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We discuss the boundedness and compactness of the weighted composition operator from mixed norm space to Bloch-type space
on the unit ball of 𝐶𝑛.

1. Introduction

Let 𝐻(𝐵
𝑛
) be the class of all holomorphic functions on

𝐵
𝑛
and 𝑆(𝐵

𝑛
) the collection of all the holomorphic self-

mappings of𝐵
𝑛
, where𝐵

𝑛
is the unit ball in the 𝑛-dimensional

complex space 𝐶𝑛. Let 𝑑V denote the Lebesegue measure on
𝐵
𝑛
normalized so that V(𝐵

𝑛
) = 1 and 𝑑𝜎 the normalized

rotation invariant measure on the boundary 𝑆 = 𝜕𝐵
𝑛
of 𝐵

𝑛
.

For 𝑓 ∈ 𝐻(𝐵
𝑛
), let

R𝑓 (𝑧) =
𝑛

∑

𝑗=1

𝑧
𝑗

𝜕𝑓

𝜕𝑧
𝑗

(𝑧) (1)

be the radial derivative of 𝑓.
A positive continuous function 𝜇 on [0, 1) is called

normal (see, e.g., [1]) if there exist three constants 0 ≤ 𝛿 < 1,
and 0 < 𝑎 < 𝑏 < ∞, such that for 𝑟 ∈ [𝛿, 1)

𝜇 (𝑟)

(1 − 𝑟)
𝑎
↓ 0,

𝜇 (𝑟)

(1 − 𝑟)
𝑏

↑ ∞, 𝑟 → 1. (2)

In the rest of this paper we always assume that 𝜇 is normal on
[0, 1), and from now on if we say that a function 𝜇 : 𝐵

𝑛
→

[0,∞) is normal we will also suppose that it is radial on 𝐵
𝑛
,

that is, 𝜇(𝑧) = 𝜇(|𝑧|) for 𝑧 ∈ 𝐵
𝑛
.

Let 0 < 𝑝 ≤ ∞, 0 < 𝑞 ≤ ∞, and 𝜇 be normal on [0, 1). 𝑓
is said to belong to the mixed norm space 𝐿(𝑝, 𝑞, 𝜇) if 𝑓 is a
measurable function on 𝐵

𝑛
and ‖𝑓‖

𝑝,𝑞,𝜇
< ∞, where

𝑓
𝑝,𝑞,𝜇 = {∫

1

0

𝑟
2𝑛−1

(1 − 𝑟)
−1

𝜇
𝑝

(𝑟)𝑀
𝑝

𝑞
(𝑟, 𝑓) 𝑑𝑟}

1/𝑝

(0 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞) ,

𝑓
∞,𝑞,𝜇

= sup
0≤𝑟<1

𝜇 (𝑟)𝑀
𝑞
(𝑟, 𝑓) ,

𝑀
∞
(𝑟, 𝑓) = sup

𝜁∈𝑆

𝑓 (𝑟𝜁)
 ,

𝑀
𝑞
(𝑟, 𝑓) = {∫

𝑆

𝑓 (𝑟𝜁)


𝑞

𝑑𝜎 (𝜁)}

1/𝑞

, (0 < 𝑞 < ∞) .

(3)

If 0 < 𝑝 = 𝑞 < ∞, then 𝐿(𝑝, 𝑞, 𝜇) is just the space 𝐿𝑝(𝜇) =
{𝑓 is measurable function on 𝐵

𝑛
: ∫

𝐵
𝑛

|𝑓(𝑧)|
𝑝

(𝜇
𝑝

(𝑧)/(1 −

|𝑧|))𝑑](𝑧) < ∞}.
Let 𝐻(𝑝, 𝑞, 𝜇) = 𝐿(𝑝, 𝑞, 𝜇) ∩ 𝐻(𝐵

𝑛
). If 0 < 𝑝 = 𝑞 < ∞,

then𝐻(𝑝, 𝑞, 𝜇) is just the weighted Bergman space 𝐿𝑝
𝑎
(𝜇). In

particular,𝐻(𝑝, 𝑞, 𝜇) is Bergman space 𝐿𝑝
𝑎
(𝜇) if 0 < 𝑝 = 𝑞 <

∞ and 𝜇(𝑟) = (1 − 𝑟)1/𝑝. Otherwise, if 𝑝 = 𝑞 = 2 and 𝜇(𝑟) =
(1 − 𝑟)

𝛽/2

(𝛽 < 0), then 𝐻(𝑝, 𝑞, 𝜇(𝑟)) is the Dirichlet-type
space.
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For 0 < 𝑝, 𝑞 < ∞, −1 < 𝛾 < 1, let 𝜇(𝑟) = 𝑟−(2𝑛−1)/𝑝(1 −
𝑟)

(𝛾+1)/𝑝; it is easy to see that themixed norm space𝐻(𝑝, 𝑞, 𝜇),
written by𝐻

𝑝,𝑞,𝛾
, consists of all 𝑓 ∈ 𝐻(𝐵

𝑛
) such that

𝑓
𝐻
𝑝,𝑞,𝛾

= {∫

1

0

𝑀
𝑝

𝑞
(𝑓, 𝑟) (1 − 𝑟)

𝛾

𝑑𝑟}

1/𝑝

< ∞. (4)

Now 𝑓 ∈ 𝐻(𝐵
𝑛
) is said to belong to Bloch-type spaceB

𝜇

if
𝑓
𝜇,1 = sup

𝑧∈𝐵
𝑛

𝜇 (𝑧)
∇𝑓 (𝑧)

 < ∞, (5)

where ∇𝑓(𝑧) = (𝜕𝑓(𝑧)/𝜕𝑧
1
, . . . , 𝜕𝑓(𝑧)/𝜕𝑧

𝑛
) is the complex

gradient of 𝑓.
It is clear that B

𝜇
is a Banach space with norm ‖𝑓‖B

𝜇

=

|𝑓(0)| + ‖𝑓‖
𝜇,1
. For 𝑓 ∈ 𝐻(𝐵

𝑛
), we denote

𝑓
𝜇,2 = sup

𝑧∈𝐵
𝑛

𝜇 (𝑧)
R𝑓 (𝑧)

 ,
𝑓
𝜇,3 = sup

𝑧∈𝐵
𝑛

𝑄
𝜇

𝑓
(𝑧) , (6)

where

𝑄
𝜇

𝑓
(𝑧) = sup

𝑢∈𝐶
𝑛
\{0}

⟨∇𝑓 (𝑧) , 𝑢⟩


√𝐺
𝜇

𝑧
(𝑢, 𝑢)

,

𝐺
𝜇

𝑧
(𝑢, 𝑢)

=
1

𝜇2 (𝑧)
{
𝜇
2

(𝑧)

𝜎2
𝜇
(|𝑧|)
|𝑢|

2

+ (1 −
𝜇
2

(𝑧)

𝜎2
𝜇
(|𝑧|)
)
|⟨𝑧, 𝑢⟩|

2

|𝑧|
2
}

(𝑧 ̸= 0) ,

𝐺
𝜇

0
(𝑢, 𝑢) =

|𝑢|
2

𝜇2 (0)
,

1

𝜎
𝜇
(𝑡)
=
1

𝜇 (0)
+ ∫

𝑡

0

𝑑𝜏

(1 − 𝜏)
1/2

𝜇 (𝜏)

(0 ≤ 𝑡 < 1) .

(7)

It was proved that ‖𝑓‖
𝜇,1
, ‖𝑓‖

𝜇,2
, and ‖𝑓‖

𝜇,3
are equivalent

for 𝑓 ∈B
𝜇
(𝐵

𝑛
) in [2, 3].

