we have

𝜏 =

(r × r) ⋅ r





r × r


2
. (50)

Based on the local coordinate system (e,n, z) in the space,
a generalized curve offset with the variable offset distance and
offset direction can be defined. The properties of generalized
offset curves can be given similarly. Since a torsion item is
added in the Frenet equations, the calculations may become
more complicated and the conclusions may not be expressed
simply.

3. Generalized Offset Surfaces

3.1. The Definition and Regularity of Generalized Offset
Surfaces. Note that the symbols used in Section 3 are all
redefined.

For a regular parameter surface r(𝑢, V) = (𝑥(𝑢, V), 𝑦(𝑢,
V), 𝑧(𝑢, V)), its two unit tangent vectors in the directions of 𝑢
and V and its unit normal vector are given by [17]

e
1
=

r
𝑢
(𝑢, V)






r
𝑢
(𝑢, V)



, e
2
=

rV (𝑢, V)





rV (𝑢, V)





,

n = r
𝑢
(𝑢, V) × rV (𝑢, V)






r
𝑢
(𝑢, V) × rV (𝑢, V)






,

(51)

where r
𝑢
(𝑢, V) and rV(𝑢, V) are the corresponding partial

derivatives of r(𝑢, V) about parameters 𝑢 and V. (e
1
, e
2
,n)

forms a right-handed system. Based on the local natural
coordinate system (e

1
, e
2
,n) of surface r(𝑢, V), a generalized

surface offset r𝑜(𝑢, V) with the variable offset direction and
the variable offset distance can be defined.

Definition 6. For a regular smooth parametric surface
r(𝑢, V), (𝑢, V) ∈ [0, 1] × [0, 1], the generalized offset surface
r𝑜(𝑢, V) with the variable offset distance and offset direction
is defined by

r𝑜 (𝑢, V) = r (𝑢, V) + 𝑑
1
(𝑢, V) e

1
+ 𝑑
2
(𝑢, V) e

2
+ 𝑑
3
(𝑢, V)n,

(52)

where 𝑑
1
(𝑢, V), 𝑑

2
(𝑢, V), and 𝑑

3
(𝑢, V) are the functions of the

variables 𝑢 and V. The offset direction and the offset distance
are determined by 𝑑

1
e
1
, 𝑑
2
e
2
, and 𝑑

3
n.

For a regular smooth parametric surface r(𝑢, V), the well-
knownfirst and second fundamental quantities and theGauss
curvature [14] are given as follows:

𝐸 = r2
𝑢
= 𝐴

2

1
, 𝐺 = r2V = 𝐴

2

2
, 𝐹 = r

𝑢
⋅ rV,

𝐷 = 𝑛 ⋅ r
𝑢𝑢
, 𝐷


= 𝑛 ⋅ r

𝑢V, 𝐷


= 𝑛 ⋅ rVV,

𝑘 =

𝐷𝐷


− 𝐷

2

𝐸𝐺 − 𝐹

2
.

(53)

Let e
1
× n = e

1
, e
2
× n = e

2
, and the angle between e

1
and e
2

is 𝜃; then

e
1
× e
2
= n sin 𝜃, e

1
× e
2
= n sin 𝜃,

e
1
⋅ e
2
= − sin 𝜃, e

2
⋅ e
1
= sin 𝜃.

(54)

Thus the related parametric partial derivatives of generalized
offset surface r𝑜(𝑢, V) can be obtained by

r𝑜
𝑢
(𝑢, V) = r

𝑢
+ 𝑑
1𝑢
e
1
+ 𝑑
1
e
1𝑢
+ 𝑑
2𝑢
e
2

+ 𝑑
2
e
2𝑢
+ 𝑑
3𝑢
n + 𝑑
3
n
𝑢

= [𝐴
1
+ 𝑑
1𝑢
+

𝑑
2
𝐴
1V

𝐴
2

−

𝑑
3
𝐴
1

𝑅
1

] e
1

+ [𝑑
2𝑢
−

𝑑
1
𝐴
1V

𝐴
2

] e
2
+ [𝑑
3𝑢
+

𝑑
1
𝐴
1

𝑅
1

]n

≜ 𝐵
1
e
1
+ 𝐵
2
e
2
+ 𝐵
3
n,

(55)
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r𝑜V (𝑢, V) = rV + 𝑑1Ve1 + 𝑑1e1V + 𝑑2Ve2
+ 𝑑
2
e
2V + 𝑑3Vn + 𝑑3nV

