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This paper presents a method to determine whether the second-order linear differential equation 𝑦󸀠󸀠 + 𝑞(𝑥)𝑦 = 0 is either disfocal
or nondisfocal in a fixed interval. The method is based on the recursive application of a linear operator to certain functions and
yields upper and lower bounds for the distances between a zero and its adjacent critical points, which will be shown to converge to
the exact values of such distances as the recursivity index grows.

1. Introduction

The purpose of this paper is to show that the recursive appli-
cation of the operator 𝐿 : 𝐶[𝑎, 𝑏] → 𝐶

2
[𝑎, 𝑏] defined by

𝐿𝑓 = ∫

𝑥

𝑎

∫

𝑏

𝑡

𝑞 (𝑠) 𝑓 (𝑠) 𝑑𝑠 𝑑𝑡, (1)

where 𝑞(𝑥) is continuous on [𝑎, 𝑏] and strictly positive
almost everywhere on that same interval, provides criteria to
determine if the second-order linear differential equation

𝑦
󸀠󸀠
+ 𝑞 (𝑥) 𝑦 = 0 (2)

is either left disfocal or left nondisfocal in a given interval
[𝑎, 𝑏] (the right disfocal case will also be covered similarly),
criteria which converge into simultaneously necessary and
sufficient conditions for disfocality as the number of times
that 𝐿 is applied recursively increases (i.e., as the index 𝑘 of
𝐿
𝑘 grows). Following [1], let us recall that (2) is left (right)

disfocal in [𝑎, 𝑏] if no nontrivial solution 𝑦(𝑥) such that
𝑦
󸀠
(𝑏) = 0 (𝑦󸀠(𝑎) = 0) has a zero in [𝑎, 𝑏]; that is, if 𝑏(𝑎) has

no left (right) focal point 𝑐 such that 𝑐 ∈ [𝑎, 𝑏]. Otherwise
we will say that (2) is focal or nondisfocal in [𝑎, 𝑏] (note that
this use of the term focal is not common in the literature). As
a result, this method will yield upper and lower bounds for

the distances between zeroes and their adjacent critical points
which will converge to the exact values of such distances as
the index 𝑘 grows.

The operator 𝐿 defined in (1) is not unknown in the anal-
ysis of disfocality of linear differential equations since it was
applied by Kwong in [1] to the function 𝑓(𝑥) ≡ 𝑦(𝑏) in order
to devise a Lyapunov inequality for disfocality for (2). Kwong
also used it in a different manner in [2] to determine an
oscillation condition for (2), taking advantage of the concave
nature of the solution 𝑦(𝑥). Likewise Harris indicated in
[3, Section 3] that a recursive application of 𝐿 to Kwong’s
function 𝑓(𝑥) ≡ 𝑦(𝑏) could provide more precise Lyapunov
inequalities than that proved by Kwong, but he neither got
to prove that the improvement was guaranteed with the
recursivity nor did he get to apply it to other functions 𝑓 and
to the opposite problem, that is, to show if (2) is focal in an
interval. This paper will address and solve these open ques-
tions, setting a theoretical frame for the recursive application
of 𝐿 to different functions.

To complete the historical picture, many other disfocal
Lyapunov inequalities have appeared since the first one
from Kwong, Brown and Hinton’s inequality (see [4]) being
possibly the most successful one, as a careful reading of the
excellent survey of Pachpatte on the topic suggests (see [5]).
On the contrary, the opposite problem (the analysis of the



2 Abstract and Applied Analysis

maximum distance between zeroes and critical points or the
determination of “focality” conditions on an interval) is a
problem which has received much less attention in the last
decades, apart from [6, 7], in which the authors obtained
focality conditions in their quest for conjugacy conditions
of (2), [8, 9], where the authors used Prüfer transformation
techniques to elaborate different methods to tackle that prob-
lem, and [10], where Kwong’s idea on the concave nature of
𝑦(𝑥) was further exploited and extended to the half-linear
differential equation.