Let 𝜑 ∈ 𝑆(𝐵
𝑛
), 𝜓 ∈ 𝐻(𝐵

𝑛
); the composition operator 𝐶

𝜑

induced by 𝜑 is defined by

(𝐶
𝜑
𝑓) (𝑧) = 𝑓 (𝜑 (𝑧)) , 𝑓 ∈ 𝐻 (𝐵

𝑛
) , 𝑧 ∈ 𝐵

𝑛
, (8)

and the weighted composition operator 𝑇
𝜓,𝜑

is defined by

𝑇
𝜓,𝜑
(𝑓) = 𝜓𝑓 ∘ 𝜑 (9)

for𝑓 ∈ 𝐻(𝐵
𝑛
).We can regard this operator as a generalization

of a multiplication operator𝑀
𝜓
and a composition operator

𝐶
𝜑
. That is, when 𝜑(𝑧) ≡ 𝑧, we obtain 𝑇

𝜓,𝜑
𝑓(𝑧) = 𝑀

𝜓
𝑓(𝑧) =

𝜓(𝑧)𝑓(𝑧) and when𝜓(𝑧) ≡ 1we obtain 𝑇
𝜓,𝜑
𝑓(𝑧) = 𝐶

𝜑
𝑓(𝑧) =

𝑓(𝜑(𝑧)).
It is interesting to provide a function theoretic char-

acterization when 𝜓 and 𝜑 induce a bounded or compact
weighted composition operator between some spaces of
holomorphic functions on 𝐵

𝑛
. Recently, this operator is well

studied by many papers; see, for example, [3–17] and their

references therein. In particular, Stević [18] gave some con-
ditions of weighted composition operators between mixed-
norm spaces and 𝐻∞

𝛼
spaces on the unit ball. Zhou and

Chen [19] discussed weighted composition operators from
𝐹(𝑝, 𝑞, 𝑠) to Bloch-type spaces on the unit ball. More recently,
the weighted composition operator from Bers-type space
to Bloch-type space on the unit ball was studied in [6].
Now in this paper, we will continue this line of research
and characterize the boundedness and compactness of the
weighted composition operator 𝑇

𝜓,𝜑
acting from mixed-

norm spaces 𝐻
𝑝,𝑞,𝛾

to Bloch-type space B
𝜇
on the unit ball

of 𝐶𝑛. The paper is organized as follows. In Section 2, we give
some lemmas. The main results are given in Section 3.

Throughout the remainder of this paper, 𝐶 will denote a
positive constant; the exact value of which will vary from one
appearance to the next. The notation 𝐴 ≍ 𝐵means that there
is a positive constant 𝐶 such that 𝐵/𝐶 ≤ 𝐴 ≤ 𝐶𝐵.

2. Some Lemmas

Lemma 1. Assume that 0 < 𝑝, 𝑞 < ∞, −1 < 𝛾 < ∞, and 𝑓 ∈
𝐻

𝑝,𝑞,𝛾
. Then there is a positive constant𝐶which is independent

of 𝑓 such that

𝑓 (𝑧)
 ≤ 𝐶

𝑓
𝐻
𝑝,𝑞,𝛾

(1 − |𝑧|
2

)
𝑛/𝑞+(𝛾+1)/𝑝

, (10)

R𝑓 (𝑧)
 ≤ 𝐶

𝑓
𝐻
𝑝,𝑞,𝛾

(1 − |𝑧|
2

)
𝑛/𝑞+1+(𝛾+1)/𝑝

. (11)

Proof. We first prove (10). By themonotonicity of the integral
means and [20, Theorem 1.12] we have that

𝑓


𝑝

𝐻
𝑝,𝑞,𝛾

≥ ∫

(3+|𝑧|)/4

(1+|𝑧|)/2

𝑀
𝑝

𝑞
(𝑓, 𝑟) (1 − 𝑟)

𝛾

𝑑𝑟

≥ 𝐶𝑀
𝑝

𝑞
(𝑓,
1 + |𝑧|

2
)∫

(3+|𝑧|)/4

(1+|𝑧|)/2

(1 − 𝑟)
𝛾

𝑑𝑟

≥ 𝐶𝑀
𝑝

𝑞
(𝑓,
1 + |𝑧|

2
) (1 − |𝑧|

2

)
𝛾+1

≥ 𝐶(1 − |𝑧|
2

)
𝛾+1+(𝑝𝑛)/𝑞𝑓 (𝑧)



𝑝

,

(12)

from which the desired result (10) follows.
Next we prove (11). By the monotonicity of the integral

means, using the well-known asymptotic formula (e.g., [21,
Theorem 2]), we obtain that

∫

1

0

𝑀
𝑝

𝑞
(𝑓, 𝑟) (1 − 𝑟)

𝛾

𝑑𝑟

≍
𝑓 (0)



𝑝

+ ∫

1

0

𝑀
𝑝

𝑞
(R𝑓, 𝑟) (1 − 𝑟)

𝛾+𝑝

𝑑𝑟.

(13)
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By [20, Theorem 1.12], it follows that

𝑓


𝑝

𝐻
𝑝,𝑞,𝛾

≥ ∫

1

(1+|𝑧|)/2

𝑀
𝑝

𝑞
(𝑓, 𝑟) (1 − 𝑟)

𝛾

𝑑𝑟

≥ 𝐶∫

1

(1+|𝑧|)/2

𝑀
𝑝

𝑞
(R𝑓, 𝑟) (1 − 𝑟)

𝛾+𝑝

𝑑𝑟

≥ 𝐶𝑀
𝑝

𝑞
(R𝑓,

1 + |𝑧|

2
)∫

1

(1+|𝑧|)/2

(1 − 𝑟)
𝛾+𝑝

𝑑𝑟

≥ 𝐶𝑀
𝑝

𝑞
(R𝑓,

1 + |𝑧|

2
) (1 − |𝑧|

2

)
𝛾+1+𝑝

≥ 𝐶(1 − |𝑧|
2

)
𝛾+1+𝑝+(𝑝𝑛)/𝑞R𝑓 (𝑧)



𝑝

.

(14)

Then the desired result (11) follows.This completes the proof.

From the above lemma, when 𝑓 ∈ 𝐻
𝑝,𝑞,𝛾

, then

𝑓 ∈B
𝑛/𝑞+1+(𝛾+1)/𝑝

,
𝑓
B𝑛/𝑞+(𝛾+1)/𝑝+1 ≤ 𝐶

𝑓
𝐻
𝑝,𝑞,𝛾

. (15)

For 𝑧 ∈ 𝐵
𝑛
, 𝑢 ∈ 𝐶𝑛, denote the Bergman metric of 𝐵

𝑛
by

𝐻
𝑧
(𝑢, 𝑢) =

(1 − |𝑧|
2

) |𝑢|
2

+ |⟨𝑧, 𝑢⟩|
2

(1 − |𝑧|
2

)
2

. (16)

Lemma 2. Let V(𝑟) = (1−𝑟2)𝑛/𝑞+(𝛾+1)/𝑝+1 and 𝜑 ∈ 𝑆(𝐵
𝑛
).Then

𝐺
V
𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧) ≤

𝐶𝐻
𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)

(1 −
𝜑 (𝑧)



2

)
2(𝑛/𝑞+(𝛾+1)/𝑝)

(17)

for all 𝑧 ∈ 𝐵
𝑛
, where 𝐽𝜑(𝑧) denotes the Jacobian matrix of 𝜑(𝑧)

and

𝐽𝜑 (𝑧) 𝑧 = (

𝑛

∑

𝑘=1

𝜕𝜑
1

𝜕𝑧
𝑘

𝑧
𝑘
, . . . ,

𝑛

∑

𝑘=1

𝜕𝜑
𝑛

𝜕𝑧
𝑘

𝑧
𝑘
)

𝑇

. (18)

Proof. Let 𝛼 = 𝑛/𝑞 + (𝛾 + 1)/𝑝. If 𝜑(𝑧) = 0, the desired result
is obvious. If 𝜑(𝑧) ̸= 0, from the definition of 𝜎V,

1

𝜎V (𝑟)
= 1 + ∫

𝑟

0

𝑑𝑡

(1 − 𝑡)
1/2

(1 − 𝑡2)
𝛼+1
≍

(1 − 𝑟
2

)
1/2

V (𝑟)
,

0 ≤ 𝑟 < 1.