= [𝑑
1V −
𝑑
2
𝐴
2𝑢

𝐴
1

] e
1

+ [𝐴
2
+

𝑑
1
𝐴
2𝑢

𝐴
1

+ 𝑑
2V −
𝑑
3
𝐴
2

𝑅
2

] e
2

+ [𝑑
3V +
𝑑
2
𝐴
2

𝑅
2

]n

≜ 𝐶
1
e
1
+ 𝐶
2
e
2
+ 𝐶
3
n,

(56)

where r
𝑢
, 𝑑
1𝑢
, 𝑑
2𝑢
, 𝐴
2𝑢
, e
1𝑢
, e
2𝑢
,n
𝑢
are the corresponding par-

tial derivatives of r, 𝑑
1
, 𝑑
2
, 𝐴
2
, e
1
, e
2
,n with respect to 𝑢

and rV, 𝑑1V, 𝑑2V, 𝐴1V, e1V, e2V,nV are the corresponding partial
derivatives of r, 𝑑

1
, 𝑑
2
, 𝐴
1
, e
1
, e
2
,n with respect to V. 𝑅

1
, 𝑅
2

are the radii of principal curvature and 𝑘 is the Gauss
curvature. We can get the following equations:

r𝑜
𝑢𝑢
(𝑢, V) = 𝐵

1𝑢
e
1
+ 𝐵
1
e
1𝑢
+ 𝐵
2𝑢
e
2
+ 𝐵
2
e
2𝑢

+ 𝐵
3𝑢
n + 𝐵
3
n
𝑢

= (𝐵
1𝑢
+ 𝐵
2

𝐴
1V

𝐴
2

− 𝐵
3

𝐴
1

𝑅
1

) e
1

+ (−𝐵
1

𝐴
1V

𝐴
2

+ 𝐵
2𝑢
)

+ (𝐵
1

𝐴
1

𝑅
1

+ 𝐵
3𝑢
)n,

r𝑜
𝑢V (𝑢, V) = r

𝑜

V𝑢 (𝑢, V)
= 𝐵
1Ve1 + 𝐵1e1V + 𝐵2Ve2 + 𝐵2e2V
+ 𝐵
3Vn + 𝐵3nV

= (𝐵
1V − 𝐵2

𝐴
2𝑢

𝐴
1

) e
1

+ (𝐵
1

𝐴
2𝑢

𝐴
1

+ 𝐵
2V − 𝐵3

𝐴
2

𝑅
2

) e
2

+ (𝐵
2

𝐴
2

𝑅
2

+ 𝐵
3V)n,

r𝑜VV (𝑢, V) = 𝐶1Ve1 + 𝐶1e1V + 𝐶2Ve2 + 𝐶2e2V
+ 𝐶
3Vn + 𝐶3nV

= (𝐶
1V − 𝐶2

𝐴
2𝑢

𝐴
1

) e
1

+ (𝐶
1

𝐴
2𝑢

𝐴
1

+ 𝐶
2V − 𝐶3

𝐴
2

𝑅
2

) e
2

+ (𝐶
2

𝐴
2

𝑅
2

+ 𝐶
3V)n,

𝐸
𝑜
= r𝑜2
𝑢
= 𝐵

2

1
+ 𝐵

2

2
+ 𝐵

2

3
+ 2𝐵
1
𝐵
2
cos 𝜃,

𝐺
𝑜
= r𝑜V
2

= 𝐶

2

1
+ 𝐶

2

2
+ 𝐶

2

3
+ 2𝐶
1
𝐶
2
cos 𝜃,

𝐹
𝑜
= r𝑜
𝑢
× r𝑜V

= 𝐵
1
𝐶
1
+ 𝐵
2
𝐶
2
+ 𝐵
3
𝐶
3
+ (𝐵
1
𝐶
2
+ 𝐵
2
𝐶
1
) cos 𝜃.

(57)

Thus the unit tangent vectors and unit normal vector of
surface offsets r𝑜(𝑢, V) are given as follows:

𝑒

𝑜

1
=

r𝑜
𝑢
(𝑢, V)






r𝑜
𝑢
(𝑢, V)



=

𝐵
1
e
1
+ 𝐵
2
e
2
+ 𝐵
3
n

√𝐸
𝑜

,

e𝑜
2
=

r𝑜V (𝑢, V)





r𝑜V (𝑢, V)





