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This paper studies systematically a differential-algebraic prey-predator model with time delay and Allee effect. It shows that
transcritical bifurcation appears when a variation of predator handling time is taken into account.This model also exhibits singular
induced bifurcation as the economic revenue increases through zero, which causes impulsive phenomenon. It can be noted that
the impulsive phenomenon can be much weaker by strengthening Allee effect in numerical simulation. On the other hand, at a
critical value of time delay, the model undergoes a Hopf bifurcation; that is, the increase of time delay destabilizes the model and
bifurcates into small amplitude periodic solution. Moreover, a state delayed feedback control method, which can be implemented
by adjusting the harvesting effort for biological populations, is proposed to drive the differential-algebraic system to a steady state.
Finally, by using Matlab software, numerical simulations illustrate the effectiveness of the results.

1. Introduction

In recent years, the growing human needs for more food
and more energy have led to increased exploitation of these
resources. The problems related to many fields like fishery,
forestry, and wildlife. Therefore, mankind is facing the dual
problems of resource shortages and environmental degrada-
tion. Concerning the conservation for the long-term benefits
of humanity, there is a wide-range of interest in analysis and
modelling of bioeconomic systems. In many earlier studies,
it has been shown that harvesting has a strong impact on
population dynamics, ranging from rapid depletion to com-
plete preservation of biological populations. Two main kinds
of harvesting were focused on nonzero constant harvesting
[1–3] and constant harvesting effort [4–7]. With constant
harvesting, the generalized Gause prey-predator model is
found to exhibit saddle-node bifurcations, Hopf bifurcation,
heteroclinic bifurcation, and nilpotent saddle bifurcation [1].
Xiao et al. [2] have investigated the dynamical properties
of a ratio-dependent predator-prey model with nonzero
constant rate predator harvesting. These results reveal far
richer dynamics compared to the model with no harvesting.

The literature [3] shows that harvesting effort as control
parameter is not only possible to control the cyclic behavior
of populations leading to the persistence of all species, but
other desired stable equilibrium including disease-free can
also be obtained. Das et al. [4] discussed the bioeconomic
harvesting of a prey-predator fishery in which both species
are infected by some toxicant. Ji and Wu [5] studied a
predator-prey model with a constant-rate prey harvesting
incorporating a constant prey refuge, where the influence of
harvesting effort on the density of two species was discussed.
Chakraborty et al. [6] describes a prey-predator model with
stage structure for predator and selective harvesting effort on
predator population. Geometric approach is used to drive the
sufficient conditions for global stability of the system, and
fishing effort is used to investigate the optimal utilization of
the resource. Xiang et al. [7] consider a Lotka-Volterra model
with impulsive harvest for the prey and investigate globally
attractive periodic solution. However, most of these discus-
sions are only based on differential equations or difference
equations.

In power systems, neural networks, and genetic networks
[8–12], differential-algebraic equations have been studied
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widely and a lot of results have been obtained, such as
local stability, optimal control, singularity induced bifurca-
tion, and feasibility regions. From 2009, several differential-
algebraic biological models were reported [13–16]. Surpris-
ingly enough, all the existing differential-algebraic biological
modelling literature considers only the simplest case of a
logistic prey growth function. However, numerous examples
demonstrate that the growth of natural populations can
exhibit Allee effect, which is a phenomenon in biology named
after Allee [17]. Allee effect describes a positive relation
between population density and the per capita growth rate.
In other words, for smaller populations, the reproduction and
survival of individuals decrease. This effect usually saturates
or disappears as populations get larger.The effect may be due
to any number of causes, for example, mate finding, social
dysfunction, inbreeding depression, food exploitation, and
predator avoidance or defense.

On the other hand, since reproduction of predator after
consuming prey is not instantaneous in most cases, some
time lag for gestation is required. Therefore, in this paper,
we consider a differential-algebraic prey-predator model
with time delay and the Allee effect on the growth of the
prey population. We analyze the stability properties and
bifurcation behavior of this model. A state delayed feedback
control method is also proposed, which can eliminate Hopf
bifurcation and drive the differential-algebraic prey-predator
model to stay at a steady state.

2. Model Equations

The general predator-prey model in its classical form is
represented by

𝑑𝑥

𝑑𝑡̃
= 𝑥𝑝 (𝑥) − 𝑦𝑞 (𝑥) ,

𝑑𝑦

𝑑𝑡̃
= 𝛽𝑦𝑞 (𝑥) − 𝑑

2
𝑦, (1)

where𝑥 and𝑦 represent the prey density and predator density
at time 𝑡̃, respectively; 𝑝(𝑥) is the per capita growth rate of
prey in absence of predator;𝑑

2
is the intrinsicmortality rate of

predator in the absence of food; 𝑞(𝑥) is predator’s functional
response, defined as the amount of prey catch per predator
per unit of time; 𝛽 (0 < 𝛽 < 1) is the rate of conversion of
nutrients into the reproduction rate of the predator.

In 1954, Gordon [18] studied the effect of harvest effort
on ecosystem from an economic perspective and proposed
the following economic theory:

Net Economic Revenue (NER)

= Total Revenue (TR) − Total Cost (TC) .
(2)

Based on this theory, this paper studies a class of delayed
differential-algebraic predator-prey model with Allee effect

on prey species and Holling-II functional response, which is
written in the following form:

𝑑𝑥

𝑑𝑡̃
= 𝑥 (𝑠 (𝑥) − 𝑚

1
− 𝑎𝑥 (𝑡̃ − 𝜏)) −

𝛼𝑥𝑦

1 + 𝛼ℎ̃𝑥
,

𝑑𝑦

𝑑𝑡̃
=
𝛽𝛼𝑥 (𝑡̃ − 𝜏) 𝑦

1 + 𝛼ℎ̃𝑥 (𝑡̃ − 𝜏)
− 𝑚
2
𝑦 − 𝐸𝑦,

0 = 𝐸 (𝑝𝑦 − 𝑐) − 𝑚,

(3)

where 𝑠(𝑥) is the fertility rate of prey species. 𝑚
1
and 𝑚

2
are

the intrinsic mortality rate of the prey and predator species,
respectively. 𝑎 is the strength of intracompetition of prey
population. 𝛼 is the attack coefficient and ℎ̃ is the handling
time. 𝛽 denotes food utilization efficiency.The predator takes
time 𝜏 to convert the food into its growth; 𝐸 is harvesting
effort for predator, 𝑝 > 0, 𝑐 > 0, and 𝑚 > 0 are harvesting
reward per unit harvesting effort for unit weight of predator,
harvesting cost per unit harvesting effort for predator, and the
net economic revenue per unit harvesting effort, respectively.
All the parameters are positive constants.