(19)

Thus

𝐺
V
𝜑(𝑧)
(𝐽𝜑 (𝑧) , 𝐽𝜑 (𝑧) 𝑧)

=
1

V2 (𝜑 (𝑧)
)

× [
V2 (𝜑 (𝑧)

)

𝜎2V (
𝜑 (𝑧)

)

𝐽𝜑 (𝑧) 𝑧


2

+(1 −
V2 (𝜑 (𝑧)

)

𝜎2V (
𝜑 (𝑧)

)
)

⟨𝜑 (𝑧) , 𝐽𝜑 (𝑧) 𝑧⟩


2

𝜑 (𝑧)


2
]

=
1

V2 (𝜑 (𝑧)
)

× [
V2 (𝜑 (𝑧)

)

𝜎2V (
𝜑 (𝑧)

)
(
𝐽𝜑 (𝑧) 𝑧



2

−

⟨𝜑 (𝑧) , 𝐽𝜑 (𝑧) 𝑧⟩


2

𝜑 (𝑧)


2
)

+

⟨𝜑 (𝑧) , 𝐽𝜑 (𝑧) 𝑧⟩


2

𝜑 (𝑧)


2
]

≤
𝐶

V2 (𝜑 (𝑧)
)

× [(1 −
𝜑 (𝑧)



2

)(
𝐽𝜑 (𝑧) 𝑧



2

−

⟨𝜑 (𝑧) , 𝐽𝜑 (𝑧) 𝑧⟩


2

𝜑 (𝑧)


2
)

+

⟨𝜑 (𝑧) , 𝐽𝜑 (𝑧) 𝑧⟩


2

𝜑 (𝑧)


2
]

=
𝐶

V2 (𝜑 (𝑧)
)

× [(1 −
𝜑 (𝑧)



2

) (
𝐽𝜑 (𝑧) 𝑧



2

+
⟨𝜑 (𝑧) , 𝐽𝜑 (𝑧) 𝑧⟩



2

)]

=

𝐶(1 −
𝜑 (𝑧)



2

)
2

V2 (𝜑 (𝑧)
)
𝐻

𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)

=
𝐶𝐻

𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)

(1 −
𝜑 (𝑧)



2

)
2(𝑛/𝑞+(𝛾+1)/𝑝)

.

(20)

The desired result follows from (20). The proof is completed.

The proof of the next lemma is standard; see, for example,
[4, Proposition 3.11]. Hence, it is omitted.

Lemma 3. Assume that 0 < 𝑝, 𝑞 < ∞, −1 < 𝛾 < ∞,
𝜇 is a normal function, and 𝜑 ∈ 𝑆(𝐵

𝑛
), 𝜓 ∈ 𝐻(𝐵

𝑛
). Then

𝑇
𝜓,𝜑
: 𝐻

𝑝,𝑞,𝛾
→ B

𝜇
is compact if and only if for any bounded

sequence {𝑓
𝑘
}
𝑘∈N in 𝐻

𝑝,𝑞,𝛾
which converges to zero uniformly

on compact subsets of 𝐵
𝑛
as 𝑘 → ∞; then ‖𝑇

𝜓,𝜑
𝑓
𝑘
‖
B
𝜇

→ 0,
as 𝑘 → ∞.
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Lemma 4. For 𝛽 > −1 and𝑚 > 1 + 𝛽, one has

∫

1

0

(1 − 𝑟)
𝛽

(1 − 𝜌𝑟)
𝑚
𝑑𝑟 ≤ 𝐶(1 − 𝜌)

1+𝛽−𝑚

, 0 < 𝜌 < 1. (21)

Proof.

∫

1

0

(1 − 𝑟)
𝛽

(1 − 𝜌𝑟)
𝑚
𝑑𝑟 = ∫

1

0

(1 − 𝑟)
𝛽

(1 − 𝜌𝑟)
𝑚−𝛽

(1 − 𝜌𝑟)
𝛽

𝑑𝑟

≤ ∫

1

0

(1 − 𝑟)
𝛽

(1 − 𝜌𝑟)
𝑚−𝛽

(1 − 𝑟)
𝛽

𝑑𝑟

= ∫

1

0

1

(1 − 𝜌𝑟)
𝑚−𝛽

𝑑𝑟

=
1

𝑝 (1 + 𝛽 − 𝑚)
(1 − 𝜌)

1+𝛽−𝑚

= 𝐶(1 − 𝜌)
1+𝛽−𝑚

.

(22)

This completes the proof.

3. The Boundedness and Compactness of
𝑇
𝜓,𝜑
:𝐻

𝑝,𝑞,𝛾
→ B

𝜇

Theorem 5. Assume that 0 < 𝑝, 𝑞 < ∞, −1 < 𝛾 < ∞, 𝜇 is
a normal function, and 𝜑 ∈ 𝑆(𝐵

𝑛
), 𝜓 ∈ 𝐻(𝐵

𝑛
). Then 𝑇

𝜓,𝜑
:

𝐻
𝑝,𝑞,𝛾
→ B

𝜇
is bounded if and only if

𝑀
1
:= sup

𝑧∈𝐵
𝑛

𝜇 (𝑧)
R𝜓 (𝑧)



(1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

< ∞, (23)

𝑀
2
:= sup

𝑧∈𝐵
𝑛

𝜇 (𝑧)
𝜓 (𝑧)



(1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

×{𝐻
𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)}

1/2

< ∞.

(24)

Proof

Sufficiency. Assume that (23) and (24) hold. Then for any 𝑓 ∈
𝐻

𝑝,𝑞,𝛾
, if 𝐽𝜑(𝑧)𝑧 ̸= 0 for 𝑧 ∈ 𝐵

𝑛
, by Lemma 1 and Lemma 2, it

follows that


𝑇
𝜓,𝜑
𝑓(𝑧)
B
𝜇

= sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
𝑓) (𝑧)



≤ sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
R𝜓 (𝑧)


𝑓 (𝜑 (𝑧))



+ sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
𝜓 (𝑧)


R (𝑓 ∘ 𝜑) (𝑧)



≤ sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
R𝜓 (𝑧)


𝑓
𝐻
𝑝,𝑞,𝛾

(1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

+ sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
𝜓 (𝑧)




⟨∇𝑓 (𝜑 (𝑧)) , 𝐽𝜑 (𝑧) 𝑧⟩



≤ 𝑀
1

𝑓
𝐻
𝑝,𝑞,𝛾

+ sup
𝑧∈𝐵
𝑛

((𝐶𝜇 (𝑧)
𝜓 (𝑧)

 {𝐻𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)}

1/2

×

⟨∇𝑓 (𝜑 (𝑧)) , 𝐽𝜑 (𝑧) 𝑧⟩


)

× ((1 −
𝜑 (𝑧)



2

)
𝑞/𝑛+(𝛾+1)/𝑝

×√𝐺
V
𝜑(𝑧)
(𝐽𝜑(𝑧)𝑧, 𝐽𝜑(𝑧)𝑧))

−1

)

≤ 𝑀
1

𝑓
𝐻
𝑝,𝑞,𝛾

+ 𝐶𝑀
2

𝑓
B
(1−𝑟
2
)
𝑞/𝑛+(𝛾+1)/𝑝+1

≤ 𝐶
𝑓
𝐻
𝑝,𝑞,𝛾

.

