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Standard application of similarity method to find solutions of PDEs mostly results in reduction to ODEs which are not easily
integrable in terms of elementary or tabulated functions. Such situations usually demand solving reduced ODEs numerically.
However, there are no systematic procedures available to utilize these numerical solutions of reduced ODE to obtain the solution
of original PDE. A practical and tractable approach is proposed to deal with such situations and is applied to obtain approximate
similarity solutions to different cases of an initial-boundary value problem of unsteady gas flow through a semi-infinite porous
medium.

1. Introduction

Themathematical modeling of most of the physical processes
in fields like diffusion, chemical kinetics, fluid mechanics,
wave mechanics, and general transport problems is governed
by such nonlinear PDEs whose analytic solutions are hard to
find.Therefore, the approach of investigating nonlinear PDEs
via reduction toODEs becomes important and has been quite
fruitful in analysis of many physical problems. The reader is
referred to [1] for an introduction to different types of such
reduction approaches and to have an idea about the advances
made in the fields of nonlinear diffusion, fluidmechanics, and
wave propagation from the utilization of reduction-to-ODE
approach.

Lie symmetry method provides a powerful general tech-
nique for analyzing nonlinear PDEs and reducing them to
ODEs. PDEs modeling physical processes naturally inherit
symmetries from the underlying physical system. Lie sym-
metry method takes advantage of these natural symmetries
in a PDE and provides similarity variables that lead to the
reduction to ODEs; compare, for example, [2–4]. A large

amount of the literature about the Lie symmetry theory, its
applications, and its extensions is available; see, for example,
[1, 5–12].

Although there have been some notable contributions
in the applications of similarity method to boundary value
problems of PDEs (cf. [1, 12–15]), in general the method
has not been utilized in a great deal mainly because of a
restriction explained below. The success of the method relies
heavily on the success in solving the reduced ODE. Only
in few cases, the reduced ODE is integrable in terms of
elementary or tabulated functions, but in most cases it is not
a simple matter and it is suggested to resort to numerical
methods to solve the reducedODE.This retreat from analytic
calculations to numerical computations is not uncommon,
but it has not proved practical due to the lack of practical
and systematic procedures to utilize the numerical solution
of reduced ODE to obtain the solution of original PDE. The
aim of this work is to provide one practical way of dealing
with such situations.

As a test problem to demonstrate our method, we con-
sider a physical problem arising in the transient flow of gas
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through a semi-infinite porous medium. In the investigation
of the unsteady flow of gas through a semi-infinite porous
medium [16–19] initially filled with gas at a uniform pressure
𝑝
0

> 0 at time 𝑡 = 0, the pressure at the outflow face is
suddenly reduced from 𝑝

0
to 𝑝
1
≥ 0 (𝑝

1
= 0 is the case of

diffusion into a vacuum) and is thereafter maintained at this
lower pressure.The studies in [18, 20] show that the unsteady
flow of gas in a porous medium is modeled by a nonlinear
partial differential equation.

The nonlinear partial differential equation that describes
the unsteady flow of gas through a semi-infinite porous
medium has been derived by Muskat [20] in the form

∇
2
(𝑝
2
) = 2(

𝜙𝜇

𝑘
)

𝜕𝑝

𝜕𝑡
, (1)

where 𝑝 is the pressure within porous medium, 𝜙 is the
porosity, 𝜇 is the viscosity, and 𝑘 is the permeability. In the
one-dimensional medium extending from 𝑥 = 0 to 𝑥 = ∞,
this reduces to

𝜕

𝜕𝑥
(𝑝

𝜕𝑝

𝜕𝑥
) = 𝐴

𝜕𝑝

𝜕𝑡
, (2)

with the boundary conditions

𝑝 (𝑥, 0) = 𝑝
0
, 0 < 𝑥 < ∞

𝑝 (0, 𝑡) = 𝑝
1
(<𝑝
0
) , 0 ≤ 𝑡 < ∞,

(3)

where the constant𝐴 = 𝜙𝜇/𝑘 is given by the properties of the
medium.

In the next section we provide details about the method
and its application to obtain approximate similarity solutions
of BVPs of the above form.

2. The Method and Its Implementation

Themain idea of the method rests on finding an approxima-
tion of solution of reduced ODE in the form of a function.
This has clear advantages over the option of working only
with numerical solution of reduced ODE. In the first place, it
can be used to generate approximate solution of original PDE
via the similarity variables. Secondly, having the approximate
solution of PDE in function form can be more useful than
numerical solution as it displays the parameters and variables
of the problem, so it requires less processing time and can be
used for applications in real time. A detailed description of
the method is provided below.

