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Fast and elitist nondominated sorting generic algorithm (NSGA2) is an improved multiobjective genetic algorithm with good
convergence and robustness. The Pareto optimal solution set using NSGA2 has the character of uniform distribution. This paper
builds a time-of-use (TOU) pricing mathematical model considering actual constraint conditions and puts forward a new method
which realizesmultiobjective TOUpricing optimization usingNSGA2. A variety of objective TOUpricing schemes can be provided
for decision makers compared with traditional method. Furthermore, the multiple attribute decision making theory is applied in
processing the Pareto optimal solution set to calculate the optimal compromise price scheme. The simulation results have shown
that the TOU pricing scheme determined by the method proposed above can achieve a better effect of clipping the peak load to fill
the valley load. Consequently, the study in this paper is innovative and is a successful exploration of coordinating the relation of
various objective functions concerned in TOU pricing optimization problem.

1. Introduction

Time-of-use price is an important demand-sidemanagement
(DSM) method, which could stimulate and encourage the
consumers to change the consumption behaviors and achieve
the purpose of clipping the peak load to fill the valley load as
well as changing the load curve, so that the economy, security,
and reliability of the power system are improved. So far, three
kinds of TOU pricing are studied: the first is based on the
relation between sale and retail prices [1], the second is based
on the consumer response curve or price elasticity matrix
[2, 3], and the third is based on game control [4].However, the
research on the optimization methods, which can decrease
peak load and peak-valley difference at the same time, has not
been studied enough. It is a typical multivariable constrained
multiobjective optimization problem.

The traditional algorithms of multiobjective TOU pricing
optimization are weighted method [5], constraint method
[6], and so on. The multiobjective optimization problem
is transferred into a single objective optimization problem.
Then, the problem is solved by the relatively mature single
objective optimization algorithm in which only one solution
is obtained. However, there is a solution set in the multiob-
jective optimization problem. Moreover, the weights of the

objectives are defined subjectively rather than objectively.
So, the optimal extent is affected. Multiobjective genetic
algorithm is an evolutionary algorithm. Its core thought is
to coordinate the relation between the objective functions
to search for optimal solution set [7]. NSGA2, an improved
multiobjective generic algorithm, overcomes the shortcom-
ings mentioned above and has the characters of good con-
vergence and excellent robustness. Its noninferior solutions
are uniformly distributed in objective space. Considering
TOU pricing is a multivariable constrained multiobjective
optimization problem; this paper uses NSGA2 to solve the
problem and puts forward a new kind of TOU pricing
optimization mechanism which can achieve a better effect in
balancing the relation between the objective functions. Case
analysis shows that the proposed TOU pricingmultiobjective
optimization based on NSAG2 takes on better effectiveness
and superiority.

2. Multiobjective Optimization Pareto Optimal
Solution Set and Pareto Genetic Algorithm

2.1. The Concept of Nondominated Solution (Pareto Solution).
Given two solutions, X

𝑢
and XV, if all the objectives of X𝑢 are
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superior to the objectives of XV, we say that X
𝑢
dominates

XV or XV is dominated by X
𝑢
. If X
𝑢
is not dominated by the

others, it is called nondominated solution or Pareto solution.
The set of nondominated solutions is called Pareto front.
The solution of Pareto front is not dominated by the ones
outside the Pareto front. Compared with other solutions,
Pareto solution has less objective conflicts; thus, a better
selection space is supplied for the decision maker.

2.2. The Advantages of Pareto Front and NSGA2. For a
multiobjective optimization problem, the optimal solution is
not unique, and it is a set of many satisfied solutions, which is
called Pareto optimal set. Pareto optimal set can providemore
than one optional solution for decision makers. According to
the practical needs and combined with the theory of multiple
attribute decision making, decision maker can choose an
optimal compromise solution [8], which owns the highest
satisfaction.