(25)

When 𝐽𝜑(𝑧)𝑧 = 0 for 𝑧 ∈ 𝐵
𝑛
. From (23) we can easily obtain

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
(𝑓)) (𝑧)


≤ 𝑀

1

𝑓
𝐻
𝑝,𝑞,𝛾

. (26)

Combining (25) and (26), the boundedness of𝑇
𝜓,𝜑
: 𝐻

𝑝,𝑞,𝛾
→

B
𝜇
follows.

Necessity. Suppose that 𝑇
𝜓,𝜑
: 𝐻

𝑝,𝑞,𝛾
→ B

𝜇
is bounded.

Firstly, we assume that 𝑤 ∈ 𝐵
𝑛
and 𝜑(𝑤) = 𝑟

𝑤
𝑒
1
, where

𝑟
𝑤
= |𝜑(𝑤)| and 𝑒

1
= (1, 0, 0, . . . , 0).

If √(1 − 𝑟2
𝑤
)(|𝜂

2
|2 + ⋅ ⋅ ⋅ + |𝜂

𝑛
|2) ≤ |𝜂

1
|, where 𝐽𝜑(𝑤)𝑤 =

(𝜂
1
, . . . , 𝜂

𝑛
)
𝑇, choose the function

𝑓
𝑤
(𝑧) =

𝑧
1
− 𝑟

𝑤

1 − 𝑟
𝑤
𝑧
1

(
1 − 𝑟

2

𝑤

(1 − 𝑟
𝑤
𝑧
1
)
2
)

𝑛/𝑞+(𝛾+1)/𝑝

. (27)

By [20, Theorem 1.12] and Lemma 4 we have that

𝑀
𝑞
(𝑓

𝑤
, 𝑟) = (∫

𝑆

𝑓𝑤 (𝑟𝜁)


𝑞

𝑑𝜎 (𝜁))

1/𝑞

≤ (∫
𝑆

(
1 − 𝑟

2

𝑤

(1 − 𝑟
𝑤
𝑟𝜁

1
)
2
)

𝑛+𝑞(𝛾+1)/𝑝

𝑑𝜎 (𝜁))

1/𝑞

≤ 𝐶

(1 − 𝑟
2

𝑤
)
𝑛/𝑞+(𝛾+1)/𝑝

(1 − 𝑟𝑟2
𝑤
)
𝑛/𝑞+2(𝛾+1)/𝑝

,
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𝑓𝑤


𝑝

𝐻
𝑝,𝑞,𝛾

= ∫

1

0

𝑀
𝑝

𝑞
(𝑓

𝑤
, 𝑟) (1 − 𝑟)

𝛾

𝑑𝑟

≤ 𝐶(1 − 𝑟
2

𝑤
)
𝑝𝑛/𝑞+𝛾+1

∫

1

0

(1 − 𝑟)
𝛾

(1 − 𝑟𝑟2
𝑤
)
𝑝𝑛/𝑞+2(𝛾+1)

𝑑𝑟

≤ 𝐶(1 − 𝑟
2

𝑤
)
𝑝𝑛/𝑞+𝛾+1 1

(1 − 𝑟2
𝑤
)
𝑝𝑛/𝑞+𝛾+1

≤ 𝐶.

(28)
Then 𝑓

𝑤
∈ 𝐻

𝑝,𝑞,𝛾
and ‖𝑓

𝑤
‖
𝐻
𝑝,𝑞,𝛾

≤ 𝐶. Moreover, 𝑓
𝑤
(𝜑(𝑤)) = 0

and

∇𝑓
𝑤
(𝜑 (𝑤)) = (

1

(1 − 𝑟2
𝑤
)
𝑛/𝑞+(𝛾+1)/𝑝+1

, 0, . . . , 0) . (29)

Thus

𝑇
𝜓,𝜑
𝑓
𝑤

B
𝜇

≥ 𝜇 (𝑤)
R (𝜓𝑓 ∘ 𝜑) (𝑤)



≥ 𝜇 (𝑤)
𝜓 (𝑤)


R (𝑓 ∘ 𝜑) (𝑤)



− 𝜇 (𝑤)
R𝜓 (𝑤)


𝑓𝑤 (𝜑 (𝑤))



= 𝜇 (𝑤)
𝜓 (𝑤)




⟨∇𝑓

𝑤
(𝜑 (𝑤)) , 𝐽𝜑 (𝑤)𝑤⟩



=
𝜇 (𝑤)

𝜓 (𝑤)

𝜂1


(1 − 𝑟2
𝑤
)
𝑛/𝑞+(𝛾+1)/𝑝+1

.

(30)

By the definition of 𝐻
𝜑(𝑤)
(𝐽𝜑(𝑤)𝑤, 𝐽𝜑(𝑤)𝑤) and (30) it

follows that

𝜇 (𝑤)
𝜓 (𝑤)

 {𝐻𝜑(𝑤)
(𝐽𝜑 (𝑤)𝑤, 𝐽𝜑 (𝑤)𝑤)}

1/2

(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

= (𝜇 (𝑤)
𝜓 (𝑤)



×{(1 −
𝜑 (𝑤)



2

)
𝐽𝜑 (𝑤)𝑤



2

+
⟨𝜑 (𝑤) , 𝐽𝜑 (𝑤)𝑤⟩



2

}
1/2

)

× ((1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

)

−1

=

𝜇 (𝑤)
𝜓 (𝑤)

 {(1 − 𝑟
2

𝑤
) (
𝜂2


2

+ ⋅ ⋅ ⋅ +
𝜂𝑛


2

) +
𝜂1


2

}
1/2

(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

≤
√2𝜇 (𝑤)

𝜓 (𝑤)

𝜂1


(1 − 𝑟2
𝑤
)
𝑛/𝑞+(𝛾+1)/𝑝+1

≤ 𝐶

𝑇
𝜓,𝜑
𝑓
𝑤

B
𝜇

≤ 𝐶.

(31)

This shows that when √(1 − 𝑟2
𝑤
)(|𝜂

2
|2 + ⋅ ⋅ ⋅ + |𝜂

𝑛
|2) ≤ |𝜂

1
|,

(24) follows.
On the other hand, if√(1 − 𝑟2

𝑤
)(|𝜂

2
|2 + ⋅ ⋅ ⋅ + |𝜂

𝑛
|2) > |𝜂

1
|.

For 𝑗 = 2, . . . , 𝑛, let 𝜃
𝑗
= arg 𝜂

𝑗
and 𝑎

𝑗
= 𝑒

−𝑖𝜃
𝑗 , when 𝜂

𝑗
̸= 0;

otherwise 𝑎
𝑗
= 0 when 𝜂

𝑗
= 0. Take

𝑓
𝑤
(𝑧) =

𝑎
2
𝑧
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑧
𝑛

(1 − 𝑟
𝑤
𝑧
1
)
𝑛/𝑞+(𝛾+1)/𝑝+1

. (32)

By [20, Theorem 1.12] and Lemma 4 we obtain that

𝑀
𝑞
(𝑓

𝑤
, 𝑟) ≤ {∫

𝑆

(
𝜁2
 + ⋅ ⋅ ⋅ +

𝜁𝑛
)
𝑞

1 − 𝑟𝑤𝑟𝜁1


𝑛+𝑞(𝛾+1)/𝑝+𝑞

𝑑𝜎 (𝜁)}

1/𝑞

≤
{

{

{

∫
𝑆

𝐶(
𝜁2


2

+ ⋅ ⋅ ⋅ +
𝜁𝑛


2

)
𝑞/2

1 − 𝑟𝑤𝑟𝜁1


𝑛+𝑞(𝛾+1)/𝑝+𝑞

𝑑𝜎 (𝜁)
}

}

}

1/𝑞

=
{

{

{

∫
𝑆

𝐶(1 −
𝜁1


2

)
𝑞/2

1 − 𝑟𝑤𝑟𝜁1


𝑛+𝑞(𝛾+1)/𝑝+𝑞

𝑑𝜎(𝜁)
}

}

}

1/𝑞

≤ 𝐶{∫
𝑆

1

1 − 𝑟𝑤𝑟𝜁1


𝑛+𝑞(𝛾+1)/𝑝+𝑞/2

𝑑𝜎(𝜁)}

1/𝑞

≤
𝐶

(1 − 𝑟𝑟2
𝑤
)
(𝛾+1)/𝑝+1/2

.