To explain and illustrate our method we consider the
IBVP

𝜕

𝜕𝑥
(𝑝

𝜕𝑝

𝜕𝑥
) = 𝐴

𝜕𝑝

𝜕𝑡
, (4)

with

𝑝 (𝑥, 0) = 𝑝
0
, 𝑝 (0, 𝑡) = 𝑝

1
(<𝑝
0
) , 𝑝 (∞, 𝑡) = 𝑝

0
.

(5)

Without loss of generality we can assume 𝑝
0

= 1 because
the change of variable 𝑝(𝑥, 𝑡) = 𝑝(𝑥, 𝑡)/𝑝

0
leads to a similar

problem with 𝑝(𝑥, 0) = 1. So the IBVP under study here is

𝜕

𝜕𝑥
(𝑝

𝜕𝑝

𝜕𝑥
) = 𝐴

𝜕𝑝

𝜕𝑡
, (6)

with initial and boundary conditions

𝑝 (𝑥, 0) = 1, 0 < 𝑥 < ∞,

𝑝 (0, 𝑡) = 𝑝
1
(< 1) , 0 ≤ 𝑡 < ∞,

𝑝 (∞, 𝑡) = 1, 0 < 𝑡 < ∞.

(7)

Step 1 (Reduction of IVBP to a BVP of ODE). The similarity
transformations [16, 17]

𝑧 =
𝑥

√𝑡
(
𝐴

4
)

1/2

, 𝑤 (𝑧) = 𝛼
−1

(1 − (𝑝 (𝑥, 𝑡))
2
) , (8)

with 𝛼 = 1 − 𝑝
2

1
, reduce the above IBVP (6)-(7) to BVP of

ODE as follows:

𝑤
󸀠󸀠
+

2𝑧

√1 − 𝛼𝑤
𝑤
󸀠
= 0,

𝑤 (𝑧 = 0) = 1, 𝑤 (𝑧 󳨀→ ∞) = 0.

(9)

The aim of the remaining steps is to find an approximate
solution 𝑊Approx(𝑧) of BVP (9) in function form and then
use the similarity transformations (8) to obtain approximate
𝑝(𝑥, 𝑡) of PDE problem (6)-(7).

Step 2. Find numerical solution𝑊Num of BVP (9) and use this
as a benchmark for obtaining function form 𝑊Approx of the
solution.

Step 3 (Obtain an initial guess for 𝑊Approx). This is a crucial
step and in our case we use the lower solution of BVP (9),
obtained in [17], as our initial guess. As shown in numerical
simulations below, lower solution provides a good initial
guess that leads to an accurate enough approximate solution
in few iterations. So the initial guess for approximate solution
of BVP (9) for all the cases below is taken as follows, see [17,
Example 2.1]:

initial approximation = 𝑊Lower = 1 − erf ( 𝑧

√𝑝
1

) , (10)

where erf denotes the error function.
As an alternate, a solution obtained by homotopy analysis

method can also be used as initial guess.

Step 4. Improve the initial approximation to get 𝑊Approx up
to the desired level of accuracy.

Here we adopt the following procedure for improving the
level of accuracy, starting from initial approximation. The
lower solution is of the form

1 − erf (𝑘𝑧) , (11)
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with 𝑘 = 𝑘
0
= 1/√𝑝

1
giving the initial approximation 𝑊

𝑘0
,

that is, the lower solution.Numerical simulations suggest that
as the values of 𝑘 decrease from 𝑘

0
by a small decrement,

the lower solution moves uniformly towards the numerical
solution.

Given a function 𝑁(𝑥) and a number 𝜀 > 0, we say that
𝑓(𝑥) lies within 𝜀-band of𝑁(𝑥) on an interval 𝐼 if

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑁 (𝑥)
󵄨󵄨󵄨󵄨 < 𝜀, ∀𝑥 ∈ 𝐼. (12)

For a suitable value 𝑛 and numbers 𝜀 > 0, 𝛿
𝑖
> 0, using the

sequences of values

𝑘 = 𝑘
𝑖
= 𝑘
0
− 𝛿
𝑖
, (𝑖 = 1, 2, . . . , 𝑛) , (13)

in (11) generates a sequence of curves 𝑊
𝑘𝑖

that uniformly
approach numerical solution, finally resulting in the curve

𝑊Approx = 𝑊
𝑘𝑛
, (14)

which lies in an 𝜀-band around the graph of numerical
solution 𝑊Num. The number 𝜀 is chosen according to the
desired level of accuracy and the value of 𝑘

𝑛
is approximated

via numerical simulations.

