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We investigate a nonlinear viscoelastic equation with interior time-varying delay and nonlinear dissipative boundary feedback.
Under suitable assumptions on the relaxation function and time-varying delay effect together with nonlinear dissipative boundary
feedback, we prove the global existence of weak solutions and asymptotic behavior of the energy by using the Faedo-Galerkin
method and the perturbed energy method, respectively. This result improves earlier ones in the literature, such as Kirane and Said-
Houari (2011) and Ammari et al. (2010).Moreover, we give an positive answer to the open problem given by Kirane and Said-Houari
(2011).

1. Introduction

In this paper, we consider the global existence and asymptotic
behavior of a nonlinear viscoelastic equation with interior
time-varying delay and nonlinear dissipative boundary feed-
back as follows:

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝑎𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 0,

𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 0, on Γ
0
× (0,∞) ,

𝜕𝑢

𝜕]
+ 𝑔 (𝑢

𝑡
(𝑥, 𝑡)) = 0, on Γ

1
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 𝑓

0
(𝑥, 𝑡) , 𝑥 ∈ Ω, −𝜏 (0) ≤ 𝑡 ≤ 0,

(1)

where Ω is a bounded domain of 𝑅𝑛 (𝑛 ≥ 1) with a smooth
boundary 𝜕Ω of 𝐶2, 𝑎 is a positive real constant, 𝜏(𝑡) > 0

represents the time-varying delay effect and the initial data

𝑢
0
, 𝑢
1
, 𝑓
0
are given functions belonging to suitable spaces,ℎ(𝑡)

is a positive function that represents the kernel of thememory
term, 𝑔(𝑢

𝑡
) is nonlinear dissipative boundary feedback, and

𝑓
0
, ℎ, 𝑔 satisfy suitable assumptions (see in Section 2).
This model appears in viscoelasticity (see [1, 2]). In the

case of velocity-dependent material density (i.e., 𝜌 = 0)
as well as presence of 𝜇

2
= 0 and in the absence of

the memory effect (i.e., 𝑔 = 0), (1) reduces to the wave
equation. There is large literature on the global existence and
uniform stabilization of wave equations. We refer the readers
to [3–5]. It is worth mentioning that Zhang and Miao [3]
considered the nonlinear wave equationwith dissipative term
and boundary damping

𝑢
𝑡𝑡
− Δ𝑢 + 𝑎 (𝑥) 𝑢

𝑡
+ 𝑓 (𝑢) = 0, in Ω × [0,∞) ,

𝑢 = 0, on Γ
1
× [0,∞) ,

𝜕𝑢

𝜕]
+ 𝑔 (𝑢

𝑡
) = 0, on Γ

0
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , in Ω,

(2)
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and they proved the existence and uniform decay of strong
and weak solutions by using the Glerkin method and the
multiplier technique, respectively. Later on, Zhang et al. [4]
improved earlier ones in [3].More precisely, they investigated
the global existence and uniform stabilization of generalized
dissipative Klein-Gordon equation with boundary damping

𝑢
𝑡𝑡
− Δ𝑢 + 𝑏 (𝑥) 𝑢

𝑡
+ 𝑓 (𝑢) + ℎ (∇𝑢) = 0, in Ω × [0,∞) ,

𝑢 = 0, on Γ
1
× [0,∞) ,

𝜕𝑢

𝜕]
+ 𝑔 (𝑢

𝑡
) = 0, on Γ

0
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , in Ω,

(3)

and they proved the existence and uniform decay of strong
and weak solutions by using the nonlinear semigroup
method, the perturbed energy method, and the multiplier
technique. Quite recently, Cavalcanti et al. [6] considered the
following model:

𝑢
𝑡𝑡
− ΔM𝑢 + 𝑎 (𝑥) 𝑔 (𝑢𝑡) = 0, on M × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , for 𝑥 ∈ M,

(4)

where M is a smooth oriented embedded compact surface
without boundary in 𝑅

3 and ΔM is the Laplace-Beltrami
operator onmanifoldM; furthermore, they obtained explicit
and optimal decay rates of the energy. Later on, Cavalcanti
et al. [7] extended the result for n-dimensional compact
Riemannianmanifolds (M, 𝑔)with boundary in twoways: (i)
by reducing arbitrarily the region where the dissipative effect
lies (this gives us a totally sharp result with respect to the
boundary measure and interior measure where the damping
is effective) and (ii) by controlling the existence of subsets
on the manifold that can be left without any dissipative
mechanism, namely, a precise part of radially symmetric
subsets. An analogous result holds for compact Riemannian
manifolds without boundary.

In the case 𝜌 = 0 and in the absence of delay (i.e.,
𝜇
2
= 0), there is large literature on the existence and decay

of nonlinear viscoelastic equation during the past decades. In
[8], Cavalcanti et al. considered the exponential decay for the
solution of viscoelastic wave equationwith localized damping





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝑎 (𝑥) 𝑢
𝑡
+ 𝑢|𝑢|

𝑟
= 0,

𝑥 ∈ Ω, 𝑡 > 0.

(5)

Under the condition that 𝑎(𝑥) ≥ 𝑎
0
> 0 on 𝜔 ⊂ Ω, with 𝜔

satisfying some geometry restrictions and

−𝜉
1
𝑔 (𝑡) ≤ 𝑔


(𝑡) ≤ −𝜉

2
𝑔 (𝑡) , 𝑡 ≥ 0, (6)

they proved an exponential decay result for the energy.
Berrimi and Messaoudi [9] improved Cavalcanti’s result by
introducing a differential functional which allowed toweaken

the conditions on both 𝑎(𝑥) and 𝑔. In [10], Cavalcanti and
Oquendo studied





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− 𝑘
0
Δ𝑢 + ∫

𝑡

0

div [𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) ∇𝑢 (𝑠)] 𝑑𝑠

+ 𝑏 (𝑥) ℎ (𝑢
𝑡
) + 𝑓 (𝑢) = 0, 𝑥 ∈ Ω, 𝑡 > 0.

(7)

Under some geometric restrictions on 𝜔 and assuming that

𝑎 (𝑥) ≥ 𝑎
0
> 0, ∀𝑥 ∈ 𝜔,

−𝜉
1
𝑔 (𝑡) ≤ 𝑔


(𝑡) ≤ −𝜉

2
𝑔 (𝑡) , 𝑡 ≥ 0,

𝑎 (𝑥) + 𝑏 (𝑥) ≥ 𝜌 > 0, ∀𝑥 ∈ Ω,

(8)

they established an exponential stability for the relaxation
function 𝑔 decaying exponentially and ℎ linear and polyno-
mial stability for 𝑔 decaying polynomially and ℎ nonlinear.
It is worth mentioning that Zhang et al. [11] studied the
following initial boundary value problem:

𝑢
𝑡𝑡
+ 𝐴𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝐴𝑢 𝑑𝑠 = 0 in Ω × (0,∞) ,

𝑢 = 0 on Γ × (0,∞) ,

𝑢 (0) = 𝑢
0
, 𝑢

𝑡
(0) = 𝑢

1
.

(9)

Furthermore, they showed that the solutions of (9) decay
uniformly in time, with rates depending on the rate of
decay of the kernel 𝑔. More precisely, the solution decays
exponentially to zero provided that 𝑔 decays exponentially
to zero. When 𝑔 decays polynomially, we show that the
corresponding solution also decays polynomially to zero with
the same rate of decay. For other related works, we refer the
readers to [12–21] and the references therein.

On the other hand, concerning the study of the following
nonlinear viscoelastic equation with memory, there are a
substantial number of contributions:





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑡𝑡
) = 0.

(10)

Recently, Han and Wang [22] investigated the following
problem:





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− Δ𝑢 − Δ𝑢

𝑡𝑡
+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 = 𝑏|𝑢|
𝑝−2

𝑢. (11)

By introducing a new functional and using potential well
method, the authors established the global existence and
uniform decay if the initial data are in a suitable stable set.
Cavalcanti et al. [23] studied a related problem with strong
damping as follows:





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− Δ𝑢 − Δ𝑢

𝑡𝑡
+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 − 𝛾Δ𝑢
𝑡
= 0.

