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We prove the restriction maps define continuous linear operators on the Smirnov classes for some certain domain with analytic
boundary.

1. Introduction

As usual, we define the Hardy space 𝐻
2

= 𝐻
2
(Δ) as the

space of all functions 𝑓 : 𝑧 → ∑
∞

𝑛=0
𝑎
𝑛
𝑧
𝑛 for which the

norm (‖𝑓‖ = ∑
∞

𝑛=0
|𝑎
𝑛
|
2
)
1/2 is finite. Here, Δ is the open unit

disc. For a more general simply connected domain 𝐷 in the
sphere or extended plane C = C ∪ (∞) with at least two
boundary points, and a conformal mapping 𝜑 from 𝐷 onto
Δ (i.e., a Riemannmapping function, abbreviation is RMF), a
function 𝑔 analytic in𝐷 is said to belong to the Smirnov class
𝐸
2
(𝐷) if and only if 𝑔 = (𝑓 ∘ 𝜑)𝜑

1/2 for some 𝑓 ∈ 𝐻
2
(Δ)

where 𝜑1/2 is an analytic branch of the square root of 𝜑. The
reader is referred to [1–7] and references therein for the basic
properties of these spaces.

Let 𝐶 = (𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑁
) be an 𝑁-tuple of closed

distinct curves on the sphere C and suppose that, for each
𝑖, 1 ≤ 𝑖 ≤ 𝑁, 𝐶

𝑖
is a circle, a line ∪{∞}, an ellipse, a parabola

∪{∞}, or a branch of a hyperbola ∪{∞}. Let 𝐷
𝑖
be the

complementary domain of 𝐶
𝑖
. Recall that a complementary

domain of a closed 𝐹 ⊆ C is a maximal connected subset of
C − 𝐹, which must be a domain. For 1 ≤ 𝑖 ≤ 𝑁, suppose that
𝜑
𝑖
: 𝐷
𝑖
→ Δ is a conformal equivalence (i.e., RMF) and let

𝜓
𝑖
: Δ → 𝐷

𝑖
be its inverse. For 1 ≤ 𝑖 ≤ 𝑁, let us keep the

notations of 𝐶
𝑖
, 𝐷
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
fixed until the end of the paper.

In this paper we prove the following.

Theorem 1. Let 1 ≤ 𝑖, 𝑗 ≤ 𝑁. Suppose that Γ is an open subarc
of 𝐶
𝑗
and suppose also that Γ ⊆ 𝐷

𝑖
if 𝑖 ̸= 𝑗.Then the restriction

𝑓 → 𝑓|
Γ
defines a continuous linear operatormapping𝐸2(𝐷

𝑖
)

into 𝐿
2
(Γ).

For similar work regarding restriction maps, see [8, 9].
Our conjecture is that Theorem 1 is valid if, for each 𝑗, 1 ≤

𝑗 ≤ 𝑁, 𝐶
𝑗
is a 𝜎-rectifiable analytic Jordan curve.

There are some similar results for rectifiable curves in
Havin’s paper [10]. Also the Cauchy projection operator from
𝐿
𝑝 to 𝐸

𝑝 is bounded on all Carleson regular curves; compare
the papers of David, starting with [11].

We need the following Theorem to simplify the proof of
Theorem 1.

Theorem 2 (Theorem 1 in [12]). Let 𝐷 be a complementary
domain of ∪𝑁

𝑖=1
𝐶
𝑖
and suppose that 𝐷 is simply connected so

that 𝐷
𝑖
is the complementary domain of 𝐶

𝑖
which contains 𝐷.

Then

(i) 𝜕𝐷 is a 𝜎-rectifiable closed curve and every 𝑓 ∈ 𝐸
2
(𝐷)

has a nontangential limit function 𝑓 ∈ 𝐿
2
(𝜕𝐷);

(ii) (Parseval’s identity) the map 𝑓 → 𝑓 (𝐸
2
(𝐷) →

𝐿
2
(𝜕𝐷)) is an isometric isomorphism onto a closed

subspace 𝐸2(𝜕𝐷) of 𝐿2(𝜕𝐷), so

𝑓


2

𝐸
2
(𝐷)

=

𝑓


2

𝐿
2
(𝜕𝐷)

=
1

2𝜋
∫
𝜕𝐷


𝑓 (𝑧)



2

|𝑑𝑧| ,

(𝑓 ∈ 𝐸
2
(𝐷)) .

(1)

If Γ ⊆ 𝐶
𝑖
is an open subarc, then


𝑓
Γ



2

𝐿
2
(Γ)

≤

𝑓
𝐶
𝑖



2

𝐿
2
(𝐶
𝑖
)

=
𝑓



2

𝐸
2
(𝐷
𝑖
)
, (2)
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because Parseval’s identity is true for the trivial chain (𝐶
𝑖
)

of curves. Hence Theorem 1 will be proved if the following
theorem can be proved.

Theorem 3. Let 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑁. Suppose that Γ is an open
subarc of 𝐶

𝑗
and that Γ ⊆ 𝐷

𝑖
. Then the restriction 𝑓 →

𝑓|
Γ
defines a continuous linear operator mapping 𝐸

2
(𝐷
𝑖
) into

𝐿
2
(Γ).

2. Preliminaries for the Proof of Theorem 3

Let us keep the notation ofTheorem 3 fixed for the rest of the
paper and let us also agree to use 𝑙 for arc-length measure.

An arc or closed curve 𝛾 is called 𝜎-rectifiable if and only
if it is a countable union of rectifiable arcs in C, together
with (∞) in the case when ∞ ∈ 𝛾. For instance, a parabola
without ∞ is 𝜎-rectifiable arc, and a parabola with ∞ is 𝜎-
rectifiable Jordan curve.The following definitionwill simplify
the language.

Definition 4. Let 𝛾 ⊆ C be a simple𝜎-rectifiable arc contained
in a simply connected domain 𝐺 ⊆ C. We say that 𝛾 has
the restriction property in 𝐺 if and only if the map 𝑔 →

𝑔|
𝛾
defines a continuous linear operator mapping 𝐸

2
(𝐺) into

𝐿
2
(𝛾).
Thus, the last sentence of Theorem 3 reads “Γ has the

restriction property in𝐷
𝑖
.”