=

𝐶
1
e
1
+ 𝐶
2
e
2
+ 𝐶
3
n

√𝐺
𝑜

,

n𝑜 =
r𝑜
𝑢
× r𝑜V






r𝑜
𝑢
× r𝑜V





=

r𝑜
𝑢
× r𝑜V

√𝐸
𝑜
𝐺
𝑜
− 𝐹

2

𝑜

=

𝐵
1
𝐶
3
− 𝐵
3
𝐶
1

√𝐸
𝑜
𝐺
𝑜
− 𝐹

2

𝑜

e
1
+

𝐵
2
𝐶
3
− 𝐵
3
𝐶
2

√𝐸
𝑜
𝐺
𝑜
− 𝐹

2

𝑜

e
2

+

(𝐵
1
𝐶
2
− 𝐵
2
𝐶
1
) sin 𝜃

√𝐸
𝑜
𝐺
𝑜
− 𝐹
𝑜

2

n

≜ 𝑀
1
e
1
+𝑀
2
e
2
+𝑀
3
n,

𝐷
𝑜
= n𝑜r𝑜
𝑢𝑢
= 𝑀
1
(𝐵
1𝑢
+ 𝐵
2

𝐴
1V

𝐴
2

− 𝐵
3

𝐴
1

𝑅
1

)

+𝑀
2
(−𝐵
1

𝐴
1V

𝐴
2

+ 𝐵
2𝑢
) +𝑀

3
(𝐵
1

𝐴
1

𝑅
1

+ 𝐵
3𝑢
)

+ [𝑀
1
(−𝐵
1

𝐴
1V

𝐴
2

+ 𝐵
2𝑢
)

+𝑀
2
(𝐵
1𝑢
+ 𝐵
2

𝐴
1V

𝐴
2

− 𝐵
3

𝐴
1

𝑅
1

)] cos 𝜃,

𝐷



𝑜
= n𝑜r𝑜
𝑢V = 𝑀1 (𝐵1V − 𝐵2

𝐴
2𝑢

𝐴
1

)

+𝑀
2
(𝐵
1

𝐴
2𝑢

𝐴
1

+ 𝐵
2V − 𝐵3

𝐴
2

𝑅
2

) +𝑀
3
(𝐵
2

𝐴
2

𝑅
2

+ 𝐵
3V)

+ [𝑀
1
(𝐵
1

𝐴
2𝑢

𝐴
1

+ 𝐵
2V − 𝐵3

𝐴
2

𝑅
2

)

+𝑀
2
(𝐵
1V − 𝐵2

𝐴
2𝑢

𝐴
1

)] cos 𝜃,

𝐷



𝑜
= n𝑜r𝑜VV = 𝑀1 (𝐶1V − 𝐶2

𝐴
2𝑢

𝐴
1

)

+𝑀
2
(𝐶
1

𝐴
2𝑢

𝐴
1

+ 𝐶
2V − 𝐶3

𝐴
2

𝑅
2

) +𝑀
3
(𝐶
2

𝐴
2

𝑅
2

+ 𝐶
3V)

+ [𝑀
1
(𝐶
1

𝐴
2𝑢

𝐴
1

+ 𝐶
2V − 𝐶3

𝐴
2

𝑅
2

)

+𝑀
2
(𝐶
1V − 𝐶2

𝐴
2𝑢

𝐴
1

)] cos 𝜃,

𝑘
𝑜
=

𝐷
𝑜
𝐷



𝑜
− 𝐷

2

𝑜

𝐸
𝑜
𝐺
𝑜
− 𝐹

2

𝑜

,

(58)
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where 𝐸
𝑜
, 𝐺
𝑜
, 𝐹
𝑜
, 𝐷
𝑜
, 𝐷



𝑜
, 𝐷



𝑜
, and 𝑘

𝑜
are, respectively, the

basic quantities and Gauss curvature of surface offset r𝑜(𝑢, V).
Moreover, we can get the tangent plane and normal line at one
particular point of surface r𝑜(𝑢, V).

Let r𝑜(𝑢
0
, V
0
) be a nonregular point of r𝑜(𝑢, V); then






r𝑜
𝑢
(𝑢
0
, V
0
) × r𝑜V (𝑢0, V0)






= 0. (59)

Note that

r𝑜
𝑢
× r𝑜V = (𝐵1𝐶3 − 𝐵3𝐶1) e



1
+ (𝐵
2
𝐶
3
− 𝐵
3
𝐶
2
) e
2

+ (𝐵
1
𝐶
2
− 𝐵
2
𝐶
1
)n sin 𝜃

≜ 𝜌
1
e
1
+ 𝜌
2
e
2
+ 𝜌
3
n sin 𝜃.

(60)

Regarding the regularity of generalized offset surfaces, we
have the following theorem.