(12)

By assuming 0 < 𝜌 ≤ 2/(𝑛−2), if 𝑛 ≥ 3 or 𝜌 > 0 and if 𝑛 = 1, 2
and 𝑔(𝑡) decays exponentially, they established that the global
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existence resulted for 𝛾 ≥ 0 and the exponential decay of the
energy for 𝛾 > 0. This result has been extended to a situation
𝛾 = 0 byMessaoudi and Tatar [24] and exponential decay and
polynomial decay results have been shown in the absence as
well as presence of a source term. Later on, inspired by the
ideas of [25–27], Han andWang [22] investigated the general
decay of solutions of energy for the nonlinear viscoelastic
equation





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− Δ𝑢 − Δ𝑢

𝑡𝑡
+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝑢
𝑡





𝑢
𝑡






𝑘

= 0.

(13)

In recent years, the control of partial differential equation
with time delay effects has become an active area of research;
see, for instance, [28, 29] and the references therein. The
presence of delay may be a source of instability. For instance,
it was proved in [30–34] that an arbitrarily small delay may
destabilize a system which is uniformly asymptotically stable
in the absence of delay unless additional conditions or control
terms have been used. In [32], Nicaise and Pignotti examined
(1) with 𝜌 = 0, 𝑔 ≡ 0, 𝜇

1
> 0, 𝜇

2
> 0, and 𝜏(𝑡) = 𝜏

being a constant delay in the case of mixed homogeneous
Dirichlet-Neumann boundary conditions, under a geometric
condition on the Neumann part of the boundary. More
precisely, they investigated the following system with linear
frictional damping term and internal constant delay:

𝑢
𝑡𝑡
(𝑥, 𝑡) − Δ𝑢 (𝑥, 𝑡) + 𝜇

1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏) = 0,

𝑥 ∈ Ω, 𝑡 > 0

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ Γ
0
, 𝑡 > 0

𝜕𝑢

𝜕]
(𝑥, 𝑡) = 0, 𝑥 ∈ Γ

1
, 𝑡 > 0

(14)

or with boundary constant delay

𝑢
𝑡𝑡
(𝑥, 𝑡) − Δ𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ Γ
0
, 𝑡 > 0,

𝜕𝑢

𝜕]
(𝑥, 𝑡) + 𝜇

1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏) = 0,

𝑥 ∈ Γ
1
, 𝑡 > 0.

(15)

In the presence of delay (𝜇
2

> 0), Nicaise and Pignotti
[32] examined systems (14) and (15) and proved under the
assumptions 𝜇

2
< 𝜇
1
that the energy is exponentially

stable. Otherwise, they constructed a sequence of delays
for which the corresponding solution is instable. The main
approach used there is an observability inequality together
with a Carleman estimate. See also [35] for treatment to
these problems in more general abstract form and [36] for
analogous results in the case of boundary time-varying delay.
We also recall the result by Nicaise et al. [36], where the
researchers proved the same result as in [32] for the one
space dimension by applying the spectral analysis approach.
Recently, Kirane and Said-Houari [37] considered (1) with
𝜌 = 0, 𝜇

1
> 0, 𝜇

2
> 0, and 𝜏(𝑡) ≡ 𝜏 being a constant delay in

the case of the initial and Dirichlet boundary wave equation
with a linear damping and a delay term as follows:

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝜇
1
𝑢
𝑡
(𝑥, 𝑡)

+ 𝜇
2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏) = 0, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

𝑢
𝑡
(𝑥, 𝑡 − 𝜏) = 𝑓

0
(𝑥, 𝑡 − 𝜏) , 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝜏) .

(16)

Under an assumption between the weight of the delay term in
the feedback and the weight of the term without delay, using
the Faedo-Galerkin method combined with some energy
estimate, they proved the global existence of (16). Also,
they proved exponential decay of (16) via suitable Lyapunov
functionals.

Recently, the stability of PDEs with time-varying delays
was studied in [38–44]. In [40], Nicaise and Pignotti inves-
tigated the stabilization problem by interior damping of the
wave equation with internal time-varying delay feedback
and established exponential stability estimates by introducing
suitable Lyapunov functionals, under the condition |𝜇

2
| <

√1 − 𝑑𝜇
1
in which the positivity of the coefficient 𝜇

1
is

not necessary. In [41], Nicaise et al. showed the exponential
stability of the heat and wave equations with time-varying
boundary delay in 1-D, under the condition 0 ≤ 𝜇

2
<

√1 − 𝑑𝜇
1
, where 𝑑 is a constant such that 𝜏(𝑡) ≤ 𝑑 < 1.

The rest of the paper is organized as follows. In Section 2,
we show some assumptions and state our main result. In
Section 3, we present the proof of our main result. That is,
we will prove the global existence by using Faedo-Galerkin
method and establish the general decay result (including
exponential decay and polynomial decay) by using the per-
turbed energy method. Finally, in Section 4, we give further
remarks on this context.

2. Some Assumptions and Main Results

In this section, before proceeding to our analysis, we present
some assumptions and state the main result. We use the
standard Hilbert space 𝐿2(Ω) and the Sobolev space 𝐻1

0
(Ω)

with their usual scalar products and norms. Throughout this
paper, 𝐶

𝑖
is used to denote a generic positive constant from

line to line.
For the relaxation function ℎ, we assume that

(G1) ℎ(𝑡) : (0,∞) → (0,∞) is a nonincreasing differen-
tiable function such that

1 − ∫

∞

0

ℎ (𝑠) 𝑑𝑠 = 𝑙 > 0; (17)

(G2) there exists a nonincreasing differentiable function
𝜁(𝑡) such that

ℎ

(𝑡) ≤ −𝜁 (𝑡) ℎ

𝑝
(𝑡) , 1 ≤ 𝑝 <

3

2

, 𝑡 ≥ 0. (18)
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We assume that 𝜌 satisfies

0 < 𝜌 ≤

2

𝑛 − 2

, if 𝑛 ≥ 3; 𝜌 > 0, if 𝑛 = 1, 2. (19)

For the time-varying delay, we assume that there exist positive
constant 𝜏

0
, 𝜏 such that

0 < 𝜏
0
≤ 𝜏 (𝑡) ≤ 𝜏, ∀𝑡 > 0. (20)

Furthermore, we assume that the delay satisfies

𝜏

(𝑡) ≤ 𝑑 < 1, ∀𝑡 > 0, (21)

that

𝜏 (𝑡) ∈ 𝑊
2,∞

([0, 𝑇]) , ∀𝑇 > 0, (22)

and that 𝜇
1
, 𝜇
2
satisfy





𝜇
2





< √1 − 𝑑𝜇

1
. (23)

Remark 1. We show an example of functions satisfying (G2)
as follows:

ℎ (𝑠) = 𝑒
−𝜎𝑠
, 𝑝 = 1,

ℎ (𝑠) = 𝜗(1 + 𝑠)
−1/(𝑝−1)

, 𝑝 > 1,

(24)

for 𝜎, 𝜗 > 0 to be chosen properly; see [2].

Remark 2. Condition 𝑝 < 3/2 is imposed so that
∫

∞

0
ℎ
2−𝑝

(𝑠)𝑑𝑠 < ∞.

Now, we are in a position to state our main results.

Theorem3. Let (20)–(23) be satisfied and ℎ satisfy (G2).Then,
given (𝑢

0
, 𝑢
1
) ∈ 𝐻

1

0
(Ω)×𝐿

2
(Ω), 𝑓

0
∈ 𝐿
2
(Ω×(0, 1)), and𝑇 > 0,

there exists a unique weak solution 𝑢(𝑥, 𝑡) such that

𝑢 ∈ 𝐶 (0, 𝑇;𝐻
1

0
(Ω)) ∩ 𝐶

1
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑢
𝑡
∈ 𝐿
2
(0, 𝑇;𝐻

1

0
(Ω)) ∩ 𝐿

2
((0, 𝑇) × Ω) .