Let the fertility rate 𝑠(𝑥) increase with population density
and be described by

𝑠 (𝑥) =
𝑟𝑥

𝐴 + 𝑥
, (4)

where 𝑟 > 0 and 𝐴 are the per capita maximum fertility rate
and the Allee effect constant of the prey species, respectively.
If 𝐴 > 0, the fertility of the species is zero when 𝑥 is zero and
approaches to 𝑟when 𝑥 becomes very large.The increasing of
𝑠(𝑥) depends on the parameter𝐴.The larger𝐴 is, the stronger
Allee effect will be. In particular, the fertility rate is density
independent when 𝐴 = 0; that is, 𝑠(𝑥) = 𝑟.

When the prey population is subject to Allee effect above,
the predator-prey model (3) becomes

𝑑𝑥

𝑑𝑡̃
= 𝑥(

𝑟𝑥

𝐴 + 𝑥
− 𝑚
1
− 𝑎𝑥 (𝑡̃ − 𝜏)) −

𝛼𝑥𝑦

1 + 𝛼ℎ̃𝑥
,

𝑑𝑦

𝑑𝑡̃
=
𝛽𝛼𝑥 (𝑡̃ − 𝜏) 𝑦

1 + 𝛼ℎ̃𝑥 (𝑡̃ − 𝜏)
− 𝑚
2
𝑦 − 𝐸𝑦,

0 = 𝐸 (𝑝𝑦 − 𝑐) − 𝑚.

(5)

Assume that the per capita maximum fertility rate of
prey must exceed its death rate, that is, 𝑟 > 𝑚

1
; otherwise,

both prey and predator will become extinct. In addition, the
maximum growth rate of predator population must exceed
its death rate, that is, 𝛽/ℎ̃ > 𝑚

2
. If not, prey population will

never be able to sustain predator population.

3. Qualitative Analysis

We nondimensionalize the model (5) with the following
scaling:

𝑥 =
𝑎𝑥

𝑟
, 𝑦 =

𝛼𝑦

𝑟
, 𝑡 = 𝑟𝑡̃, (6)
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and then obtain the following form:

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑥

𝐴 + 𝑥
− 𝑑
1
− 𝑥 (𝑡 − 𝜏)) −

𝑥𝑦

1 + ℎ𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑦(

𝑏𝑥 (𝑡 − 𝜏)

1 + ℎ𝑥 (𝑡 − 𝜏)
− 𝑑
2
) − 𝐸𝑦,

0 = 𝐸 (V𝑦 − 𝑤) − 𝑚,

(7)

where the nondimensional parameters are defined as

𝐴 =
𝑎𝐴

𝑟
, 𝑑

1
=
𝑚
1

𝑟
, ℎ =

𝛼𝑟ℎ̃

𝑎
, 𝑏 =

𝛼𝛽

𝑎
,

𝑑
2
=
𝑚
2

𝑟
, 𝐸 =

𝐸

𝑟
, V =

𝑝𝑟
2

𝛼
, 𝑤 = 𝑟𝑐,

𝜏 = 𝑟𝜏.

(8)

From the assumption mentioned above, the following
reasonable condition must be satisfied:

0 < 𝑑
1
< 1. (9)

For simplicity of computation, we consider the above
model (7) instead of the model (5). Hence, we will perform
a qualitative analysis of the model (7).

Let

𝑓 (𝑋, 𝐸, 𝜇) = (
𝑓
1
(𝑋, 𝐸, 𝜇)

𝑓
2
(𝑋, 𝐸, 𝜇)

)

= (

𝑥(
𝑥

𝐴 + 𝑥
− 𝑑
1
− 𝑥 (𝑡 − 𝜏)) −

𝑥𝑦

1 + ℎ𝑥

𝑦(
𝑏𝑥 (𝑡 − 𝜏)

1 + ℎ𝑥 (𝑡 − 𝜏)
− 𝑑
2
) − 𝐸𝑦

) ,

𝑔 (𝑋, 𝐸, 𝜇) = 𝐸 (V𝑦 − 𝑤) − 𝑚 = 0,
(10)

where 𝑋 = (𝑥, 𝑦)𝑇 is the state and 𝜇 denotes bifurcation
parameter.

3.1. The Model (7) with Zero Economic Profit. Considering
zero economic revenue, the model (7) can be reduced as
follows:

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑥

𝐴 + 𝑥
− 𝑑
1
− 𝑥 (𝑡 − 𝜏)) −

𝑥𝑦

1 + ℎ𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑦(

𝑏𝑥 (𝑡 − 𝜏)

1 + ℎ𝑥 (𝑡 − 𝜏)
− 𝑑
2
) − 𝐸𝑦,

0 = 𝐸 (V𝑦 − 𝑤) .

(11)

By the analysis of roots for the model (11), we obtain the
following result.

Theorem 1. (1) The model (11) has a trivial equilibrium point
𝑄
0
(0, 0, 0) for any positive parameters.
(2) There exist two boundary equilibrium points

𝑄
1
(𝑥
1
, 0, 0) and 𝑄

2
(𝑥
2
, 0, 0) if 1 − 𝐴 − 𝑑

1
> 2√𝐴𝑑

1
,

where

𝑥
1
=
1

2
(1 − 𝐴 − 𝑑

1
− √(1 − 𝐴 − 𝑑

1
)
2
− 4𝐴𝑑

1
) ,

𝑥
2
=
1

2
(1 − 𝐴 − 𝑑

1
+ √(1 − 𝐴 − 𝑑

1
)
2
− 4𝐴𝑑

1
) .

(12)

(3) There exists another boundary equilibrium point
𝑄
3
(𝑥
3
, 𝑦
3
, 0), where 𝑥

3
= 𝑑
2
/𝛿, 𝑦
3
= 𝑏[𝛿𝑑

2
− (𝑑
1
𝛿 + 𝑑
2
)(𝐴𝛿 +

𝑑
2
)]/𝛿
2
(𝐴𝛿 + 𝑑

2
), 𝛿 = 𝑏 − 𝑑

2
ℎ, if the following conditions are

satisfied:

0 < 𝑑
1
< 1, 𝑏 >

𝑑
2
(1 + (1 − 𝑑

1
) ℎ)

1 − 𝑑
1

,

0 < 𝐴 <
𝑑
2
(𝛿 (1 − 𝑑

1
) − 𝑑
2
)

𝛿 (𝑑
2
+ 𝑑
1
𝛿)

.