Theorem 7. If

(𝜌

2

1
(𝑢
0
, V
0
) + 𝜌

2

2
(𝑢
0
, V
0
) + 𝜌

2

3
(𝑢
0
, V
0
)

+2






𝜌
1
(𝑢
0
, V
0
) 𝜌
2
(𝑢
0
, V
0
)






cos 𝜃)
1/2

= 0,

(61)

then r𝑜(𝑢
0
, V
0
) is a nonregular point of r𝑜(𝑢, V).

From the above explanation, we can easily prove
Theorem 7.

In most cases the local natural coordinate system
(e
1
, e
2
,n) at each point of a regular parameter surface r(𝑢, V)

is not the orthonormal coordinate system. In order to discuss
the relationship between generalized and standard offset
surfaces, we need to do some parameter transformation of
surface r(𝑢, V) firstly. According to the theorem [14], for every
point at the regular parameter surface r(𝑢, V), we can find a
neighbourhood and a new parameter system (�̃�, Ṽ) to make
the new local natural coordinate system (eũ, eṽ,n) be the
orthonormal coordinate system.This theorem guarantees the
existence of orthonormal parameter curve net on the regu-
lar parameter surface. Therefore for any regular parameter
surface, we can make the local natural coordinate system be
orthonormal by this means. In the following two paragraphs
we suppose that the local natural coordinate system (e

1
, e
2
,n)

of a regular surface r(𝑢, V) is the orthonormal coordinate
system.

3.2. Relationship between Generalized and Standard Offset
Surfaces. Wewill prove that the generalized offset surface can
be represented as the standard offset surface.

Theorem 8. The generalized offset r𝑜 = r + 𝑑
1
e
1
+ 𝑑
2
e
2
+ 𝑑
3
n

can be represented as a standard offset: r
𝑜
= r
1
+𝑑n
1
, where r

1

is a new regular smooth parametric surface, 𝑑 is constant, and
n
1
is the unit normal vector of r

1
.

Proof. Let

r𝑜 = r + 𝑑
1
e
1
+ 𝑑
2
e
2
+ 𝑑
3
n

= (𝑟 +𝑀e
1
+ 𝑁e
2
+ 𝑃n) + (𝑑

1
−𝑀) e

1

+ (𝑑
2
− 𝑁) e

2
+ (𝑑
3
− 𝑃)n

≜ r
1
+ 𝑑n
1
,

(62)

where𝑀,𝑁, and 𝑃 are the functions of 𝑢 and V,

𝑑 =
√
(𝑑
1
−𝑀)

2

+ (𝑑
2
− 𝑁)

2

+ (𝑑
3
− 𝑃)

2

,

n
1
=

(𝑑
1
−𝑀)

𝑑

e
1
+

(𝑑
2
− 𝑁)

𝑑

e
2
+

(𝑑
3
− 𝑃)

𝑑

.

(63)

The parametric partial derivatives of surface r
1
(𝑢, V) are

r
1𝑢
(𝑢, V) = r

𝑢
+𝑀
𝑢
e
1
+𝑀e
1𝑢
+ 𝑁
𝑢
e
2

+ 𝑁e
2𝑢
+ 𝑃
𝑢
n + 𝑃n

𝑢

= [𝐴
1
+𝑀
𝑢
+ 𝑁

𝐴
1V

𝐴
2

− 𝑃

𝐴
1

𝑅
1

] e
1

+ [𝑁
𝑢
−𝑀

𝐴
1V

𝐴
2

] e
2
+ [𝑃
𝑢
+𝑀

𝐴
1

𝑅
1

]n,

(64)

r
1V (𝑢, V) = rV +𝑀Ve1 +𝑀e

1V + 𝑁Ve2
+ 𝑁e
2V + 𝑃Vn + 𝑃nV

= [𝑀V − 𝑁
𝐴
2𝑢

𝐴
1

] e
1

+ [𝐴
2
+𝑀

𝐴
2𝑢

𝐴
1

+ 𝑁V − 𝑃
𝐴
2

𝑅
2

] e
2

+ [𝑃V + 𝑁
𝐴
2

𝑅
2

]n,

(65)

where 𝑀
𝑢
,𝑀V, 𝑁𝑢, 𝑁V, 𝑃𝑢, 𝑃V are the corresponding partial

derivatives.
In order to establish the above relationship, the following

two conditions must be satisfied:
(i) n
1
must be the unit normal vector of r

1
. That is,

(𝐴
1
+𝑀
𝑢
+ 𝑁

𝐴
1V

𝐴
2

− 𝑃

𝐴
1

𝑅
1

) (𝑑
1
−𝑀)

+ (𝑁
𝑢
−𝑀

𝐴
1V

𝐴
2

) (𝑑
2
− 𝑁)

+ (𝑃
𝑢
+𝑀

𝐴
1

𝑅
1

) (𝑑
3
− 𝑃) = 0,

(66)

(𝑀V − 𝑁
𝐴
2𝑢

𝐴
1

) (𝑑
1
−𝑀)

+ (𝐴
2
+𝑀

𝐴
2𝑢

𝐴
1

+ 𝑁V − 𝑃
𝐴
2

𝑅
2

) (𝑑
2
− 𝑁)

+ (𝑃V + 𝑁
𝐴
2

𝑅
2

) (𝑑
3
− 𝑃) = 0.