(25)

Moreover, if (20)–(23) hold and ℎ satisfies (G1) and (G2), then
there exist two positive constants𝐾, 𝑘 such that for any solution
of the problem (1) of the energy satisfies

E (𝑡) ≤ 𝐾𝑒
−𝑘𝑡
, 𝑝 = 1, 𝑡 ≥ 𝑡

0
, (26)

E (𝑡) ≤ 𝐾(1 + 𝑡)
−1/(𝑝−1)

, 𝑝 > 1, 𝑡 ≥ 𝑡
0
. (27)

3. Proof of the Main Result

In this section, we will divide our proof into two steps. In
Step 1, we prove the global existence of weak solutions by
using Faedo-Galerkin method benefited from the ideas of
[2, 3, 37]. In Step 2, we establish the general decay of energy
by introducing the new energy functional and using the
perturbed energy method inspired by the contributions; see,
for instance, [2–4, 11, 39].

Step 1 (global existence of weak solutions). Let {𝜔}∞
𝑗

be an
orthogonal basis of 𝐻1

0
(Ω) with 𝜔

𝑗
being the eigenfunction

of the following problem:

−Δ𝜔
𝑗
= 𝜆
𝑗
𝜔
𝑗
, 𝑥 ∈ Ω,

𝜔
𝑗
= 0, 𝑥 ∈ 𝜕Ω.

(28)

Denote𝑊
𝑛
= Span{𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
} for subspace generated by

the first 𝑛 vectors of the basis of {𝜔}∞
𝑗
. Then, we construct

approximation of the solution (𝑢, 𝑧) as follows:

𝑢
𝑛
(𝑥, 𝑡) =

𝑛

∑

𝑗=1

𝑔
𝑗𝑛
(𝑡) 𝜔
𝑗
,

𝑧
𝑛
(𝑥, 𝑡, 𝜌) =

𝑚

∑

𝑗=1

ℎ
𝑗𝑛
(𝑡) 𝜙
𝑗
(𝑥, 𝜌)

(29)

and we choose two sequences 𝑢
0𝑛

and 𝑢
1𝑛

in 𝑊
𝑛
and a

sequence 𝑧
0𝑛

in 𝑉
𝑛
such that 𝑢

0𝑛
→ 𝑢

0
strongly in

𝐻
1

0
(Ω), 𝑢

1𝑛
→ 𝑢
1
strongly in 𝐿2(Ω), and 𝑧

0𝑛
→ 𝑓
0
strongly

in 𝐿
2
(Ω × (0, 1)). Define the sequence 𝜙

𝑗
(𝑥, 𝜌) as follows:

𝜙
𝑗
(𝑥, 0) = 𝜙

𝑗
(𝑥). Then, from [37, pp 1069], we may extend

𝜙
𝑗
(𝑥, 0) by 𝜙

𝑗
(𝑥, 𝜌) over 𝐿2(Ω × (0, 1)) and denote 𝑉

𝑛
=

Span{𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
}.

To facilitate further our analysis, we introduce as in [32,
36, 39] the new variable

𝑧 (𝑥, 𝜃, 𝑡) = 𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡) 𝜃) , 𝑥 ∈ Ω, 𝜃 ∈ (0, 1) , 𝑡 > 0.

(30)

Then, we get

𝜏 (𝑡) 𝑧 (𝑥, 𝜃, 𝑡) + (1 − 𝜏

(𝑡) 𝜃) 𝑧

𝜃
(𝑥, 𝜃, 𝑡) = 0,

𝑥 ∈ Ω, 𝜃 ∈ (0, 1) , 𝑡 > 0.

(31)

Therefore, the problem (1) can be rewritten as follows:





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠

+ 𝜇
1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑧 (𝑥, 1, 𝑡) = 0, 𝑥 ∈ Ω, 𝑡 > 0,

𝜏 (𝑡) 𝑧 (𝑥, 𝜃, 𝑡) + (1 − 𝜏

(𝑡) 𝜃) 𝑧

𝜃
(𝑥, 𝜃, 𝑡) = 0,

𝑥 ∈ Ω, 𝜃 ∈ (0, 1) , 𝑡 > 0

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

𝑧 (𝑥, 𝜃, 0) = 𝑓
0
(𝑥, −𝜏 (0)) ,

𝑥 ∈ Ω, 𝜃 ∈ (0, 1) , −𝜏 (0) ≤ 𝑡 ≤ 0.

(32)
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Hence, (𝑢
𝑛
(𝑡), 𝑧
𝑛
(𝑡)) are solutions to the following Cauchy

problem as follows:

∫

Ω





𝑢
𝑡𝑛






𝜌

𝑢
𝑡𝑡𝑛
𝜔
𝑗
𝑑𝑥 + ∫

Ω

∇𝑢
𝑛
∇𝜔
𝑗
𝑑𝑥

− ∫

𝑡

0

ℎ (𝑡 − 𝑠) ∇𝑢 (𝑠) ∇𝜔
𝑗
𝑑𝑥 𝑑𝑠

+ ∫

Ω

[𝜇
1
𝑢
𝑡𝑛
(𝑥, 𝑡) + 𝜇

2
𝑧
𝑛
(𝑥, 1, 𝑡)] 𝜔

𝑗
𝑑𝑥 = 0,

𝑧
𝑛
(𝑥, 0, 𝑡) = 𝑢

𝑡𝑛
(𝑥, 𝑡) ,

(𝑢
𝑛
(0) , 𝑢

𝑡𝑛
(0)) = (𝑢

0𝑛
, 𝑢
1𝑛
) ,

(33)

∫

Ω

[𝜏 (𝑡) 𝑧
𝑛𝑡
(𝑥, 𝜃, 𝑡) + (1 − 𝜏


(𝑡) 𝜃) 𝑧

𝑛𝜃
(𝑥, 𝜃, 𝑡)] 𝜙

𝑗
𝑑𝑥 = 0,

𝑧
𝑛,0

= 𝑧
0𝑛
.

(34)

By standard method of ODE, we know that there exists only
one local solution of the Cauchy problem (33) and (34) on
some interval [0, 𝑡

𝑛
), 0 < 𝑡

𝑛
< 𝑇, for arbitrary 𝑇 > 0; then,

this solution can be extended to the whole interval [0, 𝑇] by a
priori estimates below.

To facilitate further our analysis, we need some notations
and technical Lemmas 4 and 6. Let us first introduce some
notations

(𝜙 ⋆ 𝜓) (𝑡) = ∫

𝑡

0

𝜙 (𝑡 − 𝑠) 𝜓 (𝑠) 𝑑𝑠;

(𝜙 ⬦ 𝜓) (𝑡) = ∫

𝑡

0

𝜙 (𝑡 − 𝑠)




𝜓 (𝑡) − 𝜓 (𝑠)





𝑑𝑠,

(𝜙 ∘ 𝜓) (𝑡) = ∫

𝑡

0

𝜙 (𝑡 − 𝑠) ∫

Ω





𝜓(𝑡) − 𝜓(𝑠)






2

𝑑𝑥 𝑑𝑠,

(35)

with these notations; we have the following lemma given in
[2, 11].

Lemma 4. For 𝜙 ∈ 𝐶1(R) and 𝜓 ∈ 𝐻
1
(0, 𝑇), one has

(𝜙 ⋆ 𝜓) (𝑡) ⋅ 𝜓 (𝑡) = −

1

2

𝜙 (𝑡)




𝜓(𝑡)






2

+

1

2

(𝜙

♢𝜓) (𝑡)

−

1

2

𝑑

𝑑𝑡

[ (𝜙♢𝜓) (𝑡)

− (∫

𝑡

0

𝜙 (𝑠) 𝑑𝑠)




𝜙





2

𝑑𝑥] .

(36)

Remark 5. In fact, the proof of this lemma follows by
differentiating the term 𝑔♢𝜙. More details are presented in
[2, 11, 37].

Lemma 6. Assuming that V ∈ 𝐿
∞
(0, 𝑇;𝐻

1
(Ω)), ℎ is a

continuous function such that

∫

∞

0

ℎ
1−𝛼

(𝑠) 𝑑𝑠 < ∞, 0 ≤ 𝛼 ≤ 1. (37)

Then, we have

(ℎ ∘ ∇V) (𝑡) ≤ 2[∫
𝑡

0

‖∇V (𝑠)‖2
2
𝑑𝑠 + 𝑡‖∇V (𝑡)‖2

2
]

(𝑝−1)/𝑝

× ((ℎ ∘ ∇V) (𝑡))1/𝑝.