Step 5. Use the similarity variables (8) to get the approximate
solution of original IBVP (6)-(7).

In the subsequent subsections we illustrate implemen-
tation of the above procedure, and we provide simulation
results and approximate similarity solutions for different
cases of values of parameter 𝑝

1
.

2.1. Approximate Similarity Solution of the IBVP (6)-(7) for
𝑝
1

= 0.9. In this case, 𝑘 = 1/√0.9 and the lower solution
of the ODE problem (9) becomes

𝑊Lower = 1 − erf (𝑘𝑧) = 1 − erf ( 𝑧

√0.9
)

≈ 1 − erf (1.05409𝑧) ,
(15)

which serves as our initial approximation 𝑊
𝑘0

for approx-
imating the solution of ODE problem. Solving the BVP
(9) numerically to get 𝑊Num and uniformly improving the
approximations 𝑊

𝑘𝑖
by simulating the procedure explained

abovewe obtain an approximate solution of theODEproblem
as

𝑊Approx (𝑧) = 1 − erf (0.7281𝑧) , (16)

with

Max 󵄨󵄨󵄨󵄨󵄨𝑊Approx − 𝑊Num
󵄨󵄨󵄨󵄨󵄨
= 0.0019642487. (17)

The plots of the initial approximation 𝑊Lower(𝑧), the
numerical solution 𝑊Num(𝑧), the approximate solution
𝑊Approx(𝑧), and the Error(𝑧) are given in Figure 1 where

Error (𝑧) = 𝑊Approx (𝑧) − 𝑊Num (𝑧) . (18)

The dotted curves demonstrate some intermediary curves
involved in simulations of the uniform approximation pro-
cess from 𝑊Lower to 𝑊Approx, in a manner that as 𝑘 decreases
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from 1/√0.9 by a small decrement the curves 1−erf(𝑘𝑧)move
uniformly towards numerical solution𝑊Num.

Finally the similarity variables (8) provide the approxi-
mate solution of IBVP (6)-(7) for 𝑝

1
= 0.9 as

𝑝 (𝑥, 𝑡) = √0.81 + 0.19erf (0.7281
𝑥

√𝑡
(
𝐴

4
)

1/2

). (19)

2.2. Approximate Similarity Solution of the IBVP (6)-(7) for
𝑝
1

= 0.3. In this case, 𝑘 = 1/√0.3 and hence the initial
approximation determined by the lower solution of the ODE
problem (9) becomes

𝑊Lower = 1 − erf (𝑘𝑧) = 1 − erf ( 𝑧

√0.3
)

≈ 1 − erf (1.82574𝑧) .
(20)

Proceeding as in Section 2.1 we obtain an approximate solu-
tion of the ODE problem, for the case 𝑝

1
= 0.3, as

𝑊Approx (𝑧) = 1 − erf (0.77362𝑧) , (21)

with

Max 󵄨󵄨󵄨󵄨󵄨𝑊Approx − 𝑊Num
󵄨󵄨󵄨󵄨󵄨
= 0.0096829849. (22)

The plots of the initial approximation 𝑊Lower(𝑧), the numer-
ical solution 𝑊Num(𝑧), the approximate solution 𝑊Approx(𝑧),
and the Error(𝑧), for the case 𝑝

1
= 0.3, are given in Figure 2.

As in Section 2.1 the dotted curves demonstrate some
intermediary curves involved in simulations of the uniform
approximation process from 𝑊Lower to 𝑊Approx, in a manner
that as 𝑘 decreases from 1/√0.3 by a small decrement
the curves 1 − erf(𝑘𝑧) move uniformly towards numerical
solution𝑊Num.
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The approximate solution of IBVP (6)-(7) for𝑝
1
= 0.3 can

be found using the similarity variables (8) and is given by

𝑝 (𝑥, 𝑡) = √0.09 + 0.91erf (0.77362
𝑥

√𝑡
(
𝐴

4
)

1/2

). (23)

2.3. Approximate Similarity Solution of the IBVP (6)-(7) for
𝑝
1
= 0.1. Using 𝑘 = 1/√0.1 gives the lower solution of the

ODE problem (9) as

𝑊Lower = 1 − erf (𝑘𝑧) = 1 − erf ( 𝑧

√0.1
)