In themultiobjective optimization, there may be conflicts
between different objectives and it is hard tomake a judicious
decision by comparing all these objectives. If a solution is the
best one based on a certain objective, it may be weakly worse
for the other objectives. The core of multiobjective genetic
algorithms is to coordinate the relation between the objective
functions. Nondomination rank and selection operator are
used to make the population evolve towards Pareto optimal
set in the formulation of the problem. Then, the Pareto opti-
mal set is obtained, which can make the objective function
relatively maximized (or relatively minimized). Thus, several
kinds of multiobjective genetic algorithms based on Pareto
optimal set come into being, in which nondominated sorting
generic algorithm (NSGA) [9] is a typical example. NSGA2
[10] is the improvement of NSGA which is proposed by Deb
and others. Its prominent characteristics can be listed as
follows:

(1) NSGA2 is based on nondomination rank, which
makes the complexity decrease from 𝑂(𝐾𝑁

3

) of
NSGA to 𝑂(𝐾𝑁2);

(2) crowding distance comparison operator is adopted
for optimization. So that individuals in the population
can extend to the entire Pareto domain and maintain
the diversity of the population to avoid local conver-
gence;

(3) elitist strategy is used in NSGA2.The next generation
is got from the sorting and competition of parent
generation and offspring generation.Thus, the quality
of the next generation is guaranteed.

3. The Mathematic Multiobjective
Optimization Model

According to the typical daily load curve, peak, flat, and
valley are defined as 𝑇

𝑝
, 𝑇
𝑓
, and 𝑇V, respectively, and their

corresponding prices are 𝑃
𝑝
, 𝑃
𝑓
, and 𝑃V. Consumer response

curve is 𝑦 = 𝑓(𝑥). The average price or market clearing
price before the implementation of TOU pricing is 𝑃

0
which

is assumed as a known constant.

3.1. The Selection of Multiobjective Functions. In this paper,
minimizing the maximum load and minimizing the peak-
valley difference are considered simultaneously as TOU
pricing objective functions.

Objective function 1 is as follows: minimizing the maxi-
mum load

min (𝑄max) . (1)

Objective function 2 is as follows: minimizing the peak-
valley difference

min (𝑄max − 𝑄min) , (2)

where 𝑄max = max[𝑄(𝑃
𝑓
, 𝑃
𝑝
, 𝑃
𝑔
, 𝑇
𝑓
, 𝑇
𝑝
, 𝑇
𝑔
)] is the max-

imum of the peak load of the day, 𝑄min = min[𝑄(𝑃
𝑓
, 𝑃
𝑝
, 𝑃
𝑔
,

𝑇
𝑓
, 𝑇
𝑝
, 𝑇
𝑔
)] is the minimum of valley loads, 𝑃

𝑝
, 𝑃
𝑓
, and 𝑃V

are the time price of peak, flat, and valley loads, 𝑇
𝑝
, 𝑇
𝑓
, and

𝑇V are the time period of peak, flat, and valley loads, and
𝑄(𝑃
𝑝
, 𝑃
𝑓
, 𝑃V, 𝑇𝑝, 𝑇𝑓, 𝑇V) is the new load after the implement

of TOU pricing according to the consumer response curve.

3.2. Constraint Conditions. The sum of electricity consump-
tion keeps invariant after the implementation of TOUpricing:

𝑄
󸀠

𝑝
+ 𝑄
󸀠

𝑓
+ 𝑄
󸀠

V = 𝑄𝑝 + 𝑄𝑓 + 𝑄V, (3)

where 𝑄
𝑝
, 𝑄
𝑓
, and 𝑄V are the peak, flat, and valley loads

before the implementation of TOU pricing and 𝑄󸀠
𝑝
, 𝑄󸀠
𝑓
, and

𝑄
󸀠

V are the peak, flat, and valley loads after the implementation
of TOU pricing.