(38)

Proof. It suffices to observe that, for 𝑞 > 1, 0 ≤ 𝛼 ≤ 1,

(ℎ ∘ ∇V) (𝑡) = ∫
𝑡

0

ℎ (𝑡 − 𝑠) ‖∇V(𝑡) − ∇V(𝑠)‖2
2
𝑑𝑠

= ∫

𝑡

0

ℎ
(1−𝛼)/𝑞

(𝑡 − 𝑠) ‖∇V(𝑡) − ∇V(𝑠)‖2/𝑞
2
ℎ
(𝑞−1+𝛼)/𝑞

× (𝑡 − 𝑠) ‖∇V(𝑡) − ∇V(𝑠)‖2(𝑞−1)/𝑞
2

𝑑𝑠.

(39)

By applying Hölder inequality, we obtain

(ℎ ∘ ∇V) (𝑡)

≤ (∫

𝑡

0

ℎ
(1−𝛼)/𝑞

(𝑡 − 𝑠) ‖∇V (𝑡) − ∇V (𝑠)‖2
2
𝑑𝑠)

1/𝑞

× (∫

𝑡

0

ℎ
(𝑞−1+𝛼)/(𝑞−1)

(𝑡 − 𝑠) ‖∇V (𝑡) − ∇V (𝑠)‖2
2
𝑑𝑠)

(𝑞−1)/𝑞

.

(40)

Taking 𝑞 = (𝑝 − 1 + 𝛼)/(𝑝 − 1), we get

(ℎ ∘ ∇V) (𝑡)

≤ (∫

𝑡

0

ℎ
(1−𝛼)(𝑝−1)/(𝑝−1+𝛼)

(𝑡 − 𝑠)

× ‖∇V (𝑡) − ∇V (𝑠)‖2
2
𝑑𝑠)

(𝑝−1)/(𝑝−1+𝛼)

× (∫

𝑡

0

ℎ
𝑝𝛼/(𝑝−1+𝛼)

(𝑡 − 𝑠) ‖∇V (𝑡) − ∇V (𝑠)‖2
2
𝑑𝑠)

𝛼/(𝑝−1+𝛼)

.

(41)

Finally, taking 𝛼 = 1 in the above equality, Lemma 6 is
completed.

3.1. A Priori Estimate. Taking𝜔
𝑗
= 𝑢
𝑡𝑛
in (33) and integrating

over (0, 𝑡), using integration by parts and Lemma 4, we obtain

1

2

[(1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)




∇𝑢
𝑛






2

2
+

2

𝜌 + 2





𝑢
𝑡𝑛






𝜌+2

𝜌+2
+ (ℎ ∘ ∇𝑢

𝑛
) (𝑡)]

+ 𝜇
1
∫

𝑡

0





𝑢
𝑡𝑛






2

2
𝑑𝑠 + 𝜇

2
∫

𝑡

0

∫

Ω

𝑧
𝑛
(𝑥, 1, 𝑠) 𝑢

𝑡𝑛
(𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

+

1

2

∫

𝑡

0

ℎ (𝑠)




∇𝑢
𝑛
(𝑠)





2

2
𝑑𝑠 −

1

2

∫

𝑡

0

(ℎ

∘ ∇𝑢
𝑛
) (𝑠) 𝑑𝑠

=

1

2

(




∇𝑢
0






2

2
+

2

𝜌 + 2





𝑢
1






𝜌+2

𝜌+2
) .

(42)
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Taking 𝜙
𝑗
= 𝑧
𝑛
(𝜉/𝜏(𝑡)) in (34) and integrating over (0, 𝑡), we

get

𝜉

2

∫

Ω

∫

1

0

𝑧
2

𝑛
(𝑥, 𝜃, 𝑡) 𝑑𝜃 𝑑𝑥

+ 𝜉∫

𝑡

0

∫

Ω

∫

1

0

1 − 𝜏

(𝑡) 𝜃

𝜏 (𝑡)

𝑧
𝑛𝜃
𝑧
𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝜃 𝑑𝑥 𝑑𝑠

=

𝜉

2





𝑧
0𝑛






2

𝐿
2
(Ω×(0,1))

.

(43)

Now, integrating by parts, we obtain

∫

𝑡

0

∫

Ω

∫

1

0

1 − 𝜏

(𝑡) 𝜃

𝜏 (𝑡)

𝑧
𝑛𝜃
𝑧
𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝜃 𝑑𝑥 𝑑𝑠

=

1

2

∫

𝑡

0

∫

Ω

∫

1

0

(

𝜕

𝜕𝜃

𝑧
2

𝑛
(𝑥, 𝜃, 𝑠)

1 − 𝜏

(𝑡) 𝜃

𝜏 (𝑡)

) 𝑑𝜃 𝑑𝑥 𝑑𝑠

= −

1

2

∫

𝑡

0

∫

Ω

1 − 𝜏

(𝑡) 𝜃

𝜏 (𝑡)

𝑧
2

𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝑠 𝑑𝑥

+

1

2

∫

𝑡

0

∫

Ω

[

(1 − 𝜏

(𝑡) 𝜃) 𝑧

2

𝑛
(𝑥, 1, 𝑠) − 𝑧

2

𝑛
(𝑥, 0, 𝑠)

𝜏 (𝑡)

] 𝑑𝑥 𝑑𝑠.

(44)

It follows from (43) and (44) that

𝜉

2

∫

Ω

∫

1

0

𝑧
2

𝑛
(𝑥, 𝜃, 𝑡) 𝑑𝜃 𝑑𝑥

+ 𝜉∫

𝑡

0

∫

Ω

∫

1

0

𝜏

(𝑡) 𝜃 − 1

𝜏 (𝑡)

𝑧
2

𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝑥 𝑑𝑠

+

1

2

∫

𝑡

0

∫

Ω

[

(1 − 𝜏

(𝑡) 𝜃) 𝑧

2

𝑛
(𝑥, 1, 𝑠) − 𝑧

2

𝑛
(𝑥, 0, 𝑠)

𝜏 (𝑡)

] 𝑑𝑥 𝑑𝑠

=

𝜉

2





𝑧
0𝑛






2

𝐿
2
(Ω×(0,1))

.

(45)

Summing up (42) and (45), we conclude that

E
𝑛
(𝑡) + 𝜇

1
∫

𝑡

0





𝑢
𝑡𝑛






2

2
𝑑𝑠 + 𝜇

2
∫

𝑡

0

∫

Ω

𝑧
𝑛
(𝑥, 1, 𝑠) 𝑢

𝑡𝑛
(𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

+

1

2

∫

𝑡

0

ℎ (𝑠)




∇𝑢
𝑛
(𝑠)





2

2
𝑑𝑠 −

1

2

∫

𝑡

0

(ℎ

∘ ∇𝑢
𝑛
) (𝑠) 𝑑𝑠

+

𝜉

2

∫

𝑡

0

∫

Ω

𝜏

(𝑡) 𝜃 − 1

𝜏 (𝑡)

𝑧
2

𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝑥 𝑑𝑠

+

1

2

∫

𝑡

0

∫

Ω

[

(1 − 𝜏

(𝑡) 𝜃) 𝑧

2

𝑛
(𝑥, 1, 𝑠) − 𝑧

2

𝑛
(𝑥, 0, 𝑠)

𝜏 (𝑡)

] 𝑑𝑥 𝑑𝑠

=

1

2





∇𝑢
0






2

2
+

1

𝜌 + 2





𝑢
𝑡𝑛






𝜌+2

𝜌+2
+

𝜉

2





𝑧
0






2

𝐿
2
(Ω×(0,1))

= E
𝑛
(0) ,

(46)

where

E
𝑛
(𝑡) =

1

2

[(1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)




∇𝑢
𝑛






2

2
+

2

𝜌 + 2





𝑢
𝑡𝑛






𝜌+2

𝜌+2

+ (ℎ ∘ ∇𝑢
𝑛
) (𝑡) ] +

𝜉

2





𝑧
𝑛






2

𝐿
2
(Ω×(0,1))

.