Lemma 5 (Invariance Lemma (Lemma 4 in [9])). Let
𝐺
1
, 𝐺
2

⊆ C be simply connected domains and suppose that
𝛾
1

⊆ 𝐺
1
∩ C, 𝛾

2
⊆ 𝐺
2
∩ C are simple 𝜎-rectifiable arcs.

If 𝜒 : 𝐺
1

→ 𝐺
2
is a conformal equivalence onto 𝐺

2
and

𝜒(𝛾
1
) = 𝛾

2
, then 𝛾

1
has the restriction property in 𝐺

1
if and

only if 𝛾
2
has the restriction property in 𝐺

2
.

Corollary 6. Theorem 3 is true; that is, Γ has the restriction
property in 𝐷

𝑖
, if and only if 𝜑

𝑖
(Γ) has the restriction property

in Δ, for some RMF 𝜑
𝑖
: 𝐷
𝑖
→ Δ.

A subarc 𝛾 of Γ has the restriction property in 𝐷
𝑖
if and

only if 𝜑
𝑖
(𝛾) has the restriction property in Δ. Corollary 6

will be used in the following way. Γ will be written as the
union of finitely many subarcs and we will show that each of
these subarcs has the restriction property in 𝐷

𝑖
; it will then

follow that Γ itself has the required restriction property.Three
different kinds of subarc will be considered.

Definition 7. A subarc 𝛾 ⊆ Γ is said to be of type I if and only
if 𝛾 ⊆ 𝐷

𝑖
(i.e., both of its end-points 𝑎, 𝑏 belong to𝐷

𝑖
).

Lemma8 (Lemma 6 in [9]). Let 𝛾 be a subarc of Γ and suppose
that 𝜑

𝑖
, 𝜃
𝑖
are Riemann mapping functions for𝐷

𝑖
.

(i) 𝜑
𝑖
(𝛾) has the restriction property in Δ if and only

if 𝜃
𝑖
(𝛾) has the restriction property in Δ;

(ii) 𝜑
𝑖
(𝛾) is rectifiable if and only if 𝜃

𝑖
(𝛾) is rectifiable;

(iii) if 𝛾 is of type I, then 𝜑
𝑖
(𝛾) ⊆ Δ and 𝜑

𝑖
(𝛾) is rectifiable;

(iv) if 𝛾 is of type I, it has the restriction property in𝐷
𝑖
.
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Figure 1: Type I, II, and III arcs.

We can now “ignore” subarcs of Γ whose closure (in C) is
contained in𝐷

𝑖
. We will now restrict our attention to subarcs

of Γ with a single end-point 𝑎 ∈ 𝜕𝐷
𝑖
, the other being in 𝐷

𝑖
.

There are two types, depending on whether 𝑎 ∈ C or 𝑎 = ∞.

Definition 9. (i) An open subarc 𝛾 of Γ is of type II if and only
if it has an end-point 𝑎 ∈ 𝜕𝐷

𝑖
∩ C and 𝛾 − (𝑎) ⊆ 𝐷

𝑖
∩ C.

(ii) In the case where 𝐶
𝑖
is unbounded (so that∞ ∈ 𝜕𝐷

𝑖
)

an open subarc 𝛾 ⊆ Γ is of type III if and only if∞ is an end-
point of 𝛾 and 𝛾 − (∞) ⊆ 𝐷

𝑖
.

Modulo a finite subset of𝐷
𝑖
, Γ is the union of atmost three

open subarcs, each of which is of type I, II, or III; see Figure 1.
If 𝛾 is a type II or type III subarc of Γ then 𝜑

𝑖
(𝛾) is a

simple open analytic arc in Δ with one end-point on the
circle T and the other in Δ. We will show that 𝜑

𝑖
(𝛾) has

the restriction property in Δ using the powerful Carleson
theorem (Theorem 11 below).

Definition 10 (see [1, p.157]). For 0 < ℎ < 1 and 0 ≤ 𝜃 < 2𝜋,
let𝐶
𝜃ℎ

= {𝑧 ∈ C : 1−ℎ ≤ |𝑧| ≤ 1, 𝜃 ≤ arg 𝑧 ≤ 𝜃+ℎ}. A positive
regular Borel measure 𝜇 on Δ is called a Carleson measure if
there exists a positive constant𝑀 such that 𝜇(𝐶

𝜃ℎ
) ≤ 𝑀ℎ, for

every ℎ and every 𝜃.

Theorem 11 (see [1, p. 157,Theorem 9.3] or see [13, p. 37]). Let
𝜇 be a finite positive regular Borel measure on Δ. In order that
there exists a constant 𝐶 > 0 such that

∫
Δ

𝑓 (𝑧)


2

𝑑𝜇 (𝑧) ≤ 𝐶
𝑓



2

, ∀𝑓 ∈ 𝐻
2
(Δ) , (3)

it is necessary and sufficient that 𝜇 be a Carleson measure.
To complete the proof of Theorem 3 it is sufficient to

show that arc-length measure on 𝜑
𝑖
(𝛾) is a Carleson measure

whenever 𝛾 is of type II or III.

It will be useful to use arc-length to parametrize 𝛾 and
𝜑
𝑖
(𝛾). Recall that a compact arc 𝜎 is called smooth if there

exists some parametrization 𝑔 : [𝑎, 𝑏] → 𝜎 such that 𝑔 ∈
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𝐶
1
[𝑎, 𝑏] and 𝑔


(𝑡) ̸= 0, ∀𝑡 ∈ [𝑎, 𝑏]. Note that if 𝜎 is smooth,

then it is rectifiable; that is,

𝑙 (𝜎) = ∫

𝑏

𝑎


𝑔

(𝑡)


𝑑𝑡 < ∞. (4)

To define the arc-length parametrization of 𝜎 put 𝑠 =

𝑠(𝑡) = ∫
𝑡

𝑎
|𝑔

(𝑢)|𝑑𝑢 for 𝑎 ≤ 𝑡 ≤ 𝑏 so that 0 ≤ 𝑠 ≤ ℓ(𝜎).