Considering the production cost and the consumers’
endurance, the prices of peak, flat, and valley loads are limited
by the price supervision department. The limitations are as
follows:

𝑃
𝑝 min ≤ 𝑃𝑝 ≤ 𝑃𝑝 max,

𝑃
𝑓 min ≤ 𝑃𝑓 ≤ 𝑃𝑓 max,

𝑃V min ≤ 𝑃V ≤ 𝑃V max,

(4)

where 𝑃
𝑝 min, 𝑃𝑝 max, 𝑃𝑓 min, 𝑃𝑓 max, 𝑃V min, and 𝑃V max are the

upper and lower limit prices of peak, flat, and valley loads.
The price of peak, flat, and valley loads varies within

limits, and the effect of peak load shifting varies at the same
time.This paper mainly studies the optimization of the effect
of peak load shifting. 𝑃

𝑝
, 𝑃
𝑓
, and 𝑃V are obtained according

to the optimization of the mathematical model. They are
substituted into the following inequality:

(1 − 𝛿)𝑀
0
< 𝑄
󸀠

𝑝
𝑃
𝑝
+ 𝑄
󸀠

𝑓
𝑃
𝑓
+ 𝑄
󸀠

V𝑃V < 𝑀0, (5)

where 𝛿 = 𝑀
󸀠

/𝑀
0
is interest concessions coefficient, 𝑀

0
is

the total electricity cost before the implementation of TOU
pricing, and 𝑀

󸀠 is the reduced electric power cost of the
power company after the implementation of TOU pricing.
The inequality is used to verify the model and 𝛿 is obtained
through the inequality, whose upper limitation is 10%. It is
a reference for decision makers to optimize the economic
indicator.
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Figure 1: Flow chart of optimizing time-of-use price based on NSGA2.

4. Multiobjective TOU Pricing
Optimization Based on NSGA2

4.1. The Flow of Multiobjective TOU Pricing Optimization
Based on NSGA2. Power system TOU pricing is a multi-
objective optimization problem. It contains a plurality of
objective functions, and objectives have the same decision
variables, which interact with each other. It is hard to
objectively evaluate the solution got from a single objective
optimization or a single objective optimization merged by
multiobjective optimization. NSGA2 is used in the multiob-
jective TOU pricing optimization in this paper, which aims at
obtaining the solution of high synthetical satisfaction degree
when taking the multiobjective into consideration.

The flow of multiobjective TOU pricing optimization
based on NSGA2 is shown in Figure 1.

4.2. Coding. 𝑃
0
is used as the reference. 𝑃

𝑝
, 𝑃
𝑓
, and 𝑃V are

calculated into per unit value 𝑥
𝑝
, 𝑥
𝑓
, and 𝑥V, which are used

as control variables. The coding format in real-coded pattern
is [𝑥
𝑓
, 𝑥
𝑝
, 𝑥V].The real decoding value of peak, flat, and valley

price is as follows:

𝑃
𝑝
= 𝑥
𝑝
𝑃
0
,

𝑃
𝑓
= 𝑥
𝑓
𝑃
0
,

𝑃V = 𝑥V𝑃0.

(6)

4.3. Generate the Initial Population. When generating a ran-
dom initial population of individuals, the constraint condi-
tions of price are used to limit the random number, to ensure
that the random number is generated within the constraints.
Then, set the appropriate number of initial population of
individuals. It cannot be too small to converge or too big
to prolong search time. It also should be selected randomly
to ensure the diversity and the convergence to the optimal
solution.
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4.4. Fast Nondomination Sorting. Before the process of selec-
tion operator for individual populations, according to the
level of individual nondomination solutions, the population
is sorted by fast nondomination sorting of NSGA2. The
specific methods are as follows.

In the algorithm, two parameters, 𝑛
𝑖
and 𝑆
𝑖
, of individual

𝑖 should be calculated. 𝑛
𝑖
is the number of individuals

that dominate individual 𝑖. 𝑆
𝑖
is the set of individuals that

are dominated by individual 𝑖. The specific steps of fast
nondomination sorting are as follows.