(47)

Using Young’s inequality and noticing (20) and (21), we arrive
at

(𝜇
1
−

𝜇
2
𝜉

2

)∫

𝑡

0





𝑢
𝑡𝑛






2

2
𝑑𝑠

+ ∫

𝑡

0

∫

Ω

[𝜉

1 − 𝜏

(𝑡)

2𝜏 (𝑡)

−

𝜇
2

2𝜉

] 𝑧
2

𝑛
(𝑥, 1, 𝑠)

+

1

2

∫

𝑡

0

ℎ (𝑠)




∇𝑢
𝑛
(𝑠)





2

2
𝑑𝑠 −

1

2

∫

𝑡

0

(ℎ

∘ ∇𝑢
𝑛
) (𝑠) 𝑑𝑠

+

𝜉

2

∫

𝑡

0

∫

Ω

𝜏

(𝑡) 𝜃 − 1

𝜏 (𝑡)

𝑧
2

𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝑥 𝑑𝑠 = E

𝑛
(0) .

(48)

Choosing some value of 𝜏(𝑡) > 0 and 𝜃 and noticing (20) and
(21), we have (𝜏(𝑡)𝜃 − 1)/𝜏(𝑡) > 0. Moreover, choosing some
value of 𝜏(𝑡) > 0 and 𝜉, we obtain

𝜇
1
−

𝜇
2
𝜉

2

> 0, 𝜉

1 − 𝜏

(𝑡)

2𝜏 (𝑡)

−

𝜇
2

2𝜉

> 0. (49)

That is,

√

𝜇
2
𝜏 (𝑡)

1 − 𝜏

(𝑡)

< 𝜉 <

2𝜇
1

𝜇
2

. (50)

In fact, by (20) and (21), we get √𝜇
2
𝜏(𝑡)
0
/(1 − 𝑑) < 𝜉 <

2𝜇
1
/𝜇
2
. From (48) and (50), (G1), and (G1) and Lemma 6, we

conclude that we can find a positive𝐶 independent of 𝑛, such
that

E
𝑛
(𝑡) ≤ 𝐶. (51)

Hence, using the fact that 1 − ∫𝑡
0
ℎ(𝑠)𝑑𝑠 ≥ 𝑙, the estimate (51),

and equality (47), we deduce

𝑢
𝑛
is uniformly bounded in 𝐿

∞
(0, 𝑇;𝐻

1

0
(Ω)) ,

𝑢
𝑡𝑛
is uniformly bounded in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑧
𝑛
is uniformly bounded in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω × (0, 1))) .

(52)

By (52), we infer that there exist two subsequences 𝑢
𝑛
, 𝑧
𝑛
(still

denoted by 𝑢
𝑛
, 𝑧
𝑛
) and two functions 𝑢 and 𝑧, such that

𝑢
𝑛
⇀ 𝑢 weakly star in 𝐿

∞
(0, 𝑇;𝐻

1

0
(Ω)) ,

𝑢
𝑡𝑛
⇀ 𝑢
𝑡
weakly star in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑧
𝑛
⇀ 𝑧 weakly star in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω × (0, 1))) .

(53)
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From (52), we have 𝑢
𝑛
is bounded in 𝐿2(0, 𝑇;𝐻1

0
(Ω)) and 𝑢

𝑡𝑛

is bounded in 𝐿2(0, 𝑇; 𝐿2(Ω)). Consequently, 𝑢
𝑛
is bounded

in 𝐿2(0, 𝑇; 𝐿2(Ω)). More details are present in [37, pp 1072].
Since the Sobolev embedding 𝐻

1
(0, 𝑇;𝐻

1
(Ω)) →

𝐿
2
(0, 𝑇; 𝐿

2
(Ω)) is compact, using Aubin-Lions theorem (see

[45]), we can extract a subsequence of 𝑢
𝑛
(still denoted by

𝑢
𝑛
), such that

𝑢
𝑛
→ 𝑢 strongly in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑢
𝑡𝑛
→ 𝑢
𝑡
strongly in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)) ,

(54)

which implies 𝑢
𝑡𝑛
→ 𝑢
𝑡
almost everywhere in Ω × (0, 𝑇).

Hence,




𝑢
𝑡𝑛






𝜌

𝑢
𝑡𝑛
→





𝑢
𝑡






𝜌

𝑢
𝑡
almost everywhere in Ω × (0, 𝑇) .

(55)

On the other hand, by the Sobolev embedding theorem and
estimate (51), this yields











𝑢
𝑡𝑛






𝜌

𝑢
𝑡𝑛





𝐿
2
(0,𝑇;𝐿

2
(Ω))

= ∫

𝑇

0

∫

Ω





𝑢
𝑡𝑛






2(𝜌+1)

𝑑𝑥 𝑑𝑡

≤ 𝐶
2(𝜌+1)

𝑆
∫

𝑇

0





∇𝑢
𝑡𝑛






2(𝜌+1)

2
𝑑𝑡

≤ 𝐶
2(𝜌+1)

𝑆
𝐶
𝜌+1

𝑇,

(56)

where 𝐶
𝑆
is the Sobolev embedding constant. Thus, using

(55), (56), and Lions Lemma [46], we get




𝑢
𝑡𝑛






𝜌

𝑢
𝑡𝑛
⇀





𝑢
𝑡






𝜌

𝑢
𝑡
weakly in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)) . (57)

Let D(0, 𝑇) be the space of 𝐶∞ functions with compact
support in (0, 𝑇). Multiplying the first equation in (33) by
Θ(𝑡) ∈ D(0, 𝑇) and integrating over (0, 𝑇), we conclude that

−

1

𝜌 + 1

∫

𝑇

0

(




𝑢
𝑡𝑛






𝜌

𝑢
𝑡𝑛
, 𝜔
𝑗
)Θ
𝑡
(𝑡) 𝑑𝑡

+ ∫

𝑇

0

(∇𝑢
𝑡𝑛
, ∇𝜔
𝑗
)Θ (𝑡) 𝑑𝑡

− ∫

𝑇

0

∫

𝑡

0

ℎ (𝑡 − 𝑠) (∇𝑢
𝑡𝑛
, ∇𝜔
𝑗
)Θ
𝑡
(𝑡) 𝑑𝑠 𝑑𝑡

+ ∫

𝑇

0

(𝜇
1
𝑢
𝑡𝑛
+ 𝜇
2
𝑧
𝑛
, 𝜔
𝑗
)Θ (𝑡) 𝑑𝑡 = 0.

(58)

Noticing that {𝜔
𝑗
}
∞

𝑗
is a basis of𝐻1

0
(Ω), via convergence (53)

and (57), we can pass to the limit in (58) and obtain





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝜇
1
𝑢
𝑡
(𝑥, 𝑡)

+ 𝜇
2
𝑧 (𝑥, 1, 𝑡) = 0.

(59)

Similarly, we get

𝜏 (𝑡) 𝑧
𝑡
(𝑥, 𝜃, 𝑡) + (1 − 𝜏


(𝑡) 𝜃) 𝑧

𝜃
(𝑥, 𝜃, 𝑡) = 0. (60)

From (53) and given the label of lemma in [46], we obtain

𝑢
𝑛
(0) ⇀ 𝑢 (0) weakly in 𝐻

1

0
(Ω) ;

𝑢
𝑡𝑛
(0) ⇀ 𝑢

𝑡
(0) weakly in 𝐿

2
(Ω) .

(61)

Therefore, we have 𝑢(0) = 𝑢
0
, 𝑢
𝑡
(0) = 𝑢

1
. Consequently, the

global existence of weak solution is established.

Step 2 (general decay of the energy). First, we introduce the
new energy functional 𝐸(𝑡) and the perturbed energy 𝐸

𝜀
(𝑡);

then we apply the perturbed energy method to establish
general decay of the energy. More precisely, the method used
is based on the construction of suitable Lyapunov functionals
𝐸(𝑡) and 𝐸

𝜀
(𝑡) satisfying

𝑑

𝑑𝑡

𝐸
𝜀
(𝑡) ≤ −𝐶

1
𝐸
𝜀
(𝑡) + 𝐶

2
𝐸(𝑡)
−𝑟𝑡 (62)

for some positive constants𝐶
1
, 𝐶
2
, 𝑅.More details are present

in [3, pp 1017] or [2, 4, 16].