≈ 1 − erf (3.162277𝑧) ,
(24)

which serves as our initial approximation 𝑊
𝑘0

for approx-
imating the solution of ODE problem for this case. As
above, solving the BVP (9) numerically to get 𝑊Num and
uniformly improving the approximations 𝑊

𝑘𝑖
by simulating

the procedure explained above, we obtain an approximate
solution of the ODE problem as

𝑊Approx (𝑧) = 1 − erf (0.782743𝑧) , (25)

with

Max 󵄨󵄨󵄨󵄨󵄨𝑊Approx − 𝑊Num
󵄨󵄨󵄨󵄨󵄨
= 0.0116428185. (26)

The plots of the initial approximation 𝑊Lower(𝑧), the
numerical solution 𝑊Num(𝑧), the approximate solution
𝑊Approx(𝑧), and the Error(𝑧), for the case𝑝1 = 0.1, are given in
Figure 3. As in the above sections, the dotted curves demon-
strate some intermediary curves involved in simulations of
the uniform approximation process from 𝑊Lower to 𝑊Approx,
in a manner that as 𝑘 decreases from 1/√0.1 by a small
decrement the curves 1 − erf(𝑘𝑧) move uniformly towards
numerical solution𝑊Num.
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Using the similarity variables, the approximate solution
of IBVP (6)-(7) for 𝑝

1
= 0.1 is found as

𝑝 (𝑥, 𝑡) = √0.01 + 0.99erf (0.782743
𝑥

√𝑡
(
𝐴

4
)

1/2

). (27)

2.4. Discussion. Theplots of the numerical solution𝑊Num(𝑧),
the lower solution 𝑊Lower(𝑧), and the approximate solution
𝑊Approx(𝑧) for the ODE problem (9) are given in Figures 1,
2, and 3, respectively, for 𝑝

1
= 0.9, 𝑝

1
= 0.3, and 𝑝

1
= 0.1.

It can be seen that the lower solution 𝑊Lower(𝑧) provides a
better initial approximation for the values of 𝑝

1
closer to

1. Yet a comparison of the plots of initial approximation
𝑊Lower(𝑧) and the accuracy benchmark curve 𝑊Num(𝑧), in
all cases, clearly emphasizes the need of improving the
initial approximation to get𝑊Lower(𝑧) to get accurate enough
analytic approximation 𝑊Approx(𝑧) of the benchmark curve
𝑊Num(𝑧). The plots in Figures 1, 2, and 3 clearly show that
𝑊Approx(𝑧) and 𝑊Num(𝑧) curves overlap in each case and the
corresponding plots of the error Error(𝑧) demonstrate that,
in each case, 𝑊Approx(𝑧) provides an analytic approximation
of the benchmark numerical solution curve 𝑊Num(𝑧). In all
cases, the solution𝑊Approx(𝑧) decreases with the increase in 𝑧

but descends faster for the case 𝑝
1
= 0.1 as compared to case

𝑝
1
= 0.9.
A comparison of the approximate solution 𝑊Approx(𝑧) of

BVP (9) obtained by our method with solutions obtained by
other methods [21–23], for 𝛼 = 0.5, is presented in Table 1.

2.5. Comments on the Conservation Laws. The conservation
laws of

𝜕

𝜕𝑥
(𝑝

𝜕𝑝

𝜕𝑥
) =

𝜕𝑝

𝜕𝑡
(28)

can be found using the direct multiplier method [24, 25].
Since the procedure is standard, only the results are stated.
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Table 1: Solution values for 𝛼 = 0.5.

𝑧 𝑊Approx(𝑧)
Corresponding solution Corresponding solution

𝑊kidder [18] 𝑊
[3/3]

[21–23]
0.1 0.899431 0.881659 0.897917
0.2 0.800454 0.766308 0.798523
0.3 0.704584 0.656538 0.704113
0.4 0.613194 0.554402 0.616504
0.5 0.527452 0.461365 0.537053
0.6 0.448284 0.378311 0.466563
0.7 0.37634 0.305598 0.406243
0.8 0.311998 0.243133 0.35608
0.9 0.255363 0.190462 0.317997
1.0 0.206302 0.158769 0.290026

Implementing the direct multiplier procedure for multipliers
of the form Λ(𝑡, 𝑥, 𝑝, 𝑝

𝑥
, 𝑝
𝑥𝑥
) generates the determining

equations

Λ
𝑥𝑥

= 0, Λ
𝑡
= 0, Λ

𝑝
= 0,

Λ
𝑝𝑥

= 0, Λ
𝑝𝑥𝑥

= 0,

(29)

which yield the solution Λ = 𝐶
1
+ 𝐶
2
𝑥. Hence there are

two linearly independent conservation laws arising from the
multipliers Λ

1
= 1 and Λ

2
= 𝑥. Next, elementary direct

calculations [26] give the corresponding conservation laws as
listed below.