(67)
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(ii) 𝑑 is constant. That is,

(𝑑
1
−𝑀)

2

+ (𝑑
2
− 𝑁)

2

+ (𝑑
3
− 𝑃)

2

= const. (68)

It follows that

(𝑑
1
−𝑀) (𝑑

1𝑢
−𝑀
𝑢
) + (𝑑

2
− 𝑁) (𝑑

2𝑢
− 𝑁
𝑢
)

+ (𝑑
3
− 𝑃) (𝑑

3𝑢
− 𝑃
𝑢
) = 0,

(69)

(𝑑
1
−𝑀) (𝑑

1V −𝑀V) + (𝑑2 − 𝑁) (𝑑2V − 𝑁V)

+ (𝑑
3
− 𝑃) (𝑑

3V − 𝑃V) = 0.
(70)

Our goal is to get the values of 𝑀,𝑁, and 𝑃 by solving the
above differential equations. From (66) and (69), we get

(−𝐴
1
−

𝐴
1V𝑑2

𝐴
2

− 𝑑
1𝑢
+

𝐴
1
𝑑
3

𝑅
1

)𝑀 + (

𝐴
1V𝑑1

𝐴
2

− 𝑑
2𝑢
)𝑁

+ (−

𝐴
1
𝑑
1

𝑅
1

− 𝑑
3𝑢
)𝑃

+ (𝐴
1
𝑑
1
+ 𝑑
1𝑢
𝑑
1
+ 𝑑
2𝑢
𝑑
2
+ 𝑑
3𝑢
𝑑
3
)

≜ 𝛼
1
𝑀+ 𝛽

1
𝑁 + 𝛾

1
𝑃 + 𝜔

1
= 0.

(71)

From (67) and (70), we get

(

𝐴
2𝑢
𝑑
2

𝐴
1

− 𝑑
1V)𝑀 + (−

𝐴
2𝑢
𝑑
1

𝐴
1

− 𝐴
2
− 𝑑
2V +
𝐴
2
𝑑
3

𝑅
2

)𝑁

+ (−

𝐴
2
𝑑
2

𝑅
2

− 𝑑
3V)𝑃

+ (𝐴
2
𝑑
2
+ 𝑑
1V𝑑1 + 𝑑2V𝑑2 + 𝑑3V𝑑3)

≜ 𝛼
2
𝑀+ 𝛽

2
𝑁 + 𝛾

2
𝑃 + 𝜔

2
= 0.

(72)

Let

𝛼
1
𝛽
2
− 𝛼
2
𝛽
1
≜ 𝛼, 𝛽

2
𝛾
1
− 𝛽
1
𝛾
2
≜ 𝛽,

𝛼
2
𝛾
1
− 𝛼
1
𝛾
2
≜ 𝛾.

(73)

From (71) and (72), we get

𝛼 (𝑑
1
−𝑀) + 𝛽 (𝑑

3
− 𝑃) = 0,

−𝛼 (𝑑
2
− 𝑁) + 𝛾 (𝑑

3
− 𝑃) = 0.

(74)

By solving (69), (70), and (74), we get

𝑀 = 𝑑
1
−

𝛽𝐶

√
𝛼

2
+ 𝛽

2

+ 𝛾

2

,

𝑁 = 𝑑
2
+

𝛾𝐶

√
𝛼

2
+ 𝛽

2

+ 𝛾

2

,

𝑃 = 𝑑
3
+

𝛼𝐶

√
𝛼

2
+ 𝛽

2

+ 𝛾

2

,

(75)

ro(u, � + Δ�)

ro(u, �)

ro(u + Δu, �) ro(u + Δu, � + Δ�)

Figure 3: The area element of r𝑜(𝑢, V).

where 𝐶 is an arbitrary constant, 𝛼, 𝛽, and 𝛾 can not all be
zero. Thus

𝑑 =
√
(𝑑
1
−𝑀)

2

+ (𝑑
2
− 𝑁)

2

+ (𝑑
3
− 𝑃)

2

= 𝐶,

n
1
=

𝛽

√
𝛼

2
+ 𝛽

2

+ 𝛾

2

e
1
−

𝛾

√
𝛼

2
+ 𝛽

2

+ 𝛾

2

e
2

−

𝛼

√
𝛼

2
+ 𝛽

2

+ 𝛾

2

n.