Then 𝑠

(𝑡) = |𝑔


(𝑡)| and 𝑡 → 𝑠(𝑡) ([𝑎, 𝑏] → [0, ℓ]) is 𝐶

1

with strictly positive derivative. Hence also its inverse 𝑠 →

𝑡(𝑠) ([0, ℓ] → [𝑎, 𝑏]) is 𝐶
1 with strictly positive derivative.

Recall that the arc-length parametrization of the smooth arc
𝜎 is the map ℎ : [0, ℓ] → 𝜎 satisfying ℎ(𝑠) = {the point
on 𝜎 length 𝑠 from the initial point (𝑔(𝑎))}; that is, ℎ(𝑠) =

𝑔(𝑡(𝑠)) 0 ≤ 𝑠 ≤ ℓ.
Since ℎ


(𝑠) = 𝑔


(𝑡(𝑠))𝑡


(𝑠), ℎ ∈ 𝐶

1
[0, ℓ], with nonzero

derivative, necessarily |ℎ

(𝑠)| = 1 since

ℎ

(𝑠 (𝑡)) = 𝑔


(𝑡) 𝑡

(𝑠) =

𝑔

(𝑡)

𝑠 (𝑡)
=

𝑔

(𝑡)

𝑔

(𝑡)



. (5)

We need the following lemma.

Lemma 12 (Theorem 1 in [14]). Let 𝜎 ⊆ Δ be a smooth simple
arc with arc-length parametrization 𝑔 ∈ 𝐶

1
[0, ℓ]. Suppose that

|𝑔(0)| = 1, |𝑔(𝑠)| < 1 for 0 < 𝑠 ≤ ℓ. Then arc-length measure
on 𝜎∩Δ is a Carleson measure; hence 𝜎∩Δ has the restriction
property in Δ.

3. Type II Subarcs

The following lemma gives the continuity of the restriction
map for finite end-points.

Lemma 13. A type II arc 𝛾 ⊆ Γ ⊆ 𝐷
𝑖
has the restriction

property in 𝐷
𝑖
.

Proof. By Lemmas 12 and 5 it is sufficient to show that 𝜑
𝑖
(𝛾)

is a smooth arc in Δ. Suppose that 𝛾 has end-points 𝑎 ∈ 𝜕𝐷
𝑖
∩

C and 𝑏 ∈ 𝐷
𝑖
∩ C, so that 𝛾 = 𝛾 ∪ (𝑎) ∪ (𝑏). Clearly 𝛾 is

a smooth arc. Because 𝐶
𝑖
is an open analytic arc, 𝜑

𝑖
can be

continued analytically into a neighbourhood 𝑈 of 𝑎 so as to
be conformal in𝐷

𝑖
∪ 𝑈. This means that 𝜑

𝑖
is conformal in a

neighbourhood of 𝛾 and so 𝜑
𝑖
(𝛾) = 𝜑

𝑖
(𝛾) is a smooth arc in Δ

with |𝜑
𝑖
(𝑎)| = 1 and 𝜑

𝑖
(𝛾 − (𝑎)) ⊆ Δ. The result now follows

from Lemmas 12 and 5.

We have nowmade a good deal of progress because of the
following.

Lemma 14. Theorem 3 is true if 𝐶
𝑖
is a circle or an ellipse.

Proof. In this case Γ is a finite union of type I and type II arcs
only, so the result follows by Lemma 8(iv) and Lemma 13.

4. Type III Subarcs

The proof of Theorem 3 will be completed by showing that
every type III arc in𝐷

𝑖
has the restriction property in𝐷

𝑖
. We

have an open subarc 𝛾 of an open subarc Γ of 𝐶
𝑗
and Γ ⊆ 𝐷

𝑖
.

In this case ∞ is an end-point of 𝛾 and ∞ ∈ 𝜕𝐷
𝑖
, so both

𝐶
𝑖
and 𝐶

𝑗
are unbounded. We will use the same strategy we

used for type II arcs in Lemma 13; we show that 𝜎 = 𝜑
𝑖
(𝛾)

is a smooth arc in Δ as in Lemma 12, so that 𝜑
𝑖
(𝛾) has the

restriction property inΔ and so 𝛾 has the restriction property
in𝐷
𝑖
.The proof is more complicated because conformality of

𝜑
𝑖
at ∞ cannot necessarily be used. Instead we make use of

the fact that as 𝑧 → ∞ along 𝛾, the unit tangent vector of 𝛾 at
𝑧 tends to a limit. The following two Lemmas help us exploit
this fact.

Lemma 15. Let 𝑔 ∈ 𝐶
1
[0,∞) with 𝑔


(𝑡) ̸= 0 (𝑡 ≥ 0). Suppose

that 𝑐 ∈ C and
lim
𝑡→∞

𝑔 (𝑡) = 𝑐,

lim
𝑡→∞

𝑔

(𝑡)

𝑔

(𝑡)



= 𝜔, (|𝜔| = 1)

(6)

exist. Define 𝜎 = 𝑔([0,∞)) ∪ (𝑐). Then
(i) 𝜎 is a compact arc,
(ii) 𝜎 is rectifiable,
(iii) 𝜎 is smooth.

Proof. (i) Define 𝑓 on [0, 1] by

𝑓 (𝑡) =

{

{

{

𝑔(tanh−1𝑡) 0 ≤ 𝑡 < 1

𝑐 𝑡 = 1.

(7)

Then 𝑓 ∈ 𝐶[0, 1] is a continuous parametrization of 𝜎.
(ii) To prove that𝜎 is rectifiable, it suffices to show that, for

some𝑇 > 0, ∫∞
𝑇

|𝑔

(𝑢)|𝑑𝑢 < ∞. Let 𝜀(𝑡) = 𝜔−(𝑔


(𝑡)/|𝑔


(𝑡)|).