𝑓𝑤


𝑝

𝐻
𝑝,𝑞,𝛾

= ∫

1

0

𝑀
𝑝

𝑞
(𝑓

𝑤
, 𝑟) (1 − 𝑟)

𝛾

𝑑𝑟

≤ 𝐶∫

1

0

(1 − 𝑟)
𝛾

(1 − 𝑟𝑟2
𝑤
)
𝛾+1+𝑝/2

𝑑𝑟

≤ 𝐶(1 − 𝑟
2

𝑤
)
𝑝/2

≤ 𝐶.

(33)

Hence 𝑓
𝑤
∈ 𝐻

𝑝,𝑞,𝛾
and ‖𝑓

𝑤
‖
𝐻
𝑝,𝑞,𝛾

≤ 𝐶. Moreover 𝑓
𝑤
(𝜑(𝑤)) =

0 and

∇𝑓
𝑤
(𝜑 (𝑤))

= (0,
𝑎
2

(1 − 𝑟2
𝑤
)
𝑛/𝑞+(𝛾+1)/𝑝+1

, . . . ,
𝑎
𝑛

(1 − 𝑟2
𝑤
)
𝑛/𝑞+(𝛾+1)/𝑝+1

) .

(34)

Similar to the proof of (30), we obtain that

𝜇 (𝑤)
𝜓 (𝑤)

 (
𝜂2
 + ⋅ ⋅ ⋅ +

𝜂𝑛
)

(1 − 𝑟2
𝑤
)
𝑛/𝑞+(𝛾+1)/𝑝+1

≤ 𝐶

𝑇
𝜓,𝜑
𝑓
𝑤

B
𝜇

. (35)

It follows from (35) that

𝜇 (𝑤)
𝜓 (𝑤)



(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

{𝐻
𝜑(𝑤)
(𝐽𝜑 (𝑤)𝑤, 𝐽𝜑 (𝑤)𝑤)}

1/2

= (𝜇 (𝑤)
𝜓 (𝑤)



× {(1 −
𝜑 (𝑤)



2

)
𝐽𝜑 (𝑤)𝑤



2

+
⟨𝜑 (𝑤) , 𝐽𝜑 (𝑤)𝑤⟩



2

}
1/2

)
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× ((1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

)

−1

=

𝜇 (𝑤)
𝜓 (𝑤)

 {(1 − 𝑟
2

𝑤
) (
𝜂2


2

+ ⋅ ⋅ ⋅ +
𝜂𝑛


2

) +
𝜂1


2

}
1/2

(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

≤

𝜇 (𝑤)
𝜓 (𝑤)

 {2 (1 − 𝑟
2

𝑤
) (
𝜂2


2

+ ⋅ ⋅ ⋅ +
𝜂𝑛


2

)}
1/2

(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

≤ 𝐶

𝜇 (𝑤)
𝜓 (𝑤)


√2 (1 − 𝑟2

𝑤
) (
𝜂2
 + ⋅ ⋅ ⋅ +

𝜂𝑛
)

(1 − 𝑟2
𝑤
)
𝑛/𝑞+(𝛾+1)/𝑝+1

≤

𝑇
𝜓,𝜑
𝑓
𝑤

B
𝜇

.

(36)

That is, when √(1 − 𝑟2
𝑤
)(|𝜂

2
|2 + ⋅ ⋅ ⋅ + |𝜂

𝑛
|2) > |𝜂

1
|, (24)

follows. Combining the above two cases, the desired result
(24) holds.

For the general situation, we can use some unitary
transform 𝑈

𝑤
to make 𝜑(𝑤) = 𝑟

𝑤
𝑒
1
𝑈
𝑤
and we can prove (11)

by taking the function 𝑔
𝑤
= 𝑓

𝑤
∘ 𝑈

−1

𝑤
. By the linearity of the

unitary transform 𝑈
𝑤
, |𝜁| = |𝑈−1

𝑤
𝜁|, and 𝑑𝜎 the normalized

rotation invariant measure on the boundary 𝑆, we get that

𝑔𝑤


𝑝

𝐻
𝑝,𝑞,𝛾

= ∫

1

0

(∫
𝑆

𝑔𝑤 (𝑟𝜁)


𝑞

𝑑𝜎 (𝜁))

𝑝/𝑞

(1 − 𝑟)
𝛾

𝑑𝑟

= ∫

1

0

(∫
𝑆


𝑓
𝑤
(𝑈

−1

𝑤
(𝑟𝜁))



𝑞

𝑑𝜎 (𝜁))

𝑝/𝑞

(1 − 𝑟)
𝛾

𝑑𝑟

= ∫

1

0

(∫
𝑆


𝑓
𝑤
(𝑟𝑈

−1

𝑤
(𝜁))


𝑞

𝑑𝜎 (𝜁))

𝑝/𝑞

(1 − 𝑟)
𝛾

𝑑𝑟

= ∫

1

0

(∫
𝑆

𝑓𝑤 (𝑟𝜂)


𝑞

𝑑𝜎 (𝜂))

𝑝/𝑞

(1 − 𝑟)
𝛾

𝑑𝑟

=
𝑓𝑤


𝑝

𝐻
𝑝,𝑞,𝛾

.

(37)

Next we prove (23). Set the function

ℎ
𝑤
(𝑧) =

(1 − |𝑤|
2

)
𝑏−(𝛾+1)/𝑝

(1 − ⟨𝑧, 𝑤⟩)
𝑛/𝑞+𝑏

(38)

for fixed 𝑤 ∈ 𝐵
𝑛
and 𝑏 > (𝛾 + 1)/𝑝. Then,

𝑀
𝑞
(ℎ

𝑤
(𝑧) , 𝑟) = (∫

𝜕𝐵
𝑛

ℎ𝑤 (𝑟𝜁)


𝑞

𝑑𝜎 (𝜁))

1/𝑞

= (∫
𝜕𝐵
𝑛

(1 − |𝑤|
2

)
(𝑏−(𝛾+1)/𝑝)𝑞

1 − ⟨𝑟𝜁, 𝑤⟩


(𝑛/𝑞+𝑏)𝑞

𝑑𝜎 (𝜁))

1/𝑞

.

(39)

By [20, Theorem 1.12], it follows that

𝑀
𝑝
(ℎ

𝑤
(𝑧) , 𝑟) ≤

(1 − |𝑤|
2

)
𝑏−(𝛾+1)/𝑝

(1 − 𝑟|𝑤|
2

)
𝑏

. (40)

Applying Lemma 4 we have that

ℎ𝑤


𝑞

𝐻
𝑝,𝑞,𝛾

= ∫

1

0

𝑀
𝑝

𝑞
(ℎ

𝑤
, 𝑟) (1 − 𝑟)

𝛾

𝑑𝑟

≤ 𝐶∫

1

0

(1 − |𝑤|
2

)
𝑝𝑏−(𝛾+1)

(1 − 𝑟|𝑤|
2

)
𝑝𝑏
(1 − 𝑟)

𝛾

𝑑𝑟

= 𝐶(1 − |𝑤|
2

)
𝑝𝑏−(𝛾+1)

∫

1

0

(1 − 𝑟)
𝛾

(1 − 𝑟|𝑤|
2

)
𝑝𝑏

𝑑𝑟

≤ 𝐶(1 − |𝑤|
2

)
𝑝𝑏−(𝛾+1)

(1 − |𝑤|
2

)
(𝛾+1)−𝑝𝑏

= 𝐶.