(1) Find all the individuals whose parameter 𝑛
𝑖
is 0. The

individuals are preserved in the set 𝐻, which is the
first nondomination layer.

(2) For each individual 𝑖 of set𝐻, traverse each individual
𝑙 in the set 𝑆

𝑖
and execute 𝑛

𝑙
= 𝑛
𝑙
−1. If 𝑛

𝑙
= 0, preserve

individual 𝑙 in the next nondomination layer.
(3) Repeat the previous step until the entire population is

sorted.

For a population, whose number of objective functions
is K (𝐾 > 1) and size is N, two parameters, 𝑛

𝑖
and 𝑆

𝑖
,

are calculated for each individual by NSGA2. Traversing
the entire population, the total computational complexity
is 𝑂(𝐾𝑁2). Nondomination sorting is used in NSGA, and
its computational complexity is 𝑂(𝐾𝑁3). So, the calculation
efficiency of fast nondomination is higher.

4.5. Virtual Fitness. InNSGA2, the individual fitness includes
nondomination rank and virtual fitness. Crowding distance
is used by NSGA2 to form individual fitness to maintain the
diversity of the individual and prevent the accumulation of
the individual in the local. It is defined as the sum distance
of the two points on either side of this point along each of
the objectives. In Figure 2, the crowding distance of the 𝑖th
solution in its front (marked with solid circles) is the sum of
sidelength of the cuboid (shown with a dashed box), which
is [𝑓
1
(𝑖 + 1) − 𝑓

1
(𝑖 − 1)] + [𝑓

2
(𝑖 − 1) − 𝑓

2
(𝑖 + 1)]. This

approach makes the selected individuals distribute evenly in
the objective space with good robustness.

4.6. Selection Operator. Genetic selector operator is for opti-
mization towards Pareto optimal solution set and to make
the solutions distribute evenly. The best individual with the
greatest probability of survival is preserved by selection
operator to avoid the loss of good genes.Thereby, global con-
vergence and computational efficiency are improved. Each
individual has two parameters, 𝑖rank (nondomination rank)
and 𝑖

𝑑
(crowding distance). Binary tournament selection

operator is used in this paper. Two individuals are chosen
randomly for comparison. If 𝑖rank < 𝑗rank or (𝑖rank = 𝑗rank
and 𝑖
𝑑
> 𝑗
𝑑
), individual 𝑖 is better than individual 𝑗. That is

to say, if two individuals are in different layers, the individual
with the lowest nondomination rank is selected,which is first-
sorted in the process of nondomination sorting with high
level of nondomination. Or if two individuals are in the same
layer, the individual with the largest crowding distance is
selected, which has advantages in selection.

f2

f1

0

l

i

i − 1

i + 1

Figure 2: Chart of local crowding distance.

4.7. Crossover and Mutation. The cooperation of crossover
and mutation makes genetic algorithm perform well in local
and global search. SBX crossover operator and polynomial
mutation operator are adopted. SBX operator simulates
binary crossover process for real-coded parent individuals.
For a given random cross-point, switch two sides of the cross-
point of the parent of the individual parts. Polynomial muta-
tion operator is based on polynomial distribution. Offspring
generation 𝑄

𝑡
is generated through crossover and mutation

operator.

4.8. Elitist Strategy. Elitist strategy makes excellent indi-
viduals retain to the offspring generation directly. It is a
necessary condition for the genetic algorithm converging
with probability 1. The method is as follows.

(1) Parent generation 𝑃
𝑡
and offspring generation 𝑄

𝑡
are

combined into a population 𝑅
𝑡
= 𝑃
𝑡
∪ 𝑄
𝑡
.

(2) Sort 𝑅
𝑡
by fast nondomination sorting and calculate

crowding distance of every individual. Select individ-
uals one by one based on nondomination rank, until
the number of individuals reaches 𝑁. Then, the new
parent generation 𝑃

𝑡+1
is generated.