So 𝜀(𝑡) → 0 as 𝑡 → ∞. Choose 𝑇 ≥ 0 such that |𝜀(𝑡)| ≤ 1/2

for 𝑡 ≥ 𝑇. Then, for 𝑡 ≥ 𝑇,

𝑔

(𝑡)


(1 − 𝜔𝜀 (𝑡)) = 𝜔𝑔


(𝑡) . (8)

Hence

∫

𝑡

𝑇


𝑔

(𝑢)


(1 − 𝜔𝜀 (𝑢)) 𝑑𝑢 = 𝜔 (𝑔 (𝑡) − 𝑔 (𝑇)) , (𝑡 > 𝑇) ,

|𝜀| ≤
1

2
⇒ Re (1 − 𝜔𝜀) ≥

1

2
⇒ 2Re (1 − 𝜔𝜀) ≥ 1.

(9)

So

∫

𝑡

𝑇


𝑔

(𝑢)


𝑑𝑢

≤ 2∫

𝑡

𝑇


𝑔

(𝑢)


Re (1 − 𝜔𝜀 (𝑢)) 𝑑𝑢

= 2Re (𝜔 (𝑔 (𝑡) − 𝑔 (𝑇)))

→ 2Re (𝜔 (𝑐 − 𝑔 (𝑇))) as 𝑡 → ∞,

(10)
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𝛼 + 𝜀/2

𝛼 − 𝜀/2

0

S

Figure 2: The sector 𝑆.

and hence

∫

∞

𝑇


𝑔

(𝑢)


𝑑𝑢 < ∞, (11)

which establishes the rectifiability of 𝜎.
(iii) Let ℎ : [0, ℓ] → 𝜎 be the arc-length parametrization

of 𝜎. Then ℎ ∈ 𝐶[0, ℓ], ℎ(𝑠) = 𝑔(𝑡)where ∫𝑡
0
|𝑔

(𝑢)|𝑑𝑢 = 𝑠 and

𝑠

(𝑡) = |𝑔


(𝑡)|. Therefore the map 𝑡 → 𝑠 ([0,∞) → [0, ℓ)) is

𝐶
1 with strictly positive derivative. So the inverse map 𝑠 →

𝑡 ([0, ℓ) → [0,∞)) is 𝐶1. Since 𝑡(𝑠(𝑡)) ≡ 𝑡 and 𝑡

(𝑠) = 1/𝑠


(𝑡)

where 0 ≤ 𝑡 ≤ ∞ and 0 ≤ 𝑠 ≤ ℓ, it follows that

lim
𝑠→ℓ

ℎ

(𝑠) = lim
𝑡→∞

𝑔

(𝑡) 𝑡

(𝑠) = lim
𝑡→∞

𝑔

(𝑡)

𝑠 (𝑡)
= lim
𝑡→∞

𝑔

(𝑡)

𝑔

(𝑡)



= 𝜔.

(12)

Hence ℎ
 is continuous and so ℎ ∈ 𝐶

1
[0, ℓ].

Lemma 16. Let 𝑘 ∈ 𝐶
1
[0,∞) with 𝑘


(𝑡) ̸= 0 (𝑡 ≥ 0) and

suppose that 𝑘(𝑡) → ∞ as 𝑡 → +∞. Then, if |𝜔| = 1,

𝑘

(𝑡)

𝑘

(𝑡)



→ 𝜔 ⇒
𝑘 (𝑡)

|𝑘 (𝑡)|
→ 𝜔. (13)

Proof. Write 𝜔 = 𝑒
𝑖𝛼. Choose 𝑇

 such that 𝑡 ≥ 𝑇


⇒

Re 𝑒−𝑖𝛼(𝑘(𝑡)/|𝑘(𝑡)|) > 0. Then using ârg to denote the
principal value of arg we see that

𝜃 (𝑡) = 𝛼 + ârg𝑒−𝑖𝛼 𝑘

(𝑡)

𝑘

(𝑡)



(14)

is a branch of arg(𝑘/|𝑘|) and hence also of arg 𝑘 on [𝑇

,∞)

which tends to 𝛼 as 𝑡 → ∞. We will find a branch 𝜗 of arg 𝑘
which also tends to 𝛼 as 𝑡 → ∞.

Let 𝜀 > 0. Choose𝑇 such that 𝑡 ≥ 𝑇 ≥ 𝑇

⇒ 𝛼−𝜀/2 ≤ 𝜃 ≤

𝛼 + 𝜀/2. Now 𝑘(𝑡) − 𝑘(𝑇) = ∫
𝑡

𝑇
𝑘

(𝑢)𝑑𝑢 is a limit of Riemann

sums ∑(𝑡
𝑖+1

− 𝑡
𝑖
)𝑘

(𝜉
𝑖
).

The sector 𝑆 (see Figure 2) is closed under addition and
multiplication by positive scalars; therefore

𝑘 (𝑡) − 𝑘 (𝑇) ∈ 𝑆 for 𝑡 ≥ 𝑇. (15)

So there is an argument 𝜇(𝑡) of 𝑘(𝑡) − 𝑘(𝑇) satisfying

𝛼 −
𝜀

2
≤ 𝜇 (𝑡) ≤ 𝛼 +

𝜀

2
(𝑡 ≥ 𝑇) . (16)

Now 𝑘(𝑡)/(𝑘(𝑡) − 𝑘(𝑇)) → 1 as 𝑡 → ∞. So

∃𝑇
1
≥ 𝑇 such that 𝑡 ≥ 𝑇

1
⇒ −

𝜀

2
< ârg 𝑘 (𝑡)

𝑘 (𝑡) − 𝑘 (𝑇)
<

𝜀

2
.

(17)

If we define

𝜗 (𝑡) = 𝜇 (𝑡) + ârg 𝑘 (𝑡)

𝑘 (𝑡) − 𝑘 (𝑇)
(𝑡 ≥ 𝑇

1
) , (18)

then 𝜗(𝑡) is an argument of 𝑘(𝑡) and

𝑡 ≥ 𝑇
1
⇒ |𝜗 (𝑡) − 𝛼| <

𝜀

2
+

𝜀

2
= 𝜀. (19)

Hence also


𝑘 (𝑡)

|𝑘 (𝑡)|
− 𝜔



=

𝑒
𝑖𝜗(𝑡)

− 𝑒
𝑖𝛼

< 𝜀. (20)

Consequently,

𝑘 (𝑡)

|𝑘 (𝑡)|
→ 𝜔 = 𝑒

𝑖𝛼
, (21)

and our Lemma is proved.