(41)

Therefore ℎ
𝑤
∈ 𝐻

𝑝,𝑞,𝛾
, and sup

𝑤∈𝐵
𝑛

‖ℎ
𝑤
‖
𝐻
𝑝,𝑞,𝛾

≤ 𝐶. Besides,

ℎ
𝜑(𝑤)
(𝜑 (𝑤)) = (

1

1 −
𝜑 (𝑤)



2
)

𝑛/𝑞+(𝛾+1)/𝑝

, (42)

∇ℎ
𝜑(𝑤)
(𝜑 (𝑤))

= (
𝑛

𝑞
+ 𝑏)(

𝜑
1
(𝑤)

(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

, . . . ,

𝜑
𝑛
(𝑤)

(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

) .

(43)

Therefore,

∞ >

𝑇
𝜓,𝜑
(ℎ

𝜑(𝑤)
)
B
𝜇

≥ 𝜇 (𝑤)

R (𝜓ℎ

𝜑(𝑤)
∘ 𝜑) (𝑤)



= 𝜇 (𝑤)

R𝜓 (𝑤) ℎ

𝜑(𝑤)
(𝜑 (𝑤)) + 𝜓 (𝑤)R (ℎ

𝜑(𝑤)
∘ 𝜑) (𝑤)



≥
𝜇 (𝑤)

R𝜓 (𝑤)


(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

− 𝜇 (𝑤)
𝜓 (𝑤)




R (ℎ

𝜑(𝑤)
∘ 𝜑) (𝑤)


.

(44)



Abstract and Applied Analysis 7

It follows from (43) and (24) that

𝜇 (𝑤)
𝜓 (𝑤)




R (ℎ

𝜑(𝑤)
∘ 𝜑) (𝑤)



= 𝜇 (𝑤)
𝜓 (𝑤)




⟨∇ℎ

𝜑(𝑤)
(𝜑 (𝑤)) , 𝐽𝜑 (𝑤)𝑤⟩



= (
𝑛

𝑞
+ 𝑏)

𝜇 (𝑤)
𝜓 (𝑤)


⟨𝜑 (𝑤) , 𝐽𝜑 (𝑤)𝑤⟩



(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

≤ (
𝑛

𝑞
+ 𝑏)

𝜇 (𝑤)
𝜓 (𝑤)



(1 −
𝜑 (𝑤)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

× {𝐻
𝜑(𝑤)
(𝐽𝜑 (𝑤)𝑤, 𝐽𝜑 (𝑤)𝑤)}

1/2

≤ 𝐶𝑀
2
< ∞.

(45)

Combining (44) and (45), the desired result (23) holds. This
completes the proof.

Theorem 6. Assume that 0 < 𝑝, 𝑞 < ∞, −1 < 𝛾 < ∞, 𝜇 is
a normal function, and 𝜑 ∈ 𝑆(𝐵

𝑛
), 𝜓 ∈ 𝐻(𝐵

𝑛
). Then 𝑇

𝜓,𝜑
:

𝐻
𝑝,𝑞,𝛾

→ B
𝜇
is compact if and only if the followings are all

satisfied:

(a) 𝜓 ∈B
𝜇
and 𝜓𝜑

𝑙
∈B

𝜇
for 𝑙 ∈ {1, . . . , 𝑛};

(b)

lim
|𝜑(𝑧)|→1

𝜇 (𝑧)
R𝜓 (𝑧)



(1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

= 0; (46)

(c)

lim
|𝜑(𝑧)|→1

𝜇 (𝑧)
𝜓 (𝑧)



(1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

× {𝐻
𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)}

1/2

= 0.

(47)

Proof

Sufficiency. Suppose that (a), (b), and (c) hold. Then for any
𝜀 > 0, there is 𝛿 > 0, such that

𝜇 (𝑧)
R𝜓 (𝑧)



(1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

< 𝜀,

𝜇 (𝑧)
𝜓 (𝑧)



(1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

{𝐻
𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)}

1/2

< 𝜀,

(48)

when |𝜑(𝑧)| > 𝛿.
Let {𝑓

𝑘
}
𝑘∈N be any sequence which converges to 0 uni-

formly on compact subsets of 𝐵
𝑛
satisfying ‖𝑓

𝑘
‖
𝐻
𝑝,𝑞,𝛾

≤ 1.

Then 𝑓
𝑘
andR𝑓

𝑘
converge to 0 uniformly on 𝐾 = {𝑤 ∈ 𝐵

𝑛
:

|𝑤| ≤ 𝛿}. Hence

sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
𝑓
𝑘
) (𝑧)


= sup
𝜑(𝑧)∈𝐾

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
𝑓
𝑘
) (𝑧)


+ sup
𝜑(𝑧)∈𝐵

𝑛
\𝐾

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
𝑓
𝑘
) (𝑧)

.

(49)

If 𝜑(𝑧) ∈ 𝐵
𝑛
\ 𝐾 and 𝐽𝜑(𝑧)𝑧 ̸= 0, by Lemma 1 and

Lemma 2, we have

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
𝑓
𝑘
) (𝑧)


≤ 𝜇 (𝑧)
𝜓 (𝑧)


R (𝑓𝑘 ∘ 𝜑) (𝑧)

 + 𝜇 (𝑧)
R𝜓 (𝑧)


𝑓𝑘 (𝜑 (𝑧))



≤ (𝐶𝜇 (𝑧)
𝜓 (𝑧)

 {𝐻𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)}

1/2

×

⟨∇𝑓

𝑘
(𝜑 (𝑧)) , 𝐽𝜑 (𝑧) 𝑧⟩


)

× ((1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

√𝐺
V
𝜑(𝑧)
(𝐽𝜑(𝑧)𝑧, 𝐽𝜑(𝑧)𝑧))

−1

+ 𝜀
𝑓𝑘
𝐻
𝑝,𝑞,𝛾

≤ 𝐶𝜀
𝑓𝑘
B
(1−𝑟
2
)
𝑛/𝑞+(𝛾+1)/𝑝+1

+ 𝜀
𝑓𝑘
𝐻
𝑝,𝑞,𝛾

≤ 𝐶𝜀.

(50)

When 𝐽𝜑(𝑧)𝑧 = 0,

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
𝑓
𝑘
) (𝑧)

≤ 𝜀
𝑓𝑘
𝐻
𝑝,𝑞,𝛾

≤ 𝜀. (51)

Combining (50) and (51) we obtain that

sup
𝜑(𝑧)∈𝐵

𝑛
\𝐾

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
𝑓
𝑘
) (𝑧)

≤ 𝐶𝜀. (52)

If 𝜑(𝑧) ∈ 𝐾, by (a), we have that

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
𝑓
𝑘
) (𝑧)


≤ 𝜇 (𝑧)
𝜓 (𝑧)


R (𝑓𝑘 ∘ 𝜑) (𝑧)

 + 𝜇 (𝑧)
R𝜓 (𝑧)


𝑓𝑘 (𝜑 (𝑧))



≤ 𝜇 (𝑧)
𝜓 (𝑧)




⟨∇𝑓

𝑘
(𝜑 (𝑧)) , 𝐽𝜑 (𝑧) 𝑧⟩



+
𝑓𝑘 (𝜑 (𝑧))


𝜓
B
𝜇

≤
∇𝑓𝑘 (𝜑 (𝑧))



𝑛

∑

𝑙=1

(𝜇 (𝑧)
𝜓 (𝑧)