(13)

(4) The model (11) has a positive equilibrium point
𝑄
4
(𝑥
4
, 𝑦
4
, 𝐸
4
), where 𝑦

4
= 𝑤/V, 𝐸

4
= (𝑏𝑥

4
)/(1 + ℎ𝑥

4
) − 𝑑
2
,

and 𝑥
4
is the root of the following equation:

Vℎ𝑥3 + V (ℎ (𝑑
1
+ 𝐴 − 1) + 1) 𝑥

2

+ (V (𝑑
1
𝐴ℎ + 𝑑

1
+ 𝐴 − 1) + 𝑤) 𝑥

+ 𝑑
1
𝐴V + 𝑤𝐴 = 0.

(14)

The Jacobian matrix of the model (11) takes the following
form:

𝐽 = 𝐷
𝑋
𝑓 − 𝐷

𝐸
𝑓(𝐷
𝐸
𝑔)
−1

𝐷
𝑋
𝑔 = (

𝑥 (𝑥 + 2𝐴)

(𝐴 + 𝑥)
2
− 𝑑
1
− 𝑥 − 𝑥𝑒

−𝜆𝜏
−

𝑦

(1 + ℎ𝑥)
2

−
𝑥

1 + ℎ𝑥

𝑏𝑦𝑒
−𝜆𝜏

(1 + ℎ𝑥)
2

𝑏𝑥

1 + ℎ𝑥
− 𝑑
2
− 𝐸 +

V𝐸𝑦
V𝑦 − 𝑤

) . (15)

Hence, the Jacobian matrix of the model (11) at 𝑄
0
is

𝐽
𝑄0
= (
−𝑑
1
0

0 −𝑑
2

) . (16)

Theorem 2. 𝑄
0
is always a locally stable node.

FromTheorem 2, it can be seen that both prey and preda-
tor populations will become extinct when their population
densities lie in the attraction region of 𝑄

0
.
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Note that 𝑥
1
/(𝐴 + 𝑥

1
) − 𝑑
1
− 𝑥
1
= 0, then the Jacobian

matrix of the model (11) at 𝑄
1
is

𝐽
𝑄1

= (

𝑥
1

𝐴 + 𝑥
1

(1 − 𝑑
1
− 𝑥
1
− (𝐴 + 𝑥

1
) 𝑒
−𝜆𝜏
) −

𝑥
1

1 + ℎ𝑥
1

0
𝑏𝑥
1

1 + ℎ𝑥
1

− 𝑑
2

).

(17)

Since

1 − 𝑑
1
− 𝑥
1
− (𝐴 + 𝑥

1
) 𝑒
−𝜆𝜏
> 1 − 𝑑

1
− 2𝑥
1
− 𝐴

= √(1 − 𝐴 − 𝑑
1
)
2

− 4𝐴𝑑
1
> 0

(18)

and the other eigenvalue of 𝐽
𝑄1

is 𝑏𝑥
1
/(1+ℎ𝑥

1
)−𝑑
2
, we obtain

the following results on the stability of 𝑄
1
.

Theorem 3. Assume that 0 < 𝑑
1
< 1 and 0 < 𝐴 < (1−√𝑑

1
)
2.

Then, for any time delay 𝜏 ≥ 0, one has the following.

(1) 𝑄
1
is a saddle point if

ℎ >
𝑏

𝑑
2

−
2

1 − 𝐴 − 𝑑
1
− √(1 − 𝐴 − 𝑑

1
)
2
− 4𝐴𝑑

1

. (19)

(2) 𝑄
1
is an unstable node if

0 < ℎ <
𝑏

𝑑
2

−
2

1 − 𝐴 − 𝑑
1
− √(1 − 𝐴 − 𝑑

1
)
2

− 4𝐴𝑑
1

. (20)

Next, we analyze the stability of the equilibrium point𝑄
2
.

The Jacobian matrix of the model (11) at 𝑄
2
is

𝐽
𝑄2

= (

𝑥
2

𝐴 + 𝑥
2

(1 − 𝑑
1
− 𝑥
2
− (𝐴 + 𝑥

2
) 𝑒
−𝜆𝜏
) −

𝑥
2

1 + ℎ𝑥
2

0
𝑏𝑥
2

1 + ℎ𝑥
2

− 𝑑
2

).

(21)

For𝑄
2
, one eigenvalue is 𝑏𝑥

2
/(1+ℎ𝑥

2
)−𝑑
2
, and the other

is given by the equation

𝜆 −
𝑥
2

𝐴 + 𝑥
2

(1 − 𝑑
1
− 𝑥
2
− (𝐴 + 𝑥

2
) 𝑒
−𝜆𝜏
) = 0. (22)

By simple analysis, the root of (22) is negative if the time delay
satisfies 𝜏 < 𝜏

0
, where

𝜏
0
=

𝐴 + 𝑥
2

𝑥
2
√(1 − 𝑑

1
+ 𝐴) (𝐴 − 1 + 𝑑

1
+ 2𝑥
2
)

× arccos1 − 𝑑1 − 𝑥2
𝐴 + 𝑥

2

.

(23)

Then, we have the following results on the stability of 𝑄
2
.

Theorem 4. Assume that 0 < 𝑑
1
< 1, 0 < 𝐴 < (1 − √𝑑

1
)
2,

and 𝜏 < 𝜏
0
. Then, one has the following.

(1) 𝑄
2
is a saddle point if

0 < ℎ <
𝑏

𝑑
2

−
2

1 − 𝐴 − 𝑑
1
+ √(1 − 𝐴 − 𝑑

1
)
2

− 4𝐴𝑑
1

. (24)

(2) 𝑄
2
is locally asymptotically stable if

ℎ >
𝑏

𝑑
2

−
2

1 − 𝐴 − 𝑑
1
+ √(1 − 𝐴 − 𝑑

1
)
2
− 4𝐴𝑑

1

. (25)

Based onTheorem 4, the following bifurcation result can
be obtained.

Theorem 5. Assume that 0 < 𝑑
1
< 1, 0 < 𝐴 < (1 − √𝑑

1
)
2,

and 𝜏 < 𝜏
0
. Then, the model (11) undergoes transcritical

bifurcation at the equilibrium point 𝑄
2
when bifurcation

parameter ℎ increases through ℎ
0
= 𝑏/𝑑

2
− 2/(1 − 𝐴 − 𝑑

1
+

√(1 − 𝐴 − 𝑑
1
)
2
− 4𝐴𝑑

1
).