Iteration is done again and again until convergence is
reached. Then, fast nondomination sorting is used to obtain
the Pareto optimal solution set, that is, Pareto front, which
consists of the individuals in the first nondomination layer.

4.9. Optimal Compromise Solution. Theoptimal compromise
solution is the solution in the Pareto front with the greatest
satisfaction.
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In Pareto optimal solution set, the satisfaction of each
objective function of each Pareto solution is represented by
fuzzy membership function as follows:

ℎ
𝑖
=

{{{{{{

{{{{{{

{

1, 𝑓
𝑖
≤ 𝑓
𝑖 min,

𝑓
𝑖 max − 𝑓𝑖

𝑓
𝑖 max − 𝑓𝑖 min

, 𝑓
𝑖 min < 𝑓𝑖 < 𝑓𝑖 max,

0, 𝑓
𝑖
≥ 𝑓
𝑖 max,

(7)

where 𝑓
𝑖
is the objective function and 𝑖 = 1, 2, . . . , 𝑁obj.𝑁obj

is the number of object functions. 𝑓
𝑖 min and 𝑓

𝑖 max are the
maximum and minimum of the 𝑖th objective function.

According to formula (8), satisfaction of each Pareto
solution is calculated. Then, the solution with the greatest ℎ
value is chosen as the optimal compromise solution

ℎ =

𝑁obj

∑

𝑖=1

ℎ
𝑖
. (8)

5. Case and Analysis

In order to verify the effectiveness and feasibility of NSGA2
in multiobjective TOU pricing optimization, large industrial
consumers in a specific region are chosen to be optimized by
NSGA2. The result is analyzed subsequently.

5.1. The Data before TOU Pricing Optimization

(1) Typical Daily Load Data. The typical daily load data is
shown in Table 1.

(2) The Price and the Cost of Power Consumers. In the
region, the average price or market clearing price is 𝑃

0
=

¥0.5647/kW ⋅h.The cost of large industrial power consumers
is𝑀
0
= ¥8.80 × 106.

(3) Periods Division and Consumer Response Curve

Peak period: 08:00∼12:00 (Peak 1), 18:00∼22:00 (Peak
2);
Flat period: 12:00∼18:00 (Flat 1), 22:00∼24:00 (Flat 2);
Valley period: 00:00∼04:00 (Valley 1), 04:00∼08:00
(Valley 2).

Through investigation, consumer response curve is
obtained, whose expression is 𝑦 = 𝑓(𝑥) = −0.2807𝑥+1.2952,
where 𝑥 is the per unit value of price and y is the per unit load
value of consumer.

(4) Constraint Conditions of Peak, Flat, and Valley Price.
In the region, according to the power cost and consumers’
endurance, the constraint conditions of peak, flat, and valley
price are regulated as follows (shown in per unit value): 0.3 ≤
𝑥V ≤ 0.8, 0.8 ≤ 𝑥𝑓 ≤ 1.2, 1.2 ≤ 𝑥𝑝 ≤ 1.8.

5.2.TheTOUPricingOptimization byNSGA2. In the calcula-
tion case, the parameters settings ofNSGA2 are as follows: the

Table 1: Data of the large industrial load.

Time (hour of the day) Load (MW)
1 511.0
2 532.5
3 520.0
4 491.0
5 543.5
6 566.0
7 596.0
8 643.5
9 717.5
10 734.0
11 752.5
12 670.0
13 682.5
14 692.5
15 686.0
16 686.0
17 729.0
18 735.0
19 778.0
20 775.0
21 729.0
22 681.0
23 581.5
24 553.5

population size is 500; the iterative time is 500; the crossover
rate is 0.9; the mutation rate is 0.1.

In NSGA2, the selection basis of individuals is the
indexes of nondomination rank and crowding distance. For
the individuals in parent generation, objective functions are
calculated by the mathematic multiobjective optimization
model. Then, 250 individuals (𝑁/2 = 250) are selected
according to nondomination rank and crowding distance.
They are used to crossover and mutate to generate the
offspring generation.The parent generation and the offspring
generation are combined together to generate the new parent
generation by elitist strategy.