R𝜑𝑙 (𝑧)

)

+
𝑓𝑘 (𝜑 (𝑧))


𝜓
B
𝜇
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≤
∇𝑓𝑘 (𝜑 (𝑧))



×

𝑛

∑

𝑙=1

(𝜇 (𝑧)
𝜓 (𝑧)


R𝜑𝑙 (𝑧)

 − 𝜇 (𝑧)
𝜑𝑙 (𝑧)


R𝜓 (𝑧)



+𝜇 (𝑧)
R𝜓 (𝑧)

) +
𝑓𝑘 (𝜑 (𝑧))


𝜓
B
𝜇

≤
∇𝑓𝑘 (𝜑 (𝑧))



×

𝑛

∑

𝑙=1

(𝜇 (𝑧)
𝜓 (𝑧)R𝜑𝑙 (𝑧) +R𝜓 (𝑧) 𝜑𝑙 (𝑧)



+𝜇 (𝑧)
R𝜓 (𝑧)

) +
𝑓𝑘 (𝜑 (𝑧))


𝜓
B
𝜇

≤
∇𝑓𝑘 (𝜑 (𝑧))



𝑛

∑

𝑙=1

(
𝜓𝜑𝑙
B
𝜇

+
𝜓
B
𝜇

)

+
𝑓𝑘 (𝜑 (𝑧))


𝜓
B
𝜇

→ 0, 𝑘 → ∞.

(53)

Combining (49), (52), (53), and Lemma 4, it follows that the
𝑇
𝜓,𝜑
: 𝐻

𝑝,𝑞,𝛾
→ B

𝜇
is compact.

Necessity. Assume that 𝑇
𝜓,𝜑
: 𝐻

𝑝,𝑞,𝛾
→ B

𝜇
is compact. It is

obvious that 𝑇
𝜓,𝜑
: 𝐻

𝑝,𝑞,𝛾
→ B

𝜇
is bounded. Then taking

𝑓(𝑧) = 1 ∈ 𝐻
𝑝,𝑞,𝛾

and by the boundedness of 𝑇
𝜓,𝜑
: 𝐻

𝑝,𝑞,𝛾
→

B
𝜇
, it follows that

𝑇
𝜓,𝜑
𝑓 (𝑧)

B
𝜇

= sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)

R (𝑇

𝜓,𝜑
𝑓) (𝑧)



= sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
R𝜓 (𝑧) 𝑓 (𝜑 (𝑧)) + 𝜓 (𝑧)R (𝑓 ∘ 𝜑) (𝑧)



= sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
R𝜓 (𝑧)

 < ∞.

(54)

This shows that 𝜓 ∈B
𝜇
.

On the other hand, for 𝑙 ∈ {1, . . . , 𝑛}, take the function
𝑓(𝑧) = 𝑧

𝑙
∈ 𝐻

𝑝,𝑞,𝛾
. By the boundedness of 𝑇

𝜓,𝜑
: 𝐻

𝑝,𝑞,𝛾
→

B
𝜇
, we get that

𝑇
𝜓,𝜑
𝑓 (𝑧)

B
𝜇

= sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
R𝜓 (𝑧) 𝑓 (𝜑 (𝑧)) + 𝜓 (𝑧)R (𝑓 ∘ 𝜑) (𝑧)



= sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
R𝜓 (𝑧) 𝜑𝑙 (𝑧) + 𝜓 (𝑧)R𝜑𝑙 (𝑧)



= sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
R (𝜓𝜑𝑙) (𝑧)

 < ∞.

(55)

That is, 𝜓𝜑
𝑙
∈B

𝜇
for 𝑙 ∈ {1, . . . , 𝑛}. Hence we obtain (a).

Next we prove (b) and (c). Let {𝑧
𝑘
}
𝑘∈N be a sequence

in 𝐵
𝑛
such that |𝜑(𝑧

𝑘
)| → 1 as 𝑘 → ∞. We can still

suppose 𝜑(𝑧
𝑘
) = 𝑟

𝑘
𝑒
1
, where 𝑟

𝑘
= |𝜑(𝑧

𝑘
)| and 𝑒

1
is the vector

(1, 0, 0, . . . , 0). That is, |𝑟
𝑘
| → 1, 𝑘 → ∞.

If √(1 − 𝑟2
𝑘
)(|𝜂

2
|2 + ⋅ ⋅ ⋅ + |𝜂

𝑛
|2) ≤ |𝜂

1
|, where 𝐽𝜑(𝑧

𝑘
)𝑧

𝑘
=

(𝜂
1
, . . . , 𝜂

𝑛
)
𝑇. Let

𝑓
𝑘
(𝑧) =

𝑧
1
− 𝑟

𝑘

1 − 𝑟
𝑘
𝑧
1

{
1 − 𝑟

2

𝑘

(1 − 𝑟
𝑘
𝑧
1
)
2
}

𝑛/𝑞+(𝛾+1)/𝑝

. (56)

FromTheorem 5we know that𝑓
𝑘
∈ 𝐻

𝑝,𝑞,𝛾
, and we notice that

𝑓
𝑘
converges to 0 uniformly on compact subsets of 𝐵

𝑛
when

𝑘 → ∞. By Lemma 3 we have lim
𝑘→∞

‖𝑇
𝜓,𝜑
𝑓
𝑘
(𝑧)‖

B
𝜇

= 0.
Then by a similar proof of (30) in Theorem 5 we have

𝜇 (𝑧
𝑘
)
𝜓 (𝑧𝑘)


𝜂1


(1 − 𝑟
2

𝑘
)
𝑛/𝑞+(𝛾+1)/𝑝+1

≤

𝑇
𝜓,𝜑
𝑓
𝑘
(𝑧)
B
𝜇

→ 0, 𝑘 → ∞.

(57)

And similar to the proofs of (31) and (57) we get that

𝜇 (𝑧
𝑘
)
𝜓 (𝑧𝑘)



(1 −
𝜑 (𝑧𝑘)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

{𝐻
𝜑(𝑧
𝑘
)
(𝐽𝜑 (𝑧

𝑘
) 𝑧

𝑘
, 𝐽𝜑 (𝑧

𝑘
) 𝑧

𝑘
)}

1/2

≤
√2𝜇 (𝑧

𝑘
)
𝜓 (𝑧𝑘)


𝜂1


(1 − 𝑟
2

𝑘
)
𝑛/𝑞+(𝛾+1)/𝑝+1

→ 0, 𝑘 → ∞.

(58)

On the other hand, we consider the case of
√(1 − 𝑟

2

𝑘
)(|𝜂

2
|2 + ⋅ ⋅ ⋅ + |𝜂

𝑛
|2) > |𝜂

1
|. For 𝑗 = 2, . . . , 𝑛, let

𝜃
𝑗
= arg 𝜂

𝑗
and 𝑎

𝑗
= 𝑒

−𝑖𝜃
𝑗 , when 𝜂

𝑗
̸= 0; otherwise 𝑎

𝑗
= 0

when 𝜂
𝑗
= 0. Take

𝑓
𝑘
(𝑧) =

(𝑎
2
𝑧
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑧
𝑛
) (1 − 𝑟

2

𝑘
)

(1 − 𝑟
𝑘
𝑧
1
)
𝑛/𝑞+(𝛾+1)/𝑝+2

. (59)

Then 𝑓
𝑘
∈ 𝐻

𝑝,𝑞,𝛾
, 𝑘 ∈ N, and 𝑓

𝑘
converges to 0 uniformly on

compact subsets of 𝐵
𝑛
when 𝑘 → ∞. By Lemma 3 we have

lim
𝑘→∞

‖𝑇
𝜓,𝜑
𝑓
𝑘
(𝑧)‖

B
𝜇

= 0. Notice that 𝑓
𝑘
(𝜑(𝑧

𝑘
)) = 0 and

∇𝑓
𝑤
(𝜑 (𝑧

𝑘
))

= (0,
𝑎
2

(1 − 𝑟
2

𝑘
)
𝑛/𝑞+(𝛾+1)/𝑝+1

, . . . ,
𝑎
𝑛

(1 − 𝑟
2

𝑘
)
𝑛/𝑞+(𝛾+1)/𝑝+1

) .