Proof. When 𝜏 < 𝜏
0
and the bifurcation parameter ℎ = ℎ

0
,

the characteristic polynomial at the equilibrium point𝑄
2
has

a simple zero eigenvalue with left null vector

𝑢trans = (0 1) (26)

and right null vector

Vtrans = (
𝑥
2

1 + ℎ𝑥
2

𝑥
2

𝐴 + 𝑥
2

(1 − 𝑑
1
− 2𝑥
2
− 𝐴))

𝑇

,

𝑢trans(𝐷𝑋𝐷ℎ𝑓𝑅)Vtrans
󵄨󵄨󵄨󵄨𝑄2

= (0 1)(

2𝑥
2
𝑦
2

(1 + ℎ𝑥
2
)
3

𝑥
2

2

(1 + ℎ𝑥
2
)
2

−
2𝑏𝑥
2
𝑦
2

(1 + ℎ𝑥
2
)
3
−
𝑏𝑥
2

2

(1 + ℎ𝑥
2
)
2

)

×(

𝑥
2

1 + ℎ𝑥
2

𝑥
2
(1 − 𝑑

1
− 2𝑥
2
− 𝐴)

𝐴 + 𝑥
2

)

= −
𝑏𝑥
3

2
(1 − 𝑑

1
− 2𝑥
2
− 𝐴)

(1 + ℎ𝑥
2
)
2
(𝐴 + 𝑥

2
)
,

𝑢trans𝐷
2

𝑋
𝑓
𝑅
(Vtrans, Vtrans)

󵄨󵄨󵄨󵄨󵄨𝑃0
2

= (0 1)(

−
𝑥
2

(1 + ℎ𝑥
2
)
3

𝑏𝑥
2

(1 + ℎ𝑥
2
)
3

)

=
𝑏𝑥
2

(1 + ℎ𝑥
2
)
3
.

(27)

According to the literature [19], the model (11) undergoes
transcritical bifurcation at the equilibrium point 𝑄

2
. This

completes the proof.
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Remark 6. Transcritical bifurcation implies that the equilib-
rium point 𝑄

2
remains stable if the handling time is longer

than the critical point ℎ
0
, otherwise the stability of 𝑄

2
is lost.

From the view of biological explanation, stable equilibrium

point 𝑄
2
means that predator population is to be extinct,

which results from longer handling time reducing the amount
of prey catch per predator per unit of time.

The Jacobian matrix of the model (11) at 𝑄
3
is

𝐽
𝑄3
=(

𝑥
3
(𝑥
3
+ 2𝐴)

(𝐴 + 𝑥
3
)
2
− 𝑑
1
− 𝑥
3
−

𝑦
3

(1 + ℎ𝑥
3
)
2
− 𝑥
3
𝑒
−𝜆𝜏
−
𝑥
3

1 + ℎ𝑥
3

𝑏𝑦
3
𝑒
−𝜆𝜏

(1 + ℎ𝑥
3
)
2

0

). (28)

The corresponding characteristic equation is

𝜆
2
− (

𝐴𝑥
3

(𝐴 + 𝑥
3
)
2
+
ℎ𝑥
3
𝑦
3

(1 + ℎ𝑥
3
)
2
)𝜆

+(𝑥
3
𝜆 +

𝑏𝑥
3
𝑦
3

(1 + ℎ𝑥
3
)
3
)𝑒
−𝜆𝜏
= 0.

(29)

In the absence of delay, since the constant term of the
above equation is always positive, the sign of the following
expression:

𝑥
3
−
𝐴𝑥
3

(𝐴 + 𝑥
3
)
2
−
ℎ𝑥
3
𝑦
3

(1 + ℎ𝑥
3
)
2

(30)

determines the stability of equilibrium 𝑄
3
. Moveover, if the

following condition:

𝛿 (4𝑏𝑑
1
𝑑
2
ℎ − (𝑏 + 𝑑

2
ℎ)
2
) + 4𝑏𝑑

2
(𝑏 + 𝑑

2
ℎ) > 0 (31)

is satisfied, it is clear that 𝑄
3
is always locally asymptotically

stable for the model (11) in the absence of delay.
In the presence of delay, assume that a purely imaginary

solution of the form 𝜆 = 𝑖𝜔
0
exists for the above characteristic

equation, where 𝜔
0
is the root of the following equation:

𝜔
4
+ [

[

(
𝐴𝑥
3

(𝐴 + 𝑥
3
)
2
+
ℎ𝑥
3
𝑦
3

(1 + ℎ𝑥
3
)
2
)

2

− 𝑥
2

3
]

]

𝜔
2

−
𝑏
2
𝑥
2

3
𝑦
2

3

(1 + ℎ𝑥
3
)
6
= 0.

(32)

Obviously, this equation has a positive solution𝜔
0
.Therefore,

the system undergoes Hopf bifurcation at the equilibrium
point 𝑄

3
when

𝜏
0

𝑘

=
1

𝜔
0

arccos((𝜔2
0
(

𝑏𝑦
3

(1 + ℎ𝑥
3
)
3
+
𝐴𝑥
3

(𝐴 + 𝑥
3
)
2

+
ℎ𝑥
3
𝑦
3

(1 + ℎ𝑥
3
)
2
))

×(𝑥
3
𝜔
2

0
+
𝑏
2
𝑥
3
𝑦
2

3

(1 + ℎ𝑥
3
)
6
)

−1

) +
2𝑘𝜋

𝜔
0

.

(33)

Then the following result is obtained.

Theorem 7. Assume that the condition (31) holds. The model
(11) is stable for the time delay 𝜏 < 𝜏0

0
and undergoes Hopf

bifurcation at the equilibrium point 𝑄
3
when 𝜏 = 𝜏0

0
.

In succession, we discuss the bifurcation behavior regard-
ing𝑚 as the bifurcation parameter; that is, 𝜇 = 𝑚.

Theorem 8. If 𝐴/(𝐴 + 𝑥
4
)
2
+ ℎ𝑦
4
/(1 + ℎ𝑥

4
)
2
̸= 1, the model

(11) undergoes singular induced bifurcation at the equilibrium
point 𝑄

4
when the bifurcation parameter 𝜇 increases through

0. Moreover, the stability of the equilibrium point 𝑄
4
changes,

that is, from stable to unstable.