There are now four cases to prove depending on the
geometry of 𝐶

𝑖
and𝐷

𝑖
.

4.1. Case 1: 𝐷
𝑖
Is a Half-Plane. The following lemma will be

needed here and in Case 2.

Lemma 17. Let𝐺 be the open right half-plane Re 𝑧 > 0 and let
𝜃(𝑧) = (𝑧−1)/(𝑧+1) so that 𝜃 is a Riemann mapping function
for 𝐺. Let 𝑘 : [0,∞) → 𝐺 be an injective 𝐶

1 function such
that 𝑘(𝑡) ̸= 0, for all 𝑡 ≥ 0, and lim

𝑡→∞
𝑘(𝑡) = ∞. Let 𝜌 be

the (simple) arc parametrized by 𝑘. If lim
𝑡→∞

(𝑘

(𝑡)/|𝑘

(𝑡)|) =

𝜔 (with |𝜔| = 1), then 𝜎 = 𝜃(𝜌) satisfies the hypothesis of
Lemma 12 and, hence, 𝜌 has the restriction property in 𝐺.

Proof. Put 𝑔 = 𝜃 ∘ 𝑘, so that 𝑔 ∈ 𝐶
1
[0,∞) parametrizes 𝜃(𝜌).

Clearly 𝑔(𝑡) → 1 as 𝑡 → ∞. Now 𝑔 satisfies the hypothesis
of Lemma 15, for we can show that 𝑔(𝑡)/|𝑔(𝑡)| → 𝜔

−1 as
𝑡 → ∞. Since 𝜃


(𝑧) = 2/(𝑧 + 1)

2 it follows that

𝑔

(𝑡)

𝑔

(𝑡)



=
|1 + 𝑘 (𝑡)|

2

(1 + 𝑘 (𝑡))
2

𝑘

(𝑡)

𝑘

(𝑡)



=
𝑘

(𝑡)

𝑘

(𝑡)



|𝑘 (𝑡)|
2

(𝑘 (𝑡))
2

|1 + 1/𝑘 (𝑡)|
2

(1 + 1/𝑘 (𝑡))
2

→ 𝜔
−1
,

(22)

using Lemma 16.
So 𝜎 = 𝑔[0,∞)∪(𝜔

−1
) satisfies Lemma 12; hence 𝑔[0,∞)

has the restriction property in Δ. But 𝑔[0,∞) = 𝜃(𝜌) and,
therefore, by Lemma 5, 𝜌 has the restriction property in 𝐺.
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Now suppose that 𝐶
𝑖
is a line and 𝐷

𝑖
is a half-plane.

By Invariance Lemma 5 with a linear equivalence 𝜒(𝑧) =

𝛼𝑧 + 𝛽 (𝛼 ̸= 0) we can assume that 𝐶
𝑖
is the imaginary

axis and that 𝐷
𝑖
= 𝐺, the open right half-plane, as above.

If 𝛾 ⊆ 𝐷
𝑖
is a type III arc, it is a subarc of a line, parabola, or

hyperbola component. Obviously 𝛾 has a parametrization 𝑘

as in Lemma 17. Hence 𝛾 has the restriction property in𝐷
𝑖
.

4.2. Case 2: 𝐷
𝑖
Is the Concave Complementary Domain of a

Parabola. Any two parabolas are conformally equivalent via
a linear equivalence: 𝜇(𝑧) = 𝑎𝑧 + 𝑏 (𝑎, 𝑏 ∈ C, 𝑎 ̸= 0). So
assume that 𝐶

𝑖
is the parabola

𝑦
2
= 4 (1 − 𝑥) (23)

and that𝐷
𝑖
is the complementary domain to the “right” of𝐶

𝑖
.

The function

𝑤 → (1 + 𝑤)
2 (24)

maps the open right half-plane 𝐺 conformally onto 𝐷
𝑖
and

the imaginary axis onto 𝐶
𝑖
. Its inverse is the function

𝜗 (𝑧) = 𝑧
1/2

− 1, (𝑧 ∈ 𝐷
𝑖
) , (25)

where 𝑧
1/2 is the principal square-root of 𝑧 (here and

throughout all standard multivalued functions will take their
principal values).

Now let 𝛾 ⊆ 𝐷
𝑖
be a type III arc. Because𝐺 is conformally

equivalent to 𝐷
𝑖
via 𝜗 it will be sufficient to show that the

arc 𝜗(𝛾) ⊆ 𝐺 has a parametric function 𝑘 as in Lemma 17.
Letting ℎ be the arc-length parametrization of 𝛾, then ℎ ∈

𝐶
1
[0,∞), |ℎ(𝑡)| ≡ 1 and ℎ(𝑡) → ∞ as 𝑡 → ∞, and ℎ is

injective.
Now 𝛾 is a subarc of a line, parabola, or hyperbola

component. Hence as 𝑧 → ∞ along 𝛾 the unit tangent vector
at 𝑧 tends to a limit 𝜔 (|𝜔| = 1). Thus

lim
𝑡→∞

ℎ

(𝑡)

ℎ

(𝑡)



= lim
𝑡→∞

ℎ

(𝑡) = 𝜔, (26)

and therefore

lim
𝑡→∞

ℎ (𝑡)

|ℎ (𝑡)|
= 𝜔, (27)

by Lemma 16.
Put 𝑘 = 𝜗 ∘ ℎ. Then 𝑘 is an injective parametric function

for 𝜗(𝛾). Clearly 𝑘 ∈ 𝐶
1
[0,∞), 𝑘(𝑡) → ∞ as 𝑡 → ∞, and

𝑘

(𝑡) = 𝜗


(ℎ (𝑡)) ℎ


(𝑡) ̸= 0, ∀𝑡 ≥ 0. (28)

Moreover,

𝑘

(𝑡)

𝑘

(𝑡)



=
|ℎ (𝑡)|

1/2

ℎ(𝑡)
1/2

ℎ

(𝑡)

ℎ

(𝑡)



→ 𝜔
1/2

. (29)

So 𝑘 is as in Lemma 17, which shows that 𝛾 has the
restriction property in𝐷

𝑖
.