(76)

When 𝛼 = 𝛽 = 𝛾 = 0,𝑀,𝑁, and 𝑃 only need to satisfy (69)
and (70).

Therefore, in any case there are three functions𝑀,𝑁, and
𝑃 to guarantee the generalized offset r𝑜 = r+𝑑

1
e
1
+𝑑
2
e
2
+𝑑
3
n

can be expressed as the standard offset r𝑜(𝑢, V) = r
1
(𝑢, V) +

𝑑n
1
(𝑢, V), 𝑑 = const. That is, we can find r

1
(𝑢, V) so that

r𝑜(𝑢, V) becomes the standard offset of r
1
(𝑢, V).

So far we have proved that the generalized offset can
be transformed to the standard offset. Based on the current
results of standard offsets, we can continue the research on the
properties of generalized offset surfaces. This theorem also
helps us to obtain the simpler and conciser expressions. The
following paragraph explains the details.

3.3. Properties of Generalized Offset Surfaces. To study the
properties of the generalized offset surfaces, we can use the
similar approaches which have been introduced in offset
curves. Here we only give the integral and topological
properties of generalized offset surfaces.

(i) The area of an offset surface

The area of generalized offset surface

{r𝑜 (𝑢, V) : (𝑢, V) ∈ [0, 1] × [0, 1]} (77)

is denoted by 𝑆. We consider the area element 𝑑𝑆, which is
shown in Figure 3. Consider the following:

𝑑𝑆 =






(r𝑜
𝑢
× r𝑜V)






𝑑𝑢 𝑑V. (78)

Since

(r𝑜
𝑢
× r𝑜V)
2

= r𝑜2
𝑢
r𝑜2V − (r

𝑜

𝑢
r𝑜V)
2

= 𝐸
𝑜
𝐺
𝑜
− 𝐹

2

𝑜
, (79)

then

𝑆 = ∬

[0,1]×[0,1]

√𝐸
𝑜
𝐺
𝑜
− 𝐹

2

𝑜
𝑑𝑢 𝑑V. (80)
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Figure 4: The volume element between r(𝑢, V) and r𝑜(𝑢, V).

(ii) The volume between r(𝑢, V) and r𝑜(𝑢, V)

The volume between r(𝑢, V) and its generalized offset
r𝑜(𝑢, V) is denoted by 𝑉. We consider a volume element 𝑑𝑉,
which is shown in Figure 4. The volume element 𝑑𝑉 can be
divided into five subvolumes:

𝑑𝑉 = 𝑑𝑉
1
+ 𝑑𝑉
2
+ ⋅ ⋅ ⋅ + 𝑑𝑉

5
, (81)

where

𝑑𝑉
1
= [r (𝑢, V) , r𝑜 (𝑢, V) , r (𝑢 + Δ𝑢, V) , r (𝑢, V + ΔV)] ,

𝑑𝑉
2
= [r𝑜 (𝑢 + Δ𝑢, V) , r𝑜 (𝑢, V) , r (𝑢 + Δ𝑢, V) ,

r𝑜 (𝑢 + Δ𝑢, V + ΔV)] ,

𝑑𝑉
3
= [r (𝑢 + Δ𝑢, V + ΔV) , r (𝑢 + Δ𝑢, V) ,

r𝑜 (𝑢 + Δ𝑢, V + ΔV) , r (𝑢, V + ΔV)] ,

𝑑𝑉
4
= [r𝑜 (𝑢, V + ΔV) , r𝑜 (𝑢, V) ,

r (𝑢, V + ΔV) , r𝑜 (𝑢 + Δ𝑢, V + ΔV)] ,

𝑑𝑉
5
= [r (𝑢, V + ΔV) , r𝑜 (𝑢, V) , r (𝑢 + Δ𝑢, V) ,

r𝑜 (𝑢 + Δ𝑢, V + ΔV)] ,

(82)

and the symbol [𝑏1, 𝑏2, 𝑏3, 𝑏4] denotes the volume of tetrahe-
dron with four vertices 𝑏1, 𝑏2, 𝑏3, and 𝑏4.