Proof. We define a new variable as Δ = 𝐷
𝐸
𝑔 = V𝑦 − 𝑤.

Then, Δ has a simple zero eigenvalue at the equilibrium point
𝑄
4
(𝑥
4
, 𝑦
4
, 𝐸
4
) as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷
𝑋
𝑓 𝐷
𝐸
𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑄4

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐴𝑥
4

(𝐴 + 𝑥
4
)
2
− 𝑥
4
+
ℎ𝑥
4
𝑦
4

(1 + ℎ𝑥
4
)
2
−
𝑥
4

1 + ℎ𝑥
4

0

𝑏𝑦
4

(1 + ℎ𝑥
4
)
2

0 −𝑦
4

0 V𝐸
4

V𝑦
4
− 𝑤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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= V𝑥
4
𝑦
4
𝐸
4
(

𝐴

(𝐴 + 𝑥
4
)
2
− 1 +

ℎ𝑦
4

(1 + ℎ𝑥
4
)
2
) ,

trace (𝐷
𝐸
𝑓adj (𝐷

𝐸
𝑔)𝐷
𝑋
𝑔)
󵄨󵄨󵄨󵄨𝑄4
= trace(( 0

−𝑦
4

) (0 V𝐸
4))

= −𝑤𝐸
4
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷
𝑋
𝑓 𝐷
𝐸
𝑓 𝐷
𝑚
𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔 𝐷
𝑚
𝑔

𝐷
𝑋
Δ 𝐷
𝐸
Δ 𝐷
𝑚
Δ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑄4

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐴𝑥
4

(𝐴 + 𝑥
4
)
2
− 𝑥
4
+
ℎ𝑥
4
𝑦
4

(1 + ℎ𝑥
4
)
2
−
𝑥
4

1 + ℎ𝑥
4

0 0

𝑏𝑦
4

(1 + ℎ𝑥
4
)
2

0 −𝑦
4
0

0 V𝐸
4

V𝑝
4
− 𝑤 −1

0 V 0 0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= V𝑥
4
𝑦
4
(

𝐴

(𝐴 + 𝑥
4
)
2
− 1 +

ℎ𝑦
4

(1 + ℎ𝑥
4
)
2
) .

(34)

On the other hand, we get

𝜉
1
= −trace(𝐷

𝐸
𝑓adj(𝐷

𝐸
𝑔)𝐷
𝑋
𝑔)
󵄨󵄨󵄨󵄨𝑄4
= 𝑤𝐸
4
> 0,

𝜉
2
= (𝐷

𝜇
Δ − (𝐷

𝑋
Δ 𝐷
𝐸
Δ)(
𝐷
𝑋
𝑓 𝐷
𝐸
𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔
)

−1

(
𝐷
𝜇
𝑓

𝐷
𝜇
𝑔
))

𝑄4

=
1

𝐸
4

> 0.

(35)

According to [20], all conditions of singular induced bifurca-
tion are satisfied. Hence, the model (11) undergoes singular
induced bifurcation at the equilibrium point 𝑄

4
if the eco-

nomic revenue is zero. When economic revenue 𝑚 increases
through 0, one eigenvalue of the model (11) moves from 𝐶−
(the open complex left half plane) to 𝐶+ (the open complex
right half plane) along the real axis by diverging through∞,
which causes impulsive phenomenon of differential-algebraic
system, that is, rapid expansion of the population from the
view of biological explanation. Therefore, the stability of the
equilibrium point𝑄

4
changes, that is, from stable to unstable.

This completes the proof.

For the model (11) without time delay, eigenvalues of
Jacobian matrix 𝐽 at the equilibrium point 𝑄

4
are the roots

of the following equation:

𝜆
2
− (𝑎
11
+ 𝑎
22
) 𝜆 + 𝑎

11
𝑎
22
− 𝑎
12
𝑎
21
= 0, (36)

where

𝑎
11
=
𝐴𝑥
4

(𝐴 + 𝑥
4
)
2
− 𝑥
4
+
ℎ𝑥
4
𝑦
4

(1 + ℎ𝑥
4
)
2
,

𝑎
12
= −

𝑥
4

1 + ℎ𝑥
4

,

𝑎
21
=

𝑏𝑦
4

(1 + ℎ𝑥
4
)
2
, 𝑎

22
=

V𝑦
4
𝐸
4

V𝑦
4
− 𝑤
.

(37)

Remark 9. After simple computation, it can be seen that
the Jacobian matrix 𝐽 at the equilibrium point 𝑄

4
has two

eigenvalues. One is

𝜆
1
=
1

2
[(𝑎
11
+ 𝑎
22
) + √(𝑎

11
− 𝑎
22
)
2
+ 4𝑎
12
𝑎
21
]

󳨀→ +∞(𝑎
11
) ,

(38)

and the other is

𝜆
2
=
1

2
[(𝑎
11
+ 𝑎
22
) − √(𝑎

11
− 𝑎
22
)
2
+ 4𝑎
12
𝑎
21
]

󳨀→ 𝑎
11
(−∞)

(39)

since 𝑎
22
→ +∞(−∞) as𝑚 → 0+(0−).

3.2. The Model (7) with Positive Economic Profit. When
the economic profit is positive, the model (7) has positive
equilibrium point 𝑄

5
(𝑥
5
, 𝑦
5
, 𝐸
5
), where coordinates 𝐸

5
=

𝑚/(V𝑦
5
− 𝑤), 𝑦

5
= (1 + ℎ𝑥

5
)(𝑥
5
/(𝐴 + 𝑥

5
) − 𝑑
1
− 𝑥
5
), and

𝑥
5
are the root of the following equation:

𝐵 (𝑥) = 𝐵
1
𝑥
4
+ 𝐵
2
𝑥
3
+ 𝐵
3
𝑥
2
+ 𝐵
4
𝑥 + 𝐵
5
= 0, (40)

where
𝐵
1
= Vℎ (𝑏 − 𝑑

2
ℎ) ,

𝐵
2
= V (1 + ℎ (𝑑

1
+ 𝐴 − 1)) (𝑏 − 𝑑

2
ℎ) − 𝑑

2
Vℎ,

𝐵
3
= (𝑏 − 𝑑

2
ℎ) (Vℎ𝑑

1
𝐴 + (𝑑

1
+ 𝐴 − 1) V + 𝑤)

−𝑑
2
V (1 + ℎ (𝑑

1
+ 𝐴 − 1)) + 𝑚ℎ,

𝐵
4
= (𝑏 − 𝑑

2
ℎ) (V𝑑

1
+ 𝑤)𝐴

−𝑑
2
(Vℎ𝑑
1
𝐴 + (𝑑

1
+ 𝐴 − 1) V + 𝑤)

+𝑚 (1 + ℎ𝐴) ,

𝐵
5
= 𝑚𝐴 − 𝑑

2
𝐴 (V𝑑

1
+ 𝑤) .