Remark 18. The notation 𝜔
1/2 is ambiguous when 𝜔 = −1

(𝛾 could be part of another parabola). But, because type I
arcs can be ignored, we can assume that either 𝛾 is contained
entirely in the upper half-plane, in which case (−1)

1/2
= 𝑖, or

else 𝛾 is in the lower half-plane and (−1)
1/2

= −𝑖.

4.3. Case 3: 𝐷
𝑖
Is the Convex Complementary Domain of a

Parabola. In this case the parabola

𝑦
2
= 4(

𝜋

4
)

2

((
𝜋

4
)

2

− 𝑥) (30)

will be chosen for 𝐶
𝑖
, and 𝐷

𝑖
will be the complementary

domain to the “left” of 𝐶
𝑖
. This choice is made because then

we have the relatively simple Riemann mapping function

𝜑
𝑖
(𝑧) = tan2 (𝑧1/2) , (𝑧 ∈ 𝐷

𝑖
) . (31)

This function maps the real interval (−∞, (𝜋/4)
2
) in

an increasing fashion onto (−1, 1), and so it maps the
upper/lower half of 𝐷

𝑖
onto the upper/lower half of Δ.

The formula for 𝜑
𝑖
is indeterminate on (−∞, 0], but these

singularities are removable and the formula

𝜑
𝑖
(𝑥) = −tanh2(−𝑥)1/2 (32)

can be used to define 𝜑
𝑖
(𝑥), for negative 𝑥. This mapping will

be examined in detail in a moment, but first we dispose of a
trivial case and make some simple observations.

Let 𝛾 ⊆ 𝐷
𝑖
be a type III arc. If 𝛾 is a real interval (−∞, 𝑎),

with 𝑎 < (𝜋/4)
2, then 𝜑

𝑖
(𝛾) is a subinterval of (−1, 1) which

obviously has the restriction property in Δ. So this case is
trivial and needs no more attention.

The following observations are elementary.

(i) If 𝛾 is part of another line, then it must be parallel to
R and certainly disjoint from (−∞, 0].

(ii) If 𝛾 is part of another parabola 𝐶
𝑗
, then 𝐶

𝑗
must be

symmetric aboutR and have an equation of the form

𝑦
2
= 4𝑎 (𝑏 − 𝑥) , (33)

where 0 < 𝑎 ≤ (𝜋/4)
2, 𝑏 ≤ (𝜋/4)

2.
(iii) If 𝛾 is part of a hyperbola, then its asymptote must be

parallel to R.
(iv) In all (nontrivial) cases 𝛾 intersects (−∞, 0] in at most

two points. So, because type I arcs can be ignored
there is no loss of generality in assuming that Im 𝑧 has
constant sign on 𝛾 and that Re 𝑧 < 0 on 𝛾.

(v) Hence, for definiteness, we can assume that 𝛾 is
contained in the open second quadrant.

(vi) In all cases 𝑦2/𝑥 tends to a limit as 𝑧 → ∞ along 𝛾.
If 𝛾 is part of a line or hyperbola, the limit is 0, and if
𝛾 is part of the parabola in (ii) above the limit is −4𝑎.
For future reference let us note that

0 ≤ lim
𝑦
2

4 |𝑥|
≤ (

𝜋

4
)

2

. (34)

(vii) Because the lim in (34) exists and because type I arcs
can be ignored, we can assume that

𝑦
2

𝑥2
< 1, on 𝛾. (35)
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Now let 𝛾 be type III arc in 𝐷
𝑖
as in (v) and (vi). We

will show that 𝜑
𝑖
(𝛾) has the restriction property in Δ. To

elucidate 𝜑
𝑖
(𝛾) it is convenient to work backwards, examining

the mapping properties of the square map (𝑧 → 𝑧
2
), then

tan, and then the principal square root.

Lemma 19. Let Δ+ be the open semidisc

Δ
+
= {𝑧 ∈ C : |𝑧| < 1, 𝑥 > 0} . (36)

If 𝜎 is a smooth simple arc in Δ+, if 𝑖 is an end-point of 𝜎, and
if 𝜎 − {𝑖} ⊆ Δ

+, then the arc

𝜎 = {𝑧
2
: 𝑧 ∈ 𝜎


} (37)

is a smooth simple arc in Δ satisfying the hypothesis of
Lemma 12, so that 𝜎 − {−1} has the restriction property in Δ.

Proof. This is clear: the square map 𝑧 → 𝑧
2 is conformal in

a neighbourhood of 𝜎.

Now let 𝑆 be the open strip

𝑆 = {𝑧 ∈ C : 0 < 𝑥 <
𝜋

4
} . (38)

It is well known that tan maps 𝑆 conformally onto Δ
+. The

imaginary axis is mapped to the vertical part of 𝜕Δ
+, and

the line 𝜋/4 + 𝑖R is mapped to the semicircular part of 𝜕Δ+.
Moreover, if 𝑧 tends to infinity in 𝑆 in such a way that 𝑦 →

+∞, then tan 𝑧 → 𝑖.

Lemma 20. Let 𝑘 ∈ 𝐶
1
[0,∞) be injective and satisfy 𝑘


(𝑡) ̸=

0, for 𝑡 ≥ 0. Suppose also that

(i) 𝑘(𝑡) ∈ 𝑆 for all 𝑡 ≥ 0,

(ii) Im 𝑘(𝑡) → +∞ as 𝑡 → +∞,

(iii) lim
𝑡→∞

Re 𝑘(𝑡) = 𝑥
0
exists (0 ≤ 𝑥

0
≤ 𝜋/4),

(iv) lim
𝑡→∞

(𝑘

(𝑡)/|𝑘

(𝑡)|) = 𝑖.

If 𝛾 is the arc parametrized by 𝑘, then 𝜎

= (tan 𝛾


) ∪ {𝑖}

satisfies the hypothesis of Lemma 19, so that tan2𝛾 has the
restriction property in Δ.