The case takes the 10th generation for example. Table 2
shows the individuals in the first 3 layers sorted by fast
nondomination sorting.The distribution of these individuals
in the objective space is shown in Figure 3. The crowding
distance of the individuals in the Pareto front is shown in
Table 3. From Figure 3, it is known that the accumulation
degree of each nondomination layer is different, so that the
global optimization is ensured. Crowding distance is taken
into consideration when selecting individuals to ensure the
diversity and avoid the local convergence.

When the convergent conditions are met, the iteration
goes to an end. Then, the final Pareto optimal solution
set (Pareto front) is obtained. A part of the representative
Pareto optimal solutions is shown in Table 4.The distribution
of Pareto front and the optimal compromise solution are
shown in Figure 4. The optimal compromise price scheme



6 Journal of Applied Mathematics

Table 2: The first 3 layers of the 10th generation (accurate to 0.001).

Layer Chromosome coding Max peak load (MW) Max peak-valley difference (MW)

1st

[1.1246, 1.3656, 0.4762] 710.5655 146.3994
[1.1215, 1.3333, 0.4853] 707.1186 146.7428
[1.1207, 1.3335, 0.4826] 708.7085 146.5791
[1.1417, 1.3392, 0.4197] 704.6405 147.4979
[1.1392, 1.3344, 0.4168] 704.4741 147.5799

2nd

[1.1418, 1.3403, 0.4182] 704.9236 147.8027
[1.0976, 1.3339, 0.3931] 707.7580 147.0330
[1.1206, 1.3335, 0.4828] 709.1306 146.5835
[1.1239, 1.3655, 0.4767] 710.6913 146.4315
[1.1450, 1.3352, 0.4197] 704.5676 148.0924
[1.0999, 1.3206, 0.4293] 708.4119 146.9282
[1.1448, 1.3378, 0.4200] 704.7100 148.0073

3rd

[1.1438, 1.3336, 0.4181] 704.5684 148.1748
[1.1224, 1.3648, 0.4761] 710.8333 146.4984
[1.1193, 1.3371, 0.4772] 709.2855 146.6396
[1.1447, 1.3344, 0.4199] 704.5933 148.1420
[1.1204, 1.3483, 0.4813] 710.1927 146.5897
[1.1421, 1.3412, 0.4183] 704.9940 147.8267

Table 3: The crowding distance of the individuals in Pareto front.

Number Peak load
(MW)

Peak-valley
difference (MW) Crowding distance

1 710.5655 146.3994 Boundary point
2 707.1186 146.7428 2.0367
3 708.7085 146.5791 3.2332
4 704.6405 147.4979 5.2352
5 704.4741 147.5799 Boundary point

(the third solution in Table 4) is that the peak price is
¥0.7677/kWh, the flat price is ¥0.6541/kWh, and the valley
price is ¥0.2542/kWh. The corresponding max peak load is
703.4001MW, and the peak-valley difference is 144.8588MW.
And the original max peak load is 778.0MW, and the peak-
valley difference is 287.0MW. By contrast, the optimization
by NSGA2 has great effects on clipping the peak load to fill
the valley load.

5.3. Analysis and Comparison. (1) More than one objective
solution is obtained by NSGA2, but only one is obtained by
traditional algorithm.