For Λ
1
= 1, the conservation law is

𝐷
𝑡
(𝑝) + 𝐷

𝑥
(−𝑝𝑝
𝑥
) = 0, (30)

and, for Λ
2
= 𝑥, the conservation law is

𝐷
𝑡
(𝑥𝑝) + 𝐷

𝑥
(
𝑝
2

2
− 𝑥𝑝𝑝

𝑥
) = 0, (31)

where

𝐷
𝑡
=

𝜕

𝜕𝑡
+ 𝑝
𝑡

𝜕

𝜕𝑝
+ 𝑝
𝑡𝑡

𝜕

𝜕𝑝
𝑡

+ 𝑝
𝑡𝑥

𝜕

𝜕𝑝
𝑥

+ ⋅ ⋅ ⋅ ,

𝐷
𝑥
=

𝜕

𝜕𝑥
+ 𝑝
𝑥

𝜕

𝜕𝑝
+ 𝑝
𝑥𝑡

𝜕

𝜕𝑝
𝑡

+ 𝑝
𝑥𝑥

𝜕

𝜕𝑝
𝑥

+ ⋅ ⋅ ⋅ .

(32)

For a given conservation law

𝐷
𝑡
(𝑇
1
) + 𝐷
𝑥
(𝑇
2
) = 0, (33)

of (28), if the spatial flux 𝑇
2 vanishes on the boundary 𝑥 = 0

and 𝑥 = ∞ of the semi-infinite medium, then integration
from 𝑥 = 0 to 𝑥 = ∞ provides conserved quantity of the
boundary value problem.

As an example, the conservation law (30) is applied to
derive conserved quantity of the BVP

𝜕

𝜕𝑥
(𝑝

𝜕𝑝

𝜕𝑥
) =

𝜕𝑝

𝜕𝑡
,

𝜕𝑝

𝜕𝑥
(0, 𝑡) = 0,

𝜕𝑝

𝜕𝑥
󳨀→ 𝑘𝑒

−𝑥
2
/𝑡
, as 𝑥 󳨀→ ∞.

(34)

The conservation law (30) can be written as
𝜕

𝜕𝑡
(𝑝) −

𝜕

𝜕𝑥
(𝑝𝑝
𝑥
) = 0. (35)

Integrating with respect to 𝑥 from 𝑥 = 0 to 𝑥 = ∞ and using
the boundary conditions imply that

𝜕

𝜕𝑡
∫

∞

0

𝑝 (𝑥, 𝑡) 𝑑𝑥 = 0, (36)

which gives the time independent conserved quantity
∫
∞

0
𝑝(𝑥, 𝑡)𝑑𝑥 of the BVP.
In general, the boundary conditionswill determinewhich

conservation law is to be applied to obtain conserved quanti-
ties of the BVP of (28).

3. Conclusion

Wepresent a practical way of obtaining approximate solution,
in function form, for the class of PDEs where the PDE
can be reduced to an ODE through similarity variables
but the reduced ODE is not easily integrable in terms of
elementary or tabulated functions. The idea presented here
to get approximate solution of PDE, that is, approximating
the surface𝑝(𝑥, 𝑡), practically involves approximating a curve
𝑊(𝑧) which is a tractable problem in comparison to increas-
ingly complex and intractable problem of approximating
the surface 𝑝(𝑥, 𝑡) itself. A combination of simulations,
initial approximation, and numerical solution of reduced
ODE is utilized to obtain approximation of solution curve
𝑊(𝑧) which readily generates, via similarity variables, the
approximate solution surface 𝑝(𝑥, 𝑡) of the PDE. This makes
it a promising approach especially when reasonably accurate
initial approximation of the solution of ODE can be obtained,
as was the case here in the form of lower solution. The
approach is applied to obtain approximate solutions for some
cases of an initial-boundary value problem of unsteady flow
of gas through a semi-infinite porous medium.The approach
can be adapted for obtaining approximate analytic solutions
for the class of PDEs where the PDE can be reduced to an
ODE through similarity variables. For instance, the approach
can be directly applied to all the reduced-via-similarity BVPs
of ODEs in [27]. For further application, the approach
can be extended to obtain approximate solutions where the
reduction is a system of ODEs like the reduced flow problems
in [28, 29].
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