After several computations, we get

𝑑𝑉
1
=

1

6






𝐴
1
𝐴
2
𝑑
3






𝑑𝑢 𝑑V ≜ 𝑤
1
𝑑𝑢 𝑑V,

𝑑𝑉
2
=

1

6






𝑑
1
(𝐵
3
𝐶
2
− 𝐵
2
𝐶
3
) + 𝑑
2
(𝐵
1
𝐶
3
− 𝐵
3
𝐶
1
)

+𝑑
3
(𝐵
2
𝐶
1
− 𝐵
1
𝐶
2
)






𝑑𝑢 𝑑V ≜ 𝑤
2
𝑑𝑢 𝑑V,

𝑑𝑉
3
=

1

6






𝐴
1
𝐴
2
𝑑
3






𝑑𝑢 𝑑V ≜ 𝑤
1
𝑑𝑢 𝑑V,

𝑑𝑉
4
=

1

6






𝑑
1
(𝐵
2
𝐶
3
− 𝐵
3
𝐶
2
) + 𝑑
2
(𝐵
3
𝐶
1
− 𝐵
1
𝐶
3
)

+ 𝑑
3
(𝐵
1
𝐶
2
− 𝐵
2
𝐶
1
)






𝑑𝑢 𝑑V ≜ 𝑤
2
𝑑𝑢 𝑑V,

𝑑𝑉
5
=

1

6






𝐴
1
𝐶
3
𝑑
2
− 𝐴
1
𝐶
2
𝑑
3
+ 𝐴
2
𝐵
3
𝑑
1

−𝐴
2
𝐵
1
𝑑
3






𝑑𝑢 𝑑V ≜ 𝑤
5
𝑑𝑢 𝑑V.

(83)

Therefore, we have

𝑉 = ∬

1

0

(𝑑𝑉
1
+ 𝑑𝑉
2
+ ⋅ ⋅ ⋅ + 𝑑𝑉

5
)

= ∬

[0,1]×[0,1]

(2𝑤
1
+ 2𝑤
2
+ 𝑤
5
) 𝑑𝑢 𝑑V.

(84)

(ii) Topological property
For a regular parameter surface

𝐿
1
= {r
1
(𝑢, V) : (𝑢, V) ∈ [0, 1] × [0, 1]} , (85)

the distance between a point 𝑄 and the surface 𝐿
1
is defined

as follows:

𝛿 (𝑄, 𝐿
1
) = inf
(𝑢,V)∈[0,1]×[0,1]






𝑄 − r
1
(𝑢, V)



. (86)

For the standard offset r𝑜 = r
1
+ 𝑑n
1
, 𝑑 = const, we have the

following theorem.

Theorem 9. The distance 𝛿(r𝑜(𝜏, 𝜂), 𝐶) between the point
r𝑜(𝜏, 𝜂) of the generalized offset and the surface 𝐿 = {r(𝑢, V) :
(𝑢, V) ∈ [0, 1] × [0, 1]} satisfies one of the following conditions:

𝛿 (r𝑜 (𝜏, 𝜂) , 𝐿) = |𝑑| + √𝑀2 + 𝑁2 + 𝑃2,

𝛿 (r𝑜 (𝜏, 𝜂) , 𝐿) < |𝑑| + √𝑀2 + 𝑁2 + 𝑃2,

(𝜏, 𝜂) ∈ (𝑖
𝑘
, 𝑖
𝑘+1
) × (𝑗
𝑘
 , 𝑗
𝑘

+1
) ,

𝑘, 𝑘


= 0, 1, . . . , 𝑁, 𝑁 ∈ 𝑍

+
.

(87)

Each of the open fields (𝑖
𝑘
, 𝑖
𝑘+1
)× (𝑗
𝑘
 , 𝑗
𝑘

+1
), 𝑘, 𝑘


= 0, 1, . . . , 𝑁

is delineated by the self-intersections.

Proof. We have the following:

(1) 𝛿(r𝑜(𝜏, 𝜂), 𝐿
1
) ≤ |𝑑|, (𝜏, 𝜂) ∈ [0, 1] × [0, 1];

(2) (𝑖
0
, 𝑗
0
) = (0, 0), (𝑖

0
, 𝑗

𝑁+1
) = (0, 1), (𝑖

𝑁+1
, 𝑗
0
) = (1, 0),

(𝑖
𝑁+1
, 𝑗
𝑁+1
) = (1, 1), 𝑖

1
, . . . , 𝑖

𝑁
, 𝑗
1
, . . . , 𝑗

𝑁
∈ (0, 1),𝑁 ∈

𝑍

+ are the self-intersections of r𝑜.