Now, we introduce the new energy functional as follows:

𝐸 (𝑡)

= 𝐸 (𝑢, 𝑧, 𝑡)

=

1

2

[

2

𝜌 + 2





𝑢
𝑡






𝜌+2

𝜌+2
+ (1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠) ‖∇𝑢‖
2

2
+ (ℎ ∘ ∇𝑢) (𝑡)]

+

𝜉

2

∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥,

(63)

where 𝜉, 𝜆 are suitable positive constants.
Next, we will fix 𝜉 such that

2𝜇
1
−





𝜇
2






√1 − 𝑑

− 𝜉 > 0, 𝜉 −





𝜇
2






√1 − 𝑑

> 0,

𝜆 <

1

𝜏











log−




𝜇
2






𝜉√1 − 𝑑











.

(64)

Remark 7. In fact, the existence of such a constant 𝜉 is
guaranteed by the assumption (23).

Therefore, we have the following lemma.

Lemma 8. Let (20)–(23) be satisfied and ℎ satisfy (G1). Then,
for the solution of problem (1), the energy functional defined by
(63) is nonincreasing and satisfies

𝐸

(𝑡) ≤

1

2

(ℎ ∘ ∇𝑢) (𝑡) −

1

2

ℎ (𝑡) ∫

Ω

|∇𝑢| 𝑑𝑥

− 𝐶
1
∫

Ω

[𝑢
2

𝑡
(𝑥, 𝑡) + 𝑢

2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−

𝜆𝜉

2

∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥 ≤ 0,

(65)

for some positive constant 𝐶
1
.
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Proof of Lemma 8. Differentiating (63) and noticing the first
equation in (1) together with

(ℎ ∘ ∇𝑢) (𝑡) = ∫

Ω

∫

𝑡

0

ℎ (𝑡 − 𝑠) |∇𝑢(𝑡) − ∇𝑢(𝑠)|
2
𝑑𝑠 𝑑𝑥, (66)

we obtain

𝐸

(𝑡) = ∫

Ω





𝑢
𝑡




𝜌+1

𝑢
𝑡𝑡
−

1

2

ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

+ (1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫

Ω

∇𝑢 ⋅ ∇𝑢
𝑡
𝑑𝑥

+ ∫

𝑡

0

ℎ (𝑡 − 𝑠) 𝑑𝑠 ∫

Ω

[∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+

1

2

∫

𝑡

0

ℎ

(𝑡 − 𝑠) ∫

Ω

|∇𝑢(𝑡) − ∇𝑢(𝑠)|
2
𝑑𝑠 𝑑𝑥

+

𝜉

2

∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

−

𝜉

2

∫

Ω

𝑒
−𝜆𝜏(𝑡)

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) (1 − 𝜏


(𝑡)) 𝑑𝑥

−

𝜆𝜉

2

∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥

= ∫

Ω

𝑢
𝑡
[Δ𝑢 − ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 − 𝜇
1
𝑢
𝑡
(𝑥, 𝑡)

−𝜇
2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) ] 𝑑𝑥

−

1

2

ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

+ ∫

Ω

∇𝑢 ⋅ ∇𝑢
𝑡
𝑑𝑥 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠 ∫

Ω

∇𝑢 ⋅ ∇𝑢
𝑡
𝑑𝑥

+ ∫

𝑡

0

ℎ (𝑡 − 𝑠) 𝑑𝑠 ∫

Ω

[∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+

1

2

(ℎ

∘ ∇𝑢) (𝑡) +

𝜉

2

∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

−

𝜉

2

∫

Ω

𝑒
−𝜆𝜏(𝑡)

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) (1 − 𝜏


(𝑡)) 𝑑𝑥

−

𝜆𝜉

2

∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥

= −𝜇
1
∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 − 𝜇

2
∫

Ω

𝑢
𝑡
(𝑥, 𝑡) 𝑢

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

−

1

2

ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥 +

1

2

(ℎ

∘ ∇𝑢) (𝑡)

+

𝜉

2

∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

−

𝜉

2

∫

Ω

𝑒
−𝜆𝜏(𝑡)

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) (1 − 𝜏


(𝑡)) 𝑑𝑥

−

𝜆𝜉

2

∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥.

(67)

Applying Young’s inequality, we obtain

− 𝜇
2
∫

Ω

𝑢
𝑡
(𝑥, 𝑡) 𝑢

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

≤





𝜇
2






2√1 − 𝑑

∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

+





𝜇
2





√1 − 𝑑

2

∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥.

(68)

Integrating by parts, using the assumption (20), (21) and (67),
(68), we arrive at

𝐸

(𝑡) ≤ −𝜇

1
∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

− 𝜇
2
∫

Ω

𝑢
𝑡
(𝑥, 𝑡) 𝑢

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

−

1

2

ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥 +

1

2

(ℎ

∘ ∇𝑢) (𝑡)

+

𝜉

2

∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 −

𝜉

2

(1 − 𝑑) 𝑒
−𝜆𝜏

× ∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

(0 < 𝜏
0
≤ 𝜏 (𝑡) ≤ 𝜏, 𝜏


(𝑡) ≤ 𝑑 < 1)

−

𝜆𝜉

2

∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥

≤

1

2

(ℎ

∘ ∇𝑢) (𝑡) −

1

2

ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

− (𝜇
1
−





𝜇
2






2√1 − 𝑑

−

𝜉

2

)∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

− (

𝜉

2

(1 − 𝑑) 𝑒
−𝜆𝜏

−





𝜇
2





√1 − 𝑑

2

)

× ∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

−

𝜆𝜉

2

∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥.

(69)

Combining (64) and (69) and the assumptions (G1) and (G2),
(65) is established.
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Next, we introduce the following functionals:

Φ (𝑡) =

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌+1

𝑢𝑑𝑥, (70)

Ψ (𝑡) = −

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌+1

∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥.

(71)

Set

𝐿 (𝑡) = 𝑁𝐸 (𝑡) + 𝜀Φ (𝑡) + Ψ (𝑡) , (72)

where 𝑁 and 𝜀 are suitable positive constants to be deter-
mined later.

Remark 9. Indeed, we easily see that, for 𝜀 small enoughwhile
𝑁 large enough, there exist two positive constants𝛼

0
, 𝛼
1
, such

that

𝛼
0
𝐸 (𝑡) ≤ 𝐿 (𝑡) ≤ 𝛼

1
𝐸 (𝑡) , ∀𝑡 ≥ 0. (73)

Concerning the estimates ofΦ(𝑡), Ψ(𝑡), we have the following
lemmas.

Lemma 10. Under the assumption (G1), the functional Φ(𝑡)
satisfies the estimate

Φ

(𝑡)

≤ −

𝑙

2

∫

Ω

|∇𝑢|
2
𝑑𝑥

+ 𝐶
2
∫

Ω

[𝑢
2

𝑡
(𝑥, 𝑡) + 𝑢

2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥 + 𝐶

3
(ℎ ∘ ∇𝑢) .

(74)

Proof of Lemma 10. Differentiating (70) and integrating by
parts, we get

Φ

(𝑡) = ∫

Ω





𝑢
𝑡






𝜌+1

𝑢
𝑡𝑡
𝑢𝑑𝑥 +

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌+2

𝑑𝑥

= ∫

Ω

𝑢 [Δ𝑢 − ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 − 𝜇
1
𝑢
𝑡
(𝑥, 𝑡)

−𝜇
2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) ] 𝑑𝑥

+

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌+2

𝑑𝑥

= −∫

Ω

|∇𝑢|
2
𝑑𝑥 + ∫

Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) ∇𝑢 (𝑠) 𝑑𝑠 𝑑𝑥

− 𝜇
1
∫

Ω

𝑢𝑢
𝑡
(𝑥, 𝑡) 𝑑𝑥

− 𝜇
2
∫

Ω

𝑢𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌+2

𝑑𝑥

= −𝑙 ∫

Ω

|∇𝑢|
2
𝑑𝑥

+ ∫

Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠 𝑑𝑥

− 𝜇
1
∫

Ω

𝑢𝑢
𝑡
(𝑥, 𝑡) 𝑑𝑥 − 𝜇

2
∫

Ω

𝑢𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

+

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌+2

𝑑𝑥.

(75)

Using Young’s inequality and (G1), we obtain (see [2])

∫

Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠 𝑑𝑥

≤ 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥

+

1

4𝛿

∫

Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) |∇𝑢 (𝑠) − ∇𝑢 (𝑡)| 𝑑𝑠]

2

𝑑𝑥

≤ 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥 +

1 − 𝑙

4

(ℎ ∘ ∇𝑢) (𝑡) , ∀𝛿 > 0.