Proof. Let 𝑔 = tan ∘ 𝑘, so that 𝑔 parametrizes 𝛾 and tan 𝛾

=

𝑔[0,∞). Now 𝑔 ∈ 𝐶
1
[0,∞), 𝑔(𝑡) ̸= 0, for all 𝑡 ≥ 0, and

𝑔(𝑡) → 𝑖 as 𝑡 → +∞. Lemma 15 will be used to show that
𝜎

= 𝑔[0,∞) ∪ (𝑖) satisfies the hypothesis of Lemma 19. For

all 𝑡 ≥ 0,

𝑔

(𝑡)

𝑔

(𝑡)



=
|cos 𝑘 (𝑡)|

2

(cos 𝑘 (𝑡))
2

𝑘

(𝑡)

𝑘

(𝑡)



. (39)

Let 𝑘(𝑡) = 𝑥(𝑡)+𝑖𝑦(𝑡). Since 𝑥(𝑡) → 𝑥
0
and 𝑦(𝑡) → +∞,

as 𝑡 → +∞, and because cos𝑥, cosh𝑦 > 0 on 𝛾,

|cos 𝑘 (𝑡)|
2

cos2𝑘 (𝑡)
= (

cos𝑥 (𝑡) cosh𝑦 (𝑡) − 𝑖 sin𝑥 (𝑡) sinh𝑦 (𝑡)


cos𝑥 (𝑡) cosh𝑦 (𝑡) − 𝑖 sin𝑥 (𝑡) sinh𝑦 (𝑡)
)

2

=

1 − 𝑖 tan𝑥 (𝑡) tanh𝑦 (𝑡)


2

(1 − 𝑖 tan𝑥 (𝑡) tanh𝑦 (𝑡))
2

→

1 − 𝑖 tan𝑥
0



2

(1 − 𝑖 tan𝑥
0
)
2
.

(40)

So lim
𝑡→∞

(𝑔

(𝑡)/|𝑔


(𝑡)|) exists.

The function

𝜗 (𝑧) = 𝑧
1/2 (41)

maps 𝐷
𝑖
− (−∞, 0] conformally onto the vertical strip 𝑆

as above. The limiting values of 𝜗 from above and below
a point 𝑥 on (−∞, 0] are at ±𝑖(−𝑥)

1/2, respectively. Now
tan maps 𝑆 conformally onto Δ

+ and tan±𝑖(−𝑥)
1/2

=

±𝑖 tanh(−𝑥)1/2. Finally the square function maps Δ+ confor-
mally onto Δ − ((−1, 0]), and it maps both of ±𝑖 tanh(−𝑥)1/2

and −tanh2(−𝑥)1/2. Thus the cut made by 𝜗 is repaired by
the square function (by Schwarz’s Reflection Principle): 𝜑

𝑖
is

continuous at all points of (−∞, 0] and therefore analytic on
𝐷
𝑖
. Because 𝜑

𝑖
(𝑧) ∈ (−1, 0] if and only if 𝑧 ∈ (−∞, 0] the

injectivity of 𝜑
𝑖
on𝐷
𝑖
is clear.

Let 𝛾 ⊆ 𝐷
𝑖
be a type III arc. Assume that 𝑦 > 0 and 𝑥 < 0

when 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝛾. Let 𝛾 = 𝜗(𝛾) so that 𝛾 ⊆ 𝑆. We show
that 𝛾 is as in Lemma 20 so that tan2𝛾 has the restriction
property inΔ and, hence, 𝛾 has the restriction property in𝐷

𝑖
.

Let 𝑧 = 𝑥 + 𝑖𝑦 be an arbitrary point of 𝛾 and write

𝑧
1/2

= 𝑢 + 𝑖V, (42)

for the corresponding point 𝜗(𝑧) ∈ 𝛾
; then

𝑥 + 𝑖𝑦 = 𝑢
2
− V2 + 2𝑖𝑢V. (43)

Eliminating V, and remembering that 𝑥 < 0, we see that

𝑢
2
=

1

2
(𝑥 + (𝑥

2
+ 𝑦
2
)
1/2

)

=
|𝑥|

2
((1 +

𝑦
2

𝑥2
)

1/2

− 1) .

(44)

Since 𝑦
2
/𝑥
2

< 1 (observation (vii)), the binomial series
implies that

𝑢
2
=

𝑦
2

4 |𝑥|
−

1

16

𝑦
4

|𝑥|
3
+ ⋅ ⋅ ⋅

∼
𝑦
2

4 |𝑥|
,

(45)
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as 𝑧 tends to ∞ along 𝛾. It follows from (34) that

lim
𝑡→∞

𝑢
2
= 𝑎 exists, 0 ≤ 𝑎 ≤ (

𝜋

4
)

2

. (46)

Now let ℎ be the arc-length parametrization of 𝛾 andwrite
ℎ(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡). Let 𝑘 = 𝜗 ∘ ℎ = ℎ

1/2 so that 𝑘 parametrizes
𝛾
.Write 𝑘(𝑡) = 𝑢(𝑡)+𝑖V(𝑡). (i), (ii), (iii), and (iv) of Lemma 20

can now be verified.
Obviously 𝑘(𝑡) ∈ 𝑆, for all 𝑡 ≥ 0, so (i) is true. As 𝑡 →

∞, |𝑘(𝑡)| = |ℎ(𝑡)|
1/2

→ ∞, but since 0 ≤ 𝑢(𝑡) ≤ 𝜋/4 we
must have V(𝑡) → +∞, so that (ii) is true. Item (iii) follows
from (46). Now ℎ(𝑡) → ∞ as 𝑡 → ∞, |ℎ(𝑡)| ≡ 1, and
ℎ

(𝑡) → −1 as 𝑡 → ∞. So, by Lemma 16,

lim
𝑡→∞

𝑘

(𝑡)

𝑘

(𝑡)



=
|ℎ (𝑡)|

1/2

ℎ(𝑡)
1/2

ℎ

(𝑡)

ℎ

(𝑡)



→ −𝑖 (−1) = 𝑖. (47)

So (iv) is true and we have now completed the proof.