It is seen in Figure 4 that the two objectives, theminimum
peak load and the minimum peak-valley difference, have
a contradiction. It is impossible to find a solution which
is optimal for two objectives at the same time. Therefore,
decision makers can make choices by objective needs in
Pareto optimal solutions. If the minimum peak load is used
as the main objective, the solution is selected from the
upper left part of the Pareto solution set, such as the first
solution in Table 4. If the minimum peak-valley difference is
used as the main objective, the solution is selected from the
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Figure 3: The distribution of individuals in the first three layers in
objective space.

lower right part of the Pareto solution set, such as the fifth
solution in Table 4. If the preference objective function is not
specified, the optimal compromise solution is selected, just
at the marked point in Figure 4. The load curve of optimal
compromise solution is shown in Figure 5. Multiobjective
optimization is transferred into single objective in traditional
algorithm. However, the weights of each objective function
are artificially regulated. The blindness and subjectivity of
traditional optimization algorithm are avoided by NSGA2,
thus realizing multiobjective TOU pricing optimization.
(2) Comparison with Traditional Method. The weighted
method is a traditional single objective optimizationmethod.
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Table 4: A set of Pareto optimal solutions.

Number Flat price (pu) Peak price (pu) Valley price (pu) Max peak load (MW) Peak-valley difference (MW) ℎ value
1 1.1582 1.3581 0.4501 703.3022 144.8618 0.9817
2 1.1583 1.3586 0.4502 703.3366 144.8599 1.0475
3 1.1583 1.3595 0.4502 703.4001 144.8588 1.3222
4 1.1584 1.3599 0.4504 703.4206 144.8531 0.9930
5 1.1585 1.3606 0.4505 703.4647 144.8493 0.9567

Table 5: Contrast of NSGA2 and weighted method.

Method Case Max peak load (MW) Peak-valley difference (MW)
NSGA2 703.4001 144.8588

𝑤
1
= 0.1 𝑤

2
= 0.9 704.8171 144.3526

𝑤
1
= 0.3 𝑤

2
= 0.7 703.6927 144.7283

Weighted method 𝑤
1
= 0.5 𝑤

2
= 0.5 703.4111 145.1413

𝑤
1
= 0.7 𝑤

2
= 0.3 703.3120 145.8738

𝑤
1
= 0.9 𝑤

2
= 0.1 703.2972 146.0622
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Figure 4: Pareto front.

When used for solving the multiobjectives optimization
problem, the weighted method would transfer the problem
into a single objective optimization problem by assigning
a set of weight value to each objective. In this paper, The
weighted method is also used in optimizing TOU pricing
problem considering setting different weight values (𝑤

1

and 𝑤
2
). 𝑤
1
is the weight value of the objective function 1,

the maximum load. 𝑤
2
is the weight value of the objective

function 2, the peak-valley difference. Besides,𝑤
1
+ 𝑤
2
= 1.

Compared with NSGA2, the simulation results of these two
methods are shown in Table 5.

It can be seen in Table 5 that different weight value
distribution in the weighted method would lead to different
solutions. Generally, the bigger the weight value of an
objective is, the better the solution of corresponding objective
is, since this objective is emphasized. When an objective is
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Figure 5: Contrast of load curve between optimization by NSGA2
and the original one.

overemphasized, the corresponding objective function value
is superior to that of NSGA2, while the other objective
function values would be much worse, just as the case of
𝑤
1
= 0.1 𝑤

2
= 0.9 shown in Table 5. When the weight

values are chosen improperly, all the objective function
values are worse than those of NSGA2, just as the case of
𝑤
1

= 0.5 𝑤
2

= 0.5 shows. For the weighted method,
it is important but difficult to choose suitable weight of
objectives because the weights are determined subjectively.
By contrast, the optimal compromise solution of NSGA2 is
obtained objectively. In conclusion, the TOU pricing scheme
of NSGA2 has a significant advantage on clipping the peak
load to fill the valley load.
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6. Conclusions

NSGA2 is a newly developed algorithm. For multiobjective
TOU pricing optimization, a new thought is put forward
in this paper. NSGA2 is applied in TOU pricing, and more
than one Pareto solutions are obtained. Choices are supplied
for the decision makers for selection, which overcomes the
shortcomings of the traditional algorithm and realizes the
multiobjective TOU pricing optimization. Example analysis
demonstrates that the remarkable effect of clipping the peak
load to fill the valley load is achieved by NSGA2. Good
technique support is supplied for power market operation
which is affected by the industrial and economic structure.
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