(41)

The Jacobian matrix of the model (7) at the equilibrium
point 𝑄

5
is

𝐽
𝑄5
= (

𝐴𝑥
5

(𝐴 + 𝑥
5
)
2
− 𝑥
5
𝑒
−𝜆𝜏
+
ℎ𝑥
5
𝑦
5

(1 + ℎ𝑥
5
)
2
−
𝑥
5

1 + ℎ𝑥
5

𝑏𝑦
5
𝑒
−𝜆𝜏

(1 + ℎ𝑥
5
)
2

V𝑦
5
𝐸
5

V𝑦
5
− 𝑤

).

(42)
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For the sake of simplicity, let

𝑢
1
= 𝑢
11
+ 𝑢
12
, 𝑢
11
= −𝑥
5
,

𝑢
12
=
𝐴𝑥
5

(𝐴 + 𝑥
5
)
2
+
ℎ𝑥
5
𝑦
5

(1 + ℎ𝑥
5
)
2
,

𝑢
2
= −

𝑥
5

1 + ℎ𝑥
5

, 𝑢
3
=

𝑏𝑦
5

(1 + ℎ𝑥
5
)
2
,

𝑢
4
=

V𝑦
5
𝐸
5

V𝑦
5
− 𝑤
.

(43)

The characteristic polynomial for the model (7) without
time delay at the equilibrium point 𝑄

5
takes the following

form:

𝑅
1
(𝜆) = 𝜆

2
− (𝑢
1
+ 𝑢
4
) 𝜆 + 𝑢

1
𝑢
4
− 𝑢
2
𝑢
3
= 0. (44)

By using the Routh-Hurwitz criteria,𝑄
5
is locally asymptoti-

cally stable for the model (7) without time delay if

𝑢
1
+ 𝑢
4
< 0, 𝑢

1
𝑢
4
− 𝑢
2
𝑢
3
> 0. (45)

According to the Jacobian matrix 𝐽
𝑄5
, we can obtain the

characteristic equation of the differential-algebraic model (7)
at 𝑄
5
, which can be expressed as follows:

𝑅
2
(𝜆) = 𝜆

2
+ 𝑝
1
𝜆 + 𝑝
2
+ (𝑝
3
𝜆 + 𝑝
4
) 𝑒
−𝜆𝜏
= 0, (46)

where

𝑝
1
= −𝑢
12
− 𝑢
4
, 𝑝

2
= 𝑢
12
𝑢
4
,

𝑝
3
= −𝑢
11
, 𝑝

4
= 𝑢
11
𝑢
4
− 𝑢
2
𝑢
3
.

(47)

Assume that a purely imaginary solution of the form 𝜆 =
𝑖𝜔 exists in (46). Substituting it into (46) and separating the
real and imaginary parts, we have

𝑝
2
− 𝜔
2
+ 𝑝
4
cos𝜔𝜏 + 𝑝

3
𝜔 sin𝜔𝜏 = 0,

𝑝
1
𝜔 + 𝑝
3
𝜔 cos𝜔𝜏 − 𝑝

4
sin𝜔𝜏 = 0.

(48)

Taking square on both sides of (48) and summing them up,
we obtain

𝜔
4
+ (𝑝
2

1
− 2𝑝
2
− 𝑝
2

3
) 𝜔
2
+ 𝑝
2

2
− 𝑝
2

4
= 0. (49)

From the condition (45), we have 𝑝2
1
− 2𝑝
2
− 𝑝
2

3
< 0 and

𝑝
2
+ 𝑝
4
> 0. Therefore, (49) has at least one real root 𝜔

𝑚
if

𝑝
2
− 𝑝
4
< 0. (50)

The critical value of the delay corresponding to𝜔
𝑚
is given by

𝜏
𝑚

𝑘
=
1

𝜔
𝑚

arccos
𝑝
4
𝜔
2

𝑚
− 𝑝
2
𝑝
4
− 𝑝
1
𝑝
3
𝜔
2

𝑚

𝑝2
3
𝜔2
𝑚
+ 𝑝2
4

+
2𝑘𝜋

𝜔
𝑚

,

𝑘 = 0, 1, 2, . . . .

(51)

Now, differentiating (46) with respect to 𝜏, we obtain

𝑑𝜆

𝑑𝜏
=

(𝑝
3
𝜆 + 𝑝
4
) 𝜆𝑒
−𝜆𝜏

2𝜆 + 𝑝
1
+ [𝑝
3
− 𝜏 (𝑝

3
𝜆 + 𝑝
4
)] 𝑒−𝜆𝜏

. (52)

Substituting the eigenvalue 𝑖𝜔
𝑚
and noticing that the deriva-

tive of (49) at 𝜔2
𝑚
is positive, it follows that

sign( 𝑑
𝑑𝜏

Re(𝜆))
𝜏
𝑚

𝑘

= sign (𝜔2
𝑚
(2𝜔
2

𝑚
+ 𝑝
2

1
− 2𝑝
2
− 𝑝
2

3
)) > 0.

(53)

Theorem 10. Assume that conditions (45) and (50) hold.
For the model (7), there exists a 𝜏𝑚

0
> 0 such that 𝑄

5
is

locally asymptotically stable when 𝜏 ∈ [0, 𝜏𝑚
0
) and is unstable

when 𝜏 > 𝜏𝑚
0
. Furthermore, the model (7) undergoes Hopf

bifurcation at the equilibrium point 𝑄
5
when 𝜏 = 𝜏𝑚

𝑘
, 𝑘 =

0, 1, 2, . . ..