4.4. Case 4: 𝐶
𝑖
Is a Hyperbola Component. We can deal

simultaneously with the convex and concave complementary
domains of a hyperbola component as follows. Let −𝜋/2 <

𝛼 < 𝜋/2 and let 𝐶
𝑖
= sin(𝛼 + 𝑖R). If 𝛼 < 0, 𝐶

𝑖
is the arc

𝐶
𝑖
= {𝑧 = 𝑥 + 𝑖𝑦 ∈ C : 𝑥 < 0,

𝑥
2

sin2𝛼
−

𝑦
2

cos2𝛼
= 1} , (48)

and if 𝛼 > 0, 𝐶
𝑖
is the arc

𝐶
𝑖
= {𝑧 = 𝑥 + 𝑖𝑦 ∈ C : 𝑥 > 0,

𝑥
2

sin2𝛼
−

𝑦
2

cos2𝛼
= 1} . (49)

Let 𝐷
𝑖
be the complementary domain to the “left” of 𝐶

𝑖
;

then𝐷
𝑖
is convexwhen𝛼 < 0 and concavewhen𝛼 > 0. Linear

equivalence will be used as before to reduce the general case
to this one.

The function sin−1 maps the double cut plane C −

{(−∞, −1] ∪ [1,∞)} conformally onto the vertical strip |𝑥| <

𝜋/2, mapping the upper/lower parts of the first domain onto
the upper/lower parts of the second. The upper and lower
limits of sin−1 at a point −𝑥 ∈ (−∞, −1] are −𝜋/2 ± 𝑖cosh−1𝑥.
The arc 𝐶

𝑖
= sin(𝛼 + 𝑖R) is mapped to the line Re 𝑧 = 𝛼.

Therefore sin−1 maps 𝐷
𝑖
− (−∞, −1] conformally onto the

strip

𝐷
𝛼
= {𝑧 = 𝑥 + 𝑖𝑦 ∈ C : −

𝜋

2
< 𝑥 < 𝛼} . (50)

If

𝜆 (𝑧) =
𝜋

4

𝑧 + (𝜋/2)

𝛼 + (𝜋/2)
, (51)

then 𝜆maps𝐷
𝛼
conformally onto the strip

𝑆 = {𝑧 = 𝑥 + 𝑖𝑦 ∈ C : 0 < 𝑥 <
𝜋

4
} . (52)

Therefore

𝜑
𝑖
(𝑧) = tan2𝜆 (sin−1𝑧) (53)

is a Riemann mapping function for 𝐷
𝑖
. Now let 𝛾 be a type

III arc in 𝐷
𝑖
. As in Case 3 the case 𝛾 ⊆ R is trivial, so we

can assume that 𝛾 lies entirely in the upper half-plane. It will
be sufficient for us to show that 𝜆(sin−1𝛾) has a parametric
function 𝑘 as in Lemma 20.

Let 𝑧 = 𝑥 + 𝑖𝑦 be arbitrary point of 𝛾 and write sin−1𝑧 =

𝑢 + 𝑖V for the corresponding point of sin−1𝛾. Clearly, by (50),

𝑢 + 𝑖V ∈ 𝐷
𝛼
. (54)

Now

𝑧 = 𝑥 + 𝑖𝑦 = sin (𝑢 + 𝑖V) = sin 𝑢 cosh V + 𝑖 cos 𝑢 sinh V,
(55)

so that

|𝑧|
2
= sin2𝑢 cosh2V + cos2𝑢 sinh2V = sin2𝑢 + sinh2V. (56)

As 𝑧 → ∞ along 𝛾, |𝑧|2 → +∞ and sin2𝑢 remains
bounded; therefore

V → +∞ as 𝑧 → ∞ along 𝛾. (57)

It now follows from (56) and (57) that

sin 𝑢 =
𝑥

|𝑧|
(tanh2V +

sin2𝑢
cosh2V

)

1/2

∼
𝑥

|𝑧|
as 𝑧 → ∞.

(58)

Let ℎ be the arc-length parametrization of 𝛾. As 𝑧 →

∞ along 𝛾 its unit tangent vector has a limit 𝑒
𝑖𝜃, say. The

asymptotes of 𝐶
𝑖
are the rays arg 𝑧 = ±(𝜋/2 − 𝛼). Therefore

lim
𝑡→∞

ℎ

(𝑡)

ℎ

(𝑡)



= lim
𝑡→∞

ℎ

(𝑡) = 𝑒

𝑖𝜃
, where 𝜋

2
− 𝛼 ≤ 𝜃 ≤ 𝜋.

(59)

So, by (57) and Lemma 16,

lim
𝑡→∞

ℎ (𝑡)

|ℎ (𝑡)|
= 𝑒
𝑖𝜃
. (60)

Now 𝑔 = sin−1 ∘ ℎ is a parametric function for sin−1𝛾. By
(54) it follows that

(i) 𝑔(𝑡) ∈ 𝐷
𝛼
(𝑡 ≥ 0), and (57) shows that

(ii) Im𝑔(𝑡) → +∞ as 𝑡 → ∞.

Equation (60) shows that

(iii) lim
𝑡→∞

Re𝑔(𝑡) = sin−1 cos 𝜃 = (𝜋/2) − 𝜃 and we
notice that −𝜋/2 ≤ (𝜋/2) − 𝜃 ≤ 𝛼, by (59).

Finally observe that

𝑔

(𝑡)

𝑔

(𝑡)



=


1 − ℎ(𝑡)

2

1/2

(1 − ℎ(𝑡)
2
)
1/2

ℎ

(𝑡)

ℎ

(𝑡)



. (61)

Now in the upper half-plane (1 − 𝑤
2
)
1/2

∼ −𝑖𝑤, as 𝑤 →

∞. So, as 𝑡 → ∞,

𝑔

(𝑡)

𝑔

(𝑡)



∼
|ℎ (𝑡)|

−𝑖ℎ (𝑡)

ℎ

(𝑡)

ℎ

(𝑡)



, (62)
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and therefore

(iv) lim
𝑡→∞

(𝑔

(𝑡)/|𝑔


(𝑡)|) = 𝑖.

It follows easily that 𝑘 = 𝜆 ∘ 𝑔 satisfies the hypothesis of
Lemma 20, and therefore 𝜑

𝑖
(𝛾) has the restriction property in

Δ.
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