(76)

Also, applying Young’s and Poincaré’s inequality yields

−𝜇
1
∫

Ω

𝑢𝑢
𝑡
(𝑥, 𝑡) 𝑑𝑥 ≤ 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥 + 𝐶 (𝛿) ∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥,

− 𝜇
2
∫

Ω

𝑢𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

≤ 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥 + 𝐶 (𝛿) ∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥.

(77)

Noticing (75)–(77) and choosing 𝛿 small enough, we obtain
estimate (74).

Lemma 11. Under the assumption (G1), the functional Ψ(𝑡)
satisfies the estimate

Ψ

(𝑡) ≤ −(∫

𝑡

0

ℎ (𝑠) 𝑑𝑠 − 2𝛿)∫

Ω

𝑢
2

𝑡
𝑑𝑥 + 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥

+

𝐶
4

𝛿

(ℎ ∘ ∇𝑢) (𝑡) −

𝐶
5

𝛿

(ℎ

∘ ∇𝑢) (𝑡)

+ 𝛿∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥.

(78)
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Proof of Lemma 11. Differentiating (71), integrating by parts,
and noticing the first equation in (1), we have

Ψ

(𝑡) = −∫

Ω





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

−

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌

𝑢
𝑡
∫

𝑡

0

ℎ

(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫

Ω

1

𝜌 + 1





𝑢
𝑡






𝜌+2

𝑑𝑥

= ∫

Ω

[−Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠

+𝜇
1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) ]

× ∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

−

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌

𝑢
𝑡
∫

𝑡

0

ℎ

(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫

Ω

1

𝜌 + 1





𝑢
𝑡






𝜌+2

𝑑𝑥

= ∫

Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+ ∫

Ω

∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠

× ∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+ ∫

Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠]

× [𝜇
1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌

𝑢
𝑡
∫

𝑡

0

ℎ

(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫

Ω

1

𝜌 + 1





𝑢
𝑡






𝜌+2

𝑑𝑥.

(79)

Observe that

∫

Ω

∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 ∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

= −∫

Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) ∇𝑢 (𝑠) 𝑑𝑠

× ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠] 𝑑𝑥

= −∫

Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡) + ∇𝑢 (𝑠)] 𝑑𝑠

×∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠] 𝑑𝑥

= −∫

Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠]

2

𝑑𝑥

− (∫

𝑡

0

ℎ (𝑡) 𝑑𝑠)

× ∫

Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥.

(80)

It follows from (79) and (80) that

Ψ

(𝑡) = (1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)

× ∫

Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+ ∫

Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠]

2

𝑑𝑥

+ ∫

Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠]

× [𝜇
1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌

𝑢
𝑡
∫

𝑡

0

ℎ

(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫

Ω

1

𝜌 + 1





𝑢
𝑡






𝜌+2

𝑑𝑥.

(81)

Using Young’s and Poincaré’s inequality, we get (see [2])

(1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫

Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

≤ 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥 +

𝐶

𝛿

(ℎ ∘ ∇𝑢) (𝑡) ,

−

1

𝜌 + 1

∫

Ω





𝑢
𝑡






𝜌

𝑢
𝑡
∫

𝑡

0

ℎ

(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

≤ 𝛿∫

Ω

𝑢
2

𝑡
𝑑𝑥 −

𝐶

𝛿

(ℎ

∘ ∇𝑢) (𝑡) .

(82)

From (81) and (82), we derive Lemma 11.

Now, we are ready to finalize our proof of general decay
of the energy. Since ℎ is positive, we have

∫

𝑡

0

ℎ (𝑠) 𝑑𝑠 ≥ ∫

𝑡
0

0

ℎ (𝑠) 𝑑𝑠 = 𝑔
0
, ∀𝑡 ≥ 𝑡

0
. (83)
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It follows from (65), (72), (74), and (78) that

𝐿

(𝑡) = 𝑁𝐸 (𝑡) + 𝜀Φ


(𝑡) + Ψ


(𝑡)

≤

𝑁

2

(ℎ

∘ ∇𝑢) (𝑡) −

𝑁

2

ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

− 𝑁𝐶
1
∫

Ω

[𝑢
2

𝑡
(𝑥, 𝑡) + 𝑢

2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−

𝜆𝜉𝑁

2

∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥

+ 𝜀𝐶
2
∫

Ω

[𝑢
2

𝑡
(𝑥, 𝑡) + 𝑢

2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−

𝜀𝑙

2

∫

Ω

|∇𝑢|
2
𝑑𝑥𝑃 + 𝜀𝐶

3
(ℎ ∘ ∇𝑢) (𝑡)

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠 − 2𝛿)∫

Ω

𝑢
2

𝑡
𝑑𝑥 + 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥

+

𝐶
4

𝛿

(ℎ ∘ ∇𝑢) (𝑡) −

𝐶
5

𝛿

(ℎ

∘ ∇𝑢) (𝑡)

+ 𝛿∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

= − [(𝑁𝐶
1
+ 𝑔
0
) − 2𝛿 − 𝜀𝐶

2
] ∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

+ (𝜀𝐶
3
+

𝐶
4

𝛿

) (ℎ ∘ ∇𝑢) (𝑡)

+ (

𝑁

2

−

𝐶
5

𝛿

) (ℎ

∘ ∇𝑢) (𝑡)

− (

𝜀𝑙

2

− 𝛿)∫

Ω

|∇𝑢|
2
𝑑𝑥

− (𝑁𝐶
1
− 𝛿 − 𝜀𝐶

2
) ∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))

−

𝜆𝜉𝑁

2

∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥.

(84)

If we choose some constants in the inequality (84), such that

𝑎
1
= (𝑁𝐶

1
+ 𝑔
0
) − 2𝛿 − 𝜀𝐶

2
> 0,

𝑎
3
= 𝑁𝐶

1
− 𝛿 − 𝜀𝐶

2
> 0, 𝑎

2
=

𝜀𝑙

2

− 𝛿 > 0,

𝑎
4
=

𝑁

2

−

𝐶
5

𝛿

> 0, 𝑎
5
= 𝜀𝐶
3
+

𝐶
4

𝛿

> 0,

𝑎
6
=

𝜆𝜉𝑁

2

,

(85)

then we conclude that

𝐿

(𝑡) ≤ −𝑎

1
∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 − 𝑎

2
∫

Ω

|∇𝑢|
2
𝑑𝑥

+ 𝑎
4
(ℎ

∘ ∇𝑢) (𝑡) + 𝑎

5
(ℎ ∘ ∇𝑢) (𝑡)

− 𝑎
6
∫

𝑡

𝑡−𝜏(𝑡)

∫

Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥.

(86)

Hence, we have two cases to consider the general decay results
as follows.

Case 1 (𝑝 = 1). Choosing some values of 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6

and noticing the definition of𝐸(𝑡) (see (63)), we conclude that
there exists a constant 𝛽

1
> 0, such that

𝐿

(𝑡) ≤ −𝛽

1
𝐸 (𝑡) , ∀𝑡 ≥ 0. (87)

Therefore, by Remark 9 and (87), we get

𝐿

(𝑡) ≤ −

𝛽
1

𝛼
1

𝐸 (𝑡) , ∀𝑡 ≥ 0. (88)

Integrating (88) over (0, 𝑡), we obtain

𝐿 (𝑡) ≤ 𝐿 (0) 𝑒
−(𝛽
1
/𝛼
1
)𝑡
, ∀𝑡 ≥ 0. (89)

Observing Remark 9 (i.e., 𝛼
0
𝐸(𝑡) ≤ 𝐿(𝑡) ≤ 𝛼

1
𝐸(𝑡)) and (89),

we derive

𝛼
0
𝐸 (𝑡) ≤ 𝐿 (𝑡) ≤ 𝐿 (0) 𝑒

−(𝛽
1
/𝛼
1
)𝑡
, ∀𝑡 ≥ 0. (90)

That is,

𝐸 (𝑡) ≤

𝐿 (0)

𝛼
0

𝑒
−(𝛽
1
/𝛼
1
)𝑡
=̇ 𝐾𝑒
𝑘𝑡
, 𝑝 = 1, ∀𝑡 ≥ 0. (91)

Assuming𝐾 = 𝐿(0)/𝛼
0
, 𝑘 = 𝛽

1
/𝛼
1
, we obtain the exponential

decay of the energy. So, (26) is established.