From Theorem 10, it can be seen that Hopf bifurcation
results in oscillation of population density; that is, the
differential-algebraic model (7) becomes unstable when the
time delay exceeds the critical value. From the view of
ecological managers, it may be desirable to have stable pop-
ulation densities in order to keep sustainable development
of ecosystem. However, food conversion delay is generally
regarded as an inherence of biological populations. It is
difficult to adjust the food conversion delay. Therefore, we
propose the following state delayed feedback controlmethod:

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑥

𝐴 + 𝑥
− 𝑑
1
− 𝑥 (𝑡 − 𝜏)) −

𝑥𝑦

1 + ℎ𝑥

+ 𝐿
1
(𝑥 − 𝑥 (𝑡 − 𝜏)) ,

𝑑𝑦

𝑑𝑡
= 𝑦(

𝑏𝑥 (𝑡 − 𝜏)

1 + ℎ𝑥 (𝑡 − 𝜏)
− 𝑑
2
) − 𝐸𝑦 + 𝐿

2
(𝑦 − 𝑦 (𝑡 − 𝜏)) ,

0 = 𝐸 (V𝑦 − 𝑤) − 𝑚,
(54)

where 𝐿 = (𝐿1 𝐿2)
𝑇 is the feedback gain.

Under the state delayed feedback control, the Jacobian
matrix at the positive equilibrium point 𝑄

5
is

𝐽
𝑐

𝑄5
= (
𝑢
11
𝑒
−𝜆𝜏
+ 𝑢
12
+ 𝐿
1
(1 − 𝑒

−𝜆𝜏
) 𝑢

2

𝑢
3
𝑒
−𝜆𝜏

𝑢
4
+ 𝐿
2
(1 − 𝑒

−𝜆𝜏
)
) .

(55)

Then the character equation corresponding to the matrix 𝐽𝑐
𝑄5

is

[𝜆
2
− (𝑢
12
+ 𝑢
4
+ 𝐿
1
+ 𝐿
2
) 𝜆 + (𝑢

12
+ 𝐿
1
) (𝐿
2
+ 𝑢
4
)]

+ [(𝐿
2
− 𝑢
11
+ 𝐿
1
) 𝜆 + (𝑢

11
− 𝐿
1
) (𝑢
4
+ 𝐿
2
)

−𝐿
2
(𝑢
12
+ 𝐿
1
) − 𝑢
2
𝑢
3
] 𝑒
−𝜆𝜏
− 𝐿
2
(𝑢
11
− 𝐿
1
) 𝑒
−2𝜆𝜏

= 0.

(56)
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For the simplicity of computation, the feedback gain term
𝐿
1
is denoted as 𝑢

11
. Then, the character equation (56) is

written as

[𝜆
2
− (𝑢
1
+ 𝑢
4
+ 𝐿
2
) 𝜆 + 𝑢

1
(𝐿
2
+ 𝑢
4
)]

+ 𝑒
−𝜆𝜏
[𝐿
2
𝜆 − 𝐿
2
𝑢
1
− 𝑢
2
𝑢
3
] = 0.

(57)

Assume that (57) has a purely imaginary root 𝜆 = 𝑖𝜔, and
substitute it into the equation, then we obtain the following
equation:

𝜔
4
+ (𝑢
2

1
+ (𝑢
4
+ 𝐿
2
)
2

) 𝜔
2

+ (𝑢
1
𝑢
4
− 𝑢
2
𝑢
3
) (𝑢
1
𝑢
4
+ 𝑢
2
𝑢
3
+ 2𝐿
2
𝑢
1
) = 0.

(58)

By simple analysis, we can obtain the following result.

Theorem 11. Under the conditions ofTheorem 10, for any time
delay 𝜏 > 0, the equilibriumpoint𝑄

5
of themodel (54) is locally

asymptotically stable if the feedback gain satisfies the following
conditions:

𝐿
1
= 𝑢
11
,

𝑢
1
𝑢
4
+ 𝑢
2
𝑢
3
+ 2𝐿
2
𝑢
1
> 0.

(59)

In fact, the two differential equations of the differential-
algebraic system (54) can be rewritten as

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑥

𝐴 + 𝑥
− 𝑑
1
− 𝑥 (𝑡 − 𝜏)) −

𝑥𝑦

1 + ℎ𝑥
+ 𝐸
𝑥
𝑥,

𝑑𝑦

𝑑𝑡
= 𝑦(

𝑏𝑥 (𝑡 − 𝜏)

1 + ℎ𝑥 (𝑡 − 𝜏)
− 𝑑
2
) + 𝐸

𝑦
𝑦,

(60)

where𝐸
𝑥
= 𝐿
1
(1−𝑥(𝑡−𝜏)/𝑥) and𝐸

𝑦
= 𝐿
2
(1−𝑦(𝑡−𝜏)/𝑦)−𝐸.

Remark 12. From the practical point of view, 𝐸
𝑥
and 𝐸

𝑦
can

be regarded as harvesting efforts for the prey and predator
species. From the expression above, it is clear that 𝐸

𝑥
and

𝐸
𝑦
are related to the equilibrium, the past, and present

population density. Hence, population densities can be kept
stable by changing the strength of harvesting efforts; that
is, the state delayed feedback control can be completed by
adjusting harvesting efforts for two species. Hence, the state
feedback controller can be used to eliminate Hopf bifurcation
and drive the model system to stabilize at the interior
equilibrium point.

4. Numerical Simulation

In this section, we firstly assign some parameter values of
the model (7) and provide some numerical simulations to
illustrate the effectiveness of the results which have been
established in the previous sections. For the purpose of simu-
lation experiments, we mainly use the softwareMATLAB 7.0.

0 0.02 0.04 0.06

0

200

400

600

800

1000

m

M
ax

im
um

 ei
ge

nv
al

ue

−0.06 −0.04 −0.02
−1000

−800

−600

−400

−200

Figure 1: The maximum eigenvalue of the model (61) w.r.t. eco-
nomic revenue𝑚.

The differential-algebraic model (7) with given values
takes the following form:

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑥

𝐴 + 𝑥
− 0.01 − 𝑥 (𝑡 − 𝜏)) −

𝑥𝑦

1 + 1.25𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑦(

7.5𝑥 (𝑡 − 𝜏)

1 + 1.25𝑥 (𝑡 − 𝜏)
− 2) − 𝐸𝑦,

0 = 𝐸 (35𝑦 − 1) − 𝑚.