(60)

By a similar proof of (30), it follows that

𝜇 (𝑧
𝑘
)
𝜓 (𝑧𝑘)

 (
𝜂2
 + ⋅ ⋅ ⋅ +

𝜂𝑛
)

(1 − 𝑟
2

𝑘
)
𝛼+1

≤

𝑇
𝜓,𝜑
𝑓
𝑘

B
𝜇

→ 0,

𝑘 → ∞.

(61)
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And similar to the proofs of (31) and (61), we obtain

𝜇 (𝑧
𝑘
)
𝜓 (𝑧𝑘)



(1 −
𝜑 (𝑧𝑘)



2

)
𝛼
{𝐻

𝜑(𝑧
𝑘
)
(𝐽𝜑 (𝑧

𝑘
) 𝑧

𝑘
, 𝐽𝜑 (𝑧

𝑘
) 𝑧

𝑘
)}

1/2

≤ 𝐶

𝜇 (𝑧
𝑘
)
𝜓 (𝑧𝑘)


√2 (1 − 𝑟

2

𝑘
) (
𝜂2
 + ⋅ ⋅ ⋅ +

𝜂𝑛
)

(1 − 𝑟
2

𝑘
)
𝑛/𝑞+(𝛾+1)/𝑝+1

→ 0

𝑘 → ∞.

(62)

Combining (58) and (62), (47) holds under the two cases.
For the general situation, if there exists 𝜑(𝑧

𝑘
) such that

𝜑(𝑧
𝑘
) ̸= |𝜑(𝑧

𝑘
)|𝑒

1
, then there is a unitary transformation 𝑈

𝑘

such that 𝜑(𝑧
𝑘
) = 𝑟

𝑘
𝑒
1
𝑈
𝑘
, 𝑘 ∈ {1, 2, . . . , 𝑛}. And we can prove

(47) by taking the function sequence 𝑔
𝑘
= 𝑓

𝑘
∘ 𝑈

−1

𝑘
and the

details are omitted.
Next we prove (46). Let {𝑧

𝑘
}
𝑘∈N be a sequence in 𝐵

𝑛
such

that |𝜑(𝑧
𝑘
)| → 1 as 𝑘 → ∞. Choose

ℎ
𝑘
(𝑧) =

(1 −
𝜑 (𝑧𝑘)



2

)
𝑏−(𝛾+1)/𝑝

(1 − ⟨𝑧, 𝜑 (𝑧
𝑘
)⟩)

𝑛/𝑞+𝑏

. (63)

Then ℎ
𝑘
∈ 𝐻

𝑝,𝑞,𝛾
, 𝑘 ∈ N, and sup

𝑘∈N‖ℎ𝑘‖𝐻
𝑝,𝑞,𝛾

≤ 𝐶. It is obvi-
ous that ℎ

𝑘
→ 0 uniformly on compact subsets of 𝐵

𝑛
as 𝑘 →

∞. By Lemma 3 we have that lim
𝑘→∞

‖𝑇
𝜓,𝜑
(ℎ

𝑘
)(𝑧)‖

B
𝜇

= 0.
Then by the similar proof of (44) we obtain


𝑇
𝜓,𝜑
(ℎ

𝑘
) (𝑧)
B
𝜇

≥
𝜇 (𝑧

𝑘
)
R𝜓 (𝑧𝑘)



(1 −
𝜑 (𝑧𝑘)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

− 𝜇 (𝑧
𝑘
)
𝜓 (𝑧𝑘)


R (ℎ𝑘 ∘ 𝜑) (𝑧𝑘)

 .

(64)

From the similar proof of (45) it follows that

𝜇 (𝑧
𝑘
)
𝜓 (𝑧𝑘)


R (ℎ𝑘 ∘ 𝜑) (𝑧𝑘)



≤ (
𝑛

𝑞
+ 𝑏)

𝜇 (𝑧
𝑘
)
𝜓 (𝑧𝑘)



(1 −
𝜑 (𝑧𝑘)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

× {𝐻
𝜑(𝑧
𝑘
)
(𝐽𝜑 (𝑧

𝑘
) 𝑧

𝑘
, 𝐽𝜑 (𝑧

𝑘
) 𝑧

𝑘
)}

1/2

→ 0,

𝑘 → ∞.

(65)

Combining (64) and (65) we obtain (46). This completes the
proof.

Corollary 7. Assume that 0 < 𝑝, 𝑞 < ∞, −1 < 𝛾 < ∞, 𝜇 is
a normal function, and 𝜑 ∈ 𝑆(𝐵

𝑛
). Then 𝐶

𝜑
: 𝐻

𝑝,𝑞,𝛾
→ B

𝜇
is

bounded if and only if

sup
𝑧∈𝐵
𝑛

𝜇 (𝑧) {𝐻
𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)}

1/2

(1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

< ∞. (66)

Corollary 8. Assume that 0 < 𝑝, 𝑞 < ∞, −1 < 𝛾 < ∞, 𝜇 is
a normal function, and 𝜑 ∈ 𝑆(𝐵

𝑛
). Then 𝐶

𝜑
: 𝐻

𝑝,𝑞,𝛾
→ B

𝜇
is

compact if and only if

lim
|𝜑(𝑧)|→1

𝜇 (𝑧) {𝐻
𝜑(𝑧)
(𝐽𝜑 (𝑧) 𝑧, 𝐽𝜑 (𝑧) 𝑧)}

1/2

(1 −
𝜑 (𝑧)



2

)
𝑛/𝑞+(𝛾+1)/𝑝

= 0. (67)

And 𝜑
𝑙
∈B

𝜇
for 𝑙 ∈ {1, . . . , 𝑛}.

Corollary 9. Assume that 0 < 𝑝, 𝑞 < ∞, −1 < 𝛾 < ∞, 𝜇 is a
normal function, and 𝜓 ∈ 𝐻(𝐵

𝑛
). Then𝑀

𝜓
: 𝐻

𝑝,𝑞,𝛾
→ B

𝜇
is

bounded if and only if

sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
R𝜓 (𝑧)



(1 − |𝑧|
2

)
𝑛/𝑞+(𝛾+1)/𝑝

< ∞,

sup
𝑧∈𝐵
𝑛

𝜇 (𝑧)
𝜓 (𝑧)



(1 − |𝑧|
2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

< ∞.

(68)

Corollary 10. Assume that 0 < 𝑝, 𝑞 < ∞, −1 < 𝛾 < ∞, 𝜇 is
a normal function, and 𝜓 ∈ 𝐻(𝐵

𝑛
). Then𝑀

𝜓
: 𝐻

𝑝,𝑞,𝛾
→ B

𝜇

is compact if and only if the following are all satisfied:

(a) 𝜓 ∈B
𝜇
and 𝜓𝑧

𝑙
∈B

𝜇
for any 𝑙 ∈ {1, . . . , 𝑛};

(b)

lim
|𝑧|→1

𝜇 (𝑧)
R𝜓 (𝑧)



(1 − |𝑧|
2

)
𝑛/𝑞+(𝛾+1)/𝑝

= 0; (69)

(c)

lim
|𝑧|→1

𝜇 (𝑧)
𝜓 (𝑧)



(1 − |𝑧|
2

)
𝑛/𝑞+(𝛾+1)/𝑝+1

= 0. (70)
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