The reason for such little interest is unclear, but it also
affects the “sibling” problem of the determination of con-
jugacy of (2) on an interval (i.e., the determination of the
maximum distance between consecutive zeroes of a solution
of (2)), as Došlý noted when addressing such a problem in
[7].

As indicated in the first paragraph, throughout the paper
and with the exception of Section 6 we will assume that 𝑞(𝑥)
is continuous on an interval 𝐼 ⊂ 𝑅 such that [𝑎, 𝑏] ⊂ 𝐼 and
that 𝑞(𝑥) is strictly positive almost everywhere on [𝑎, 𝑏]. This
allows to define the internal product

⟨𝑓, 𝑔⟩ = ∫

𝑏

𝑎

𝑞 (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥, (3)

for 𝑓, 𝑔 being continuous on [𝑎, 𝑏] (it is easy to prove that (3)
satisfies all the conditions required by an internal product),
and the associated norm ‖ ⋅ ‖

2
defined by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2 = (∫

𝑏

𝑎

𝑞 (𝑥) 𝑓
2

(𝑥) 𝑑𝑥)

1/2

. (4)

Likewise, we will use the notation 𝐿 to name the operator
defined in (1), 𝐿𝑓 or 𝐿{𝑓} to name the function with domain
[𝑎, 𝑏] resulting from the application of 𝐿 to 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏],
𝐿𝑓(𝑥), or 𝐿{𝑓}(𝑥) to name the value of the function 𝐿𝑓 at
the point 𝑥 and 𝐿

𝛼,𝛽
when other extremes of integration 𝛼, 𝛽

potentially different from 𝑎, 𝑏 are used in (1).
The organization of the paper is as follows. Section 2

will present the main properties of the operator 𝐿. Section 3
will apply them to find criteria to assess whether (2) is (left
or right) focal or disfocal in a given interval. Section 4 will
introduce some formulae which simplify the calculations
required in Section 3. Section 5 will apply the method to
several examples. Section 6 will deal with the case where 𝑞(𝑥)
can be negative in a subset of positive measure and finally
Section 7 will draw several conclusions.

2. The Operator 𝐿𝑓=∫
𝑥

𝑎
∫
𝑏

𝑡
𝑞(𝑠)𝑓(𝑠)𝑑𝑠 𝑑𝑡

The purpose of this section will be to present the main
properties of the operator 𝐿 defined in (1) for 𝑞(𝑥) as specified
in the Introduction. For the sake of clarity, such properties
will be presented in several lemmas which will lead to
Theorem 5, which can be regarded as the key result of this
section.

Lemma 1. The operator 𝐿𝑓 is linear, positive, and monotonic
(i.e., if𝑓 ≥ 𝑔 then 𝐿𝑓 ≥ 𝐿𝑔). Furthermore, if𝑓(𝑥) ≥ 0 on ]𝑎, 𝑏[

then 𝐿𝑓(𝑥) = 0 for an 𝑥 ∈ ]𝑎, 𝑏[ if and only if 𝑓(𝑥) = 0 almost
everywhere on [𝑎, 𝑏].

Proof. The proof is straightforward by simple inspection of
(1), the fact that 𝑞(𝑥) is positive almost everywhere on [𝑎, 𝑏],
and the equivalence of the properties positive andmonotonic
when applied to linear operators.

Lemma 2. The operator 𝐿𝑓 is compact.

Proof. Following [11, Theorem 7.2.6], 𝐿 will be compact with
the ‖ ⋅ ‖

∞
norm (and therefore with the ‖ ⋅ ‖

2
norm defined

in (4)) if we can represent it as

𝐿𝑓 = ∫

𝑏

𝑎

𝑘 (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝑡, (5)

with 𝑘(𝑥, 𝑡) being continuous on (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [𝑎, 𝑏]. But a
simple integration by parts of (1) allows showing that 𝐿𝑓 can
be expressed as

𝐿𝑓 = (𝑥 − 𝑎) ∫

𝑏

𝑥

𝑞 (𝑡) 𝑓 (𝑡) 𝑑𝑡 + ∫

𝑥

𝑎

(𝑡 − 𝑎) 𝑞 (𝑡) 𝑓 (𝑡) 𝑑𝑡

= ∫

𝑏

𝑎

min (𝑥 − 𝑎, 𝑡 − 𝑎) 𝑞 (𝑡) 𝑓 (𝑡) 𝑑𝑡.