(61)

4.1. Existence of Singular Induced Bifurcation. The existence
of singularity induced bifurcation of the model (61) is clearly
shown inTable 1. FromTable 1, it can be seen that as economic
revenue 𝑚 increases through zero, one eigenvalue remains
almost constant and the other moves from 𝐶− to 𝐶+ along
the real axis by diverging through∞ for the fixed Allee effect
constant. Moreover, for the fixed Allee effect 𝐴 = 0.02,
we draw a figure to illustrate the movement of maximum
eigenvalue with respect to the economic revenue 𝑚 (see
Figure 1). From Figure 1, it can be seen that singularity
induced bifurcation for the model (61) occurs at 𝑚 = 0,
which is corresponding to the theoretical analysis. Hence,
the stability of the model (61) at positive equilibrium point
changes from stable to unstable. Furthermore, the stronger
Allee effect is, the weaker impulsive phenomenonwill be; that
is, Allee effect has an impact on the dynamical behavior of the
proposed model.

4.2. Existence and Control of Hopf Bifurcation. For the fixed
parameter 𝐴 = 0.02, we draw a critical curve 𝜏𝑚

0
= 𝑓(𝑚)

w.r.t. parameter𝑚 (see Figure 2). FromFigure 2, it is clear that
the domain surrounded by the critical curve 𝑓(𝑚) and the
two axes is stable for the model (7). Based on the analysis in
Section 3.2, the equilibrium point 𝑄

5
(0.4055, 0.8099, 0.0183)

is stable for the model (7) without time delay. Furthermore,
since 𝑝

2
− 𝑝
4
= −0.7079 < 0, there is a positive root 𝜔

𝑚
=

0.8781 for (49). The critical value of the delay corresponding
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Table 1: Equilibrium points and eigenvalues of the model (7) for different Allee effect constants and economic revenue.

Allee effect Economic profit Equilibrium point Eigenvalues

𝐴 = 0.02
𝑚 = −0.01

𝑚 = 0.01

(0.957, 0.0284, 1.424)
(0.956, 0.0288, 1.264)

−0.930, −201.571
−0.929, 161.025

𝐴 = 0.1
𝑚 = −0.01

𝑚 = 0.01

(0.874, 0.0285, 2.367)
(0.874, 0.0288, 1.142)

−0.775, −559.217
−0.774, 131.598

𝐴 = 0.5
𝑚 = −0.01

𝑚 = 0.01

(0.442, 0.0265, 0.136)
(0.435, 0.0311, 0.115)

−0.203, −1.684
−0.162, 1.420
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Figure 2: The critical curve of the delay 𝜏 w.r.t. economic revenue
𝑚.
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Figure 3: When 𝜏 = 0.12, the equilibrium point 𝑄
5
is stable.

to 𝜔
𝑚
is 𝜏𝑚
0
= 0.2172. The interior equilibrium point 𝑄

5

remains stable for 𝜏 < 𝜏𝑚
0
. In Figure 3, a random time

delay 𝜏 = 0.12 is selected in the interval (0, 0.2172), which
is enough to merit the above mathematical study. When
the time delay 𝜏 passes through the critical value 𝜏𝑚

0
, the

equilibrium point 𝑄
5
loses its stability and Hopf bifurcation

occurs. The bifurcating period solution from 𝑄
5
at 𝜏𝑚
0

is
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Figure 4: When 𝜏 = 0.23, bifurcation period solutions from the
equilibrium point 𝑄

5
occur.
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Figure 5: Dynamical responses of the controlled system (54) with
the feedback gain 𝐿 = (−0.4055 − 7.5)𝑇.

depicted in Figure 4. Next, a state feedback controller is
applied to the model (7). We choose the feedback gain 𝐿 =
(−0.4055 − 7.5)

𝑇, where the gain terms satisfy 𝐿
1
= 𝑢
11
=

−0.4055 and 𝑢
1
𝑢
4
+ 𝑢
2
𝑢
3
+ 2𝐿
2
𝑢
1
= 1.9754 > 0. Then, the

model (7) is stable at 𝑄
5
and the Hopf bifurcation is also

eliminated. Figure 5 shows the dynamical responses of the
differential-algebraic model (7).
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5. Conclusions

Nowadays, much attention has been paid to preserving
biological resources with the aim of stemming the damage
and ensuring the balance of ecosystems, which inspires
the introduction of harvesting in the biological system. In
this paper, we analyze the dynamical behavior of a delayed
predator-preymodelwithAllee effect and harvesting by using
differential algebraic systems theory. From the analysis of
the proposed model, we have obtained some interesting and
useful results, which extend the work done in [21].This paper
is mainly divided into two parts.

In the first part, we consider a delayed differential-
algebraic predator-preymodelwith zero economic revenue. It
is observed that transcritical bifurcation and singular induced
bifurcation phenomena take place when handling time of
predator and economic revenue are regarded as bifurcation
parameters, respectively.

As the handling time decreases through the critical point
ℎ
0
, the differential-algebraic model undergoes transcritical

bifurcation and the stability of 𝑄
2
is lost. Due to longer

handling time ℎ reducing the amount of prey catch per
predator per unit of time, prey population density can stay
at a positive value and predator population is to be extinct;
that is, 𝑄

2
is stable.

Singular induced bifurcation may cause impulsive phe-
nomenon due to the variation of the economic revenues of
harvesting. From a biological point of view, singular induced
bifurcation implies rapid expansion of biological population,
which may cause ecosystem unbalance and hamper the
sustainable development. Hence, it is necessary to investigate
the singular induced bifurcation in the presence of a reserve
depending on the variation of economic revenue.The analysis
of singular induced bifurcation can provide more informa-
tion of forecasting so that ecological managers can lay down
better management strategy. Furthermore, numerical simu-
lation shows that the impulsive phenomenon can be much
weaker by increasing Allee effect constant, which implies
that Allee effect has an impact on the dynamical behavior of
the proposed model. Therefore, ecological managers need to
consider the inherent characters of the biological population
and some external factors comprehensively.

In general, an individual prey killed does not contribute
instantaneously to the growth of predator population. And
differential equations with time delay always exhibit much
more complicated dynamics than ordinary differential equa-
tions. Hence, in the second part of this paper, the effect
of time delay on dynamical behavior of the differential-
algebraic model is discussed. It shows that time delay
plays an important role in the dynamical behavior of the
differential-algebraic model. Hopf bifurcation occurs as time
delay increases through a certain threshold, and time delay
switches the stability of the proposed model. Furthermore,
a state delayed feedback controller is designed to eliminate
bifurcational phenomenon and keep population density at
steady state. From numerical simulation, it is noted that
the stronger Allee effect is not beneficial to the stability of
biological species.

It should be noted that almost the existing bioeconomic
models (see [13–16]) only investigate the simplest case of a
logistic prey growth function. Compared with these works,
the introduction of Allee effectmakes thework studied in this
paper novel.
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