Then one of the following propositions holds

𝛿 (r𝑜 (𝜏, 𝜂) , 𝐿
1
) = |𝑑| , (𝜏, 𝜂) ∈ (𝑖

𝑘
, 𝑖
𝑘+1
) × (𝑗
𝑘
 , 𝑗
𝑘

+1
) ,

𝛿 (r𝑜 (𝜏, 𝜂) , 𝐿
1
) < |𝑑| , (𝜏, 𝜂) ∈ (𝑖

𝑘
, 𝑖
𝑘+1
) × (𝑗
𝑘
 , 𝑗
𝑘

+1
) ,

𝑘, 𝑘


= 0, 1, . . . , 𝑁.

(88)
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Figure 5: Topological property of the surfaces.

For the generalized offset

r𝑜 = r + 𝑑
1
e
1
+ 𝑑
2
e
2
+ 𝑑
3
n = r
1
+ 𝑑n
1
,

r
1
= r +𝑀e

1
+ 𝑁e
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we have
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and 𝑞 ∈ 𝐿 = {r(𝑢, V) : (𝑢, V) ∈ [0, 1] × [0, 1]} is the point with
the same parameter (𝑢, V) of 𝑝 on 𝐿; then we have
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Thus
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Therefore we prove the above theorem, which is illustrated in
Figure 5.

According to Theorem 9, each of the segments {r0(𝑠, 𝑡) :
(𝑠, 𝑡) ∈ (𝑖

𝑘
, 𝑖
𝑘+1
) × (𝑗
𝑘
 , 𝑗
𝑘

+1
)} of the offset surface among its

self-intersections should either be retained or rejected in its
entirety when forming the trimmed offset.

4. Applications

Offset for curves and surfaces plays an important role in
CAGD. It can be widely used in varieties of applications
[18]. Generalized offsets are the extending of standard offsets,
which have more flexible properties. By using programming
language VC++, some simple examples are given in the
following to show how to use generalized offset technique.

Example 10. Generalized offset curves.

In computer aided plane flower design, let a circle param-
eter curve be the original curve.We choose the union normal
direction or deviate a certain angle from the normal direction
as the offset direction, and some trigonometric functions as
the offset distance. For example, the original circle parameter
curve is

r (𝑡) = {cos (𝑡) , sin (𝑡)} , 𝑡 ∈ [0, 2𝜋] . (94)

Then the unit tangent vector at each point of the curve r(𝑡)
is e(𝑡) = {− sin(𝑡), cos(𝑡)}, and the unit normal vector at each
point of the curve r(𝑡) is n(𝑡) = {cos(𝑡), sin(𝑡)}. According
to the definition of generalized offset curve, we get the new
curve

r
𝑜
(𝑡) = r (𝑡) + 𝑑

1
(𝑡) e (𝑡) + 𝑑

2
n (𝑡) , (95)

where we take 𝑑
1
= | sin(2𝑡)| and 𝑑

1
= |8 ⋅ cos(2𝑡)|.

Thus the generalized offset r
𝑜
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sin (𝑡) + cos (𝑡) ⋅ |sin (2𝑡)|

+ sin (𝑡) ⋅ |8 ⋅ cos (2𝑡)|}

(96)

which is shown in Figure 6. By this means, we can get the
plane flowers, which have all kinds of beautiful shapes. Past-
ing them on cloth after machining, we obtain the following
pattern shown in Figure 7.

Example 11. Generalized offset surfaces.

The generalized offset surfaces can be widely used in
3D modeling, and more complicated 3D shapes could be
defined by using dynamic offset direction and distance. Let
a sphere be the original surface. Similar to the plane flower
design,we choose the unionnormal direction or the direction
deviating a fixed angle from the normal direction at each
point of the sphere as the offset direction, respectively, and
some trigonometric functions as the offset distance. We can
get the following two models shown in Figures 8 and 9.

We have introduced some applications of generalized
offset in 2D graphic design and 3D modeling. Generalized
offsets are more flexible since they provide the variable
direction and distance. The generalized offset technique is
useful especially when the shape design is derived from an
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Figure 6: Generalized offset curve.

Figure 7: Flower cloth.

existing graph or a 3D object. Moreover the mathematical
expressions of offset curves and surfaces can be simplified by
using the concepts and theorems given in this paper.

5. Conclusions

In this paper a strict definition of generalized offsets for
curves and surfaces is given. By proving that the generalized
offset can be represented as the standard offset, we get
a series of conclusions on the properties of generalized
offsets. The conclusions given in this paper cover most of
the fundamental properties of generalized offsets and can
be taken as the foundation for further study on generalized
offsets and their application.

Figure 8: Generalized offset surface with the fixed offset direction.

Figure 9: Generalized offset surface with the variable offset direc-
tion.
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