Case 2 (1 < 𝑝 < 3/2). Due to (G2), we easily see that

∫

∞

0

ℎ
1−𝑟

(𝑠) 𝑑𝑠 < ∞, 0 ≤ 𝑟 ≤ 2 − 𝑝. (92)

From the sketch of proof of Lemma 6, we observe that

(ℎ ∘ ∇𝑢) (𝑡) ≤ 𝐶[∫

∞

0

ℎ
1−𝛼

(𝑠) 𝑑𝑠𝐸 (0)]

(𝑝−1+𝛼)/(𝑝−1)

× [(ℎ
𝑝
∘ ∇𝑢)(𝑡)]

𝛼/(𝑝−1+𝛼)

.

(93)

Thus, for 𝜎 > 1, using (63) and (93), we get

𝐸
𝜎
(𝑡) ≤ 𝐶 [𝐸

𝜎−1
(0) (





𝑢
𝑡






𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+




𝑢
𝑡






2

2
)

+(ℎ ∘ ∇𝑢)
𝜎
(𝑡) ]

≤ 𝐶𝐸
𝜎−1

(0) [




𝑢
𝑡






𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+




𝑢
𝑡






2

2
]

+ 𝐶[(∫

∞

0

ℎ
1−𝛼

(𝑠) 𝑑𝑠)𝐸 (0)]

(𝑝−1+𝛼)/(𝑝−1)

× [(ℎ
𝑝
∘ ∇𝑢) (𝑡)]

𝜎𝛼/(𝑝−1+𝛼)

.

(94)
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Choosing 𝛼 = 1/2, 𝜎 = 2𝑝 − 1 (i.e., 𝜎𝛼/(𝑝 − 1 + 𝛼) = 1)
(94) reduces to

𝐸
𝜎
(𝑡) ≤ 𝐶 [





𝑢
𝑡






𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+




𝑢
𝑡






2

2
+ (ℎ
𝑝
∘ ∇𝑢) (𝑡)] . (95)

Combining (86) and (87) with Remark 9, we obtain

𝐿

(𝑡) ≤ −

𝛽
1

𝐶

𝛼
𝜎

1
𝐿
𝜎
(𝑡) , ∀𝑡 ≥ 0. (96)

A simple integration of (96) over (0, 𝑡) yields

𝐿

(𝑡) ≤ 𝐶

6
(1 + 𝑡)

−1/(𝜎−1)
, ∀𝑡 ≥ 0. (97)

As a consequence of (97), we obtain

∫

∞

0

𝐿 (𝑡) 𝑑𝑡 + sup
𝑡≥0

𝑡𝐹 (𝑡) < ∞. (98)

So, by using Lemma 6, we have

(ℎ ∘ ∇𝑢) (𝑡)

≤ 𝐶[∫

𝑡

0

‖𝑢 (𝑠)‖
𝐻
1
(𝑠)
𝑑𝑠 + 𝑡‖𝑢‖

𝐻
1
(Ω)
]

(𝑝−1)/𝑝

× (ℎ
𝑝
∘ ∇𝑢)

1/𝑝

(𝑡)

≤ 𝐶[∫

𝑡

0

𝐹 (𝑠) 𝑑𝑠 + 𝑡𝐹 (𝑡)]

(𝑝−1)/𝑝

(ℎ
𝑝
∘ ∇𝑢)

1/𝑝

(𝑡)

≤ 𝐶(ℎ
𝑝
∘ ∇𝑢)

1/𝑝

(𝑡)

(99)

which implies that

(ℎ
𝑝
∘ ∇𝑢) (𝑡) ≥ 𝐶(ℎ ∘ ∇𝑢)

𝑝
(𝑡) . (100)

Consequently, from (86) and (100), we have

𝐿

(𝑡) ≤ −𝐶

7
[




𝑢
𝑡






𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+




𝑢
𝑡






2

2
+ (ℎ ∘ ∇𝑢)

𝑝
(𝑡)] ,

∀𝑡 ≥ 0.

(101)

On the other hand, similarly to (95), we

𝐸
𝑝
(𝑡) ≤ 𝐶

8
[




𝑢
𝑡






𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+




𝑢
𝑡






2

2
+ (ℎ ∘ ∇𝑢)

𝑝
(𝑡)] ,

∀𝑡 ≥ 0.

(102)

Then, it follows from Remark 9, (101), and (102) that

𝐿

(𝑡) ≤ −𝐶

9
𝐿
𝑝
(𝑡) , ∀𝑡 ≥ 0. (103)

A simple integration of (103) over (0, 𝑡) gives

𝐿

(𝑡) ≤ 𝐾(1 + 𝑡)

−1/(𝑝−1)
, ∀𝑡 ≥ 0. (104)

By (104) and Remark 9, we obtain the polynomial decay of
the energy. That is,

𝐸 (𝑡) ≤ 𝐾(1 + 𝑡)
−1/(𝑝−1)

, ∀𝑡 ≥ 0. (105)

Thus, our main result is completed.

Remark 12. Our novel contribution is to show that our work
improves earlier result in [37] in which only the exponential
decay was investigated. More precisely, Kirane and Said-
Houari [37] considered the exponential decay of problem (1)
with a constant delay (i.e., 𝜏(𝑡) = 𝜏) and velocity-independent
material density (i.e., 𝜌 = 0).

Remark 13. By using the fact that energy 𝐸 is bounded on
[0, 𝑡
0
], we can easily show that estimates (26) and (27) hold

for 𝑡 ≥ 0. (See, for instance, [2].)

4. Further Remarks

In this section, we address some interesting problems of non-
linear viscoelastic equation with time-varying delay effects
and velocity-dependent material density. Here, we mention
some of them.

(1) An interesting problem is to show the well-posedness
and stabilization of the nonlinear viscoelastic equa-
tion with boundary feedback with respect to time-
varying delay effects. What will happen if the con-
troller with time-varying delay effects is in the equa-
tion instead of on the boundary? More precisely, in
our forthcoming work, we will investigate the well-
posedness and general decay properties of the solu-
tions for the following nonlinear viscoelastic equation
with velocity-dependent material density:





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 = 0, in Ω × [0,∞) ,

𝑢 (𝑥, 𝑡) = 0, on Γ
0
× (0,∞) ,

𝜕𝑢

𝜕]
+ 𝜇
1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 0, on Γ

1
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , in Ω,

𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 𝑓 (𝑥, 𝑡) , on Γ

1
× (−𝜏 (0) , 0) ,

(106)

where Ω is bounded domain of 𝑅𝑛 and 𝑛 ≥ 1 with a
smooth boundary Γ and let Γ

0
, Γ
1
be a partition of Γ

such that Γ
0
∩ Γ
1
= 0, Γ

0
̸= 0, Γ
1
̸= 0, ] = (]

1
, ]
2
⋅ ⋅ ⋅ ]
𝑛
)

denotes the unit outward normal to Γ.

(2) Another interesting problem is to give a positive
answer of the open problem given by Kirane and
Said-Houari [37]. That is, the linear damping term
𝜇
1
𝑢
𝑡
in the first equation of (16) plays a decisive role

in their proofs. Thus, the problem of whether the
stability properties they have proved are preserved
when 𝜇

1
= 0 is open. In order to overcome the above

difficulty, ourmain idea is to contrast the effects of the
time-varying delay by using the dissipative nonlinear
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boundary feedback. That is, in our future work, we
investigate the following problem:





𝑢
𝑡






𝜌

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠

+ 𝜇
2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 0, in Ω × [0,∞) ,

𝑢 (𝑥, 𝑡) = 0, on Γ
0
× (0,∞) ,

𝜕𝑢

𝜕]
+ 𝑔 (𝑢

𝑡
(𝑥, 𝑡)) = 0, on Γ

1
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , in Ω,

𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 𝑓 (𝑥, 𝑡) , on Γ

1
× (−𝜏 (0) , 0) ,

(107)

where 𝜇
2
is constant and 𝑔(𝑢

𝑡
) is the dissipative

nonlinear boundary feedback.
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