(6)

It is straightforward to show thatmin(𝑥−𝑎, 𝑡−𝑎) is continuous
on (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [𝑎, 𝑏].

Lemma 3. The operator 𝐿𝑓 is self-adjoint.

Proof. To prove self-adjointness, we need to prove that given
that 𝑓, 𝑔 ∈ 𝐶[𝑎, 𝑏], then ⟨𝐿𝑓, 𝑔⟩ = ⟨𝑓, 𝐿𝑔⟩. Thus, from (3) we
have

⟨𝐿𝑓, 𝑔⟩ = ∫

𝑏

𝑎

𝑞 (𝑥) 𝐿𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥

= ∫

𝑏

𝑎

𝑞 (𝑥) 𝑔 (𝑥) ∫

𝑥

𝑎

∫

𝑏

𝑡

𝑞 (𝑠) 𝑓 (𝑠) 𝑑𝑠 𝑑𝑡 𝑑𝑥.

(7)

Integrating by parts the right hand side of (7) one has

⟨𝐿𝑓, 𝑔⟩ = ∫

𝑏

𝑎

∫

𝑏

𝑥

𝑞 (𝑡) 𝑔 (𝑡) 𝑑𝑡 ∫

𝑏

𝑥

𝑞 (𝑡) 𝑓 (𝑡) 𝑑𝑡 𝑑𝑥. (8)

Integrating by parts again (8) one finally gets that

⟨𝐿𝑓, 𝑔⟩ = ∫

𝑏

𝑎

∫

𝑥

𝑎

∫

𝑏

𝑡

𝑞 (𝑠) 𝑔 (𝑠) 𝑑𝑠 𝑑𝑡 𝑞 (𝑥) 𝑓 (𝑥) 𝑑𝑥

= ⟨𝑓, 𝐿𝑔⟩ .

(9)

Lemma 4. The operator 𝐿𝑓 is bounded with the ‖ ⋅ ‖
∞

norm
and verifies

𝐿𝑓 (𝑥) ≤ (𝑥 − 𝑎)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ ∫

𝑏

𝑎

𝑞 (𝑡) 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏] , (10)

𝐿𝑓 (𝑥) ≤ (𝑥 − 𝑎)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2
√∫

𝑏

𝑎

𝑞 (𝑡) 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏] , (11)

where the ‖ ⋅ ‖
2
norm is defined as in (4).
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Proof. From the representation of 𝐿 given in (6) one has

𝐿𝑓 (𝑥) = ∫

𝑏

𝑎

min (𝑥 − 𝑎, 𝑡 − 𝑎) 𝑞 (𝑡) 𝑓 (𝑡) 𝑑𝑡

≤ (𝑥 − 𝑎) ∫

𝑏

𝑎

𝑞 (𝑡) 𝑓 (𝑡) 𝑑𝑡.

(12)

Equation (10) is an obvious consequence of (12), and (11)
follows from (12) by application of Cauchy-Schwarz inequal-
ity.

Theorem 5. The operator 𝐿𝑓 has a countably infinite number
of eigenvalues 1/𝜆

𝑛
and associated orthonormal eigenfunctions

Φ
𝑛
(𝑥), which allow expressing 𝐿𝑘𝑓, 𝑘 ≥ 1 as

𝐿
𝑘
𝑓 =

∞

∑

𝑛=1

⟨𝑓,Φ
𝑛
⟩

𝜆𝑘
𝑛

Φ
𝑛
. (13)

Moreover one has the following.

(i) If (2) is left disfocal in [𝑎, 𝑏], then

lim
𝑘→∞

𝐿
𝑘
𝑓 = 0. (14)

(ii) If (2) is left focal in [𝑎, 𝑏] but it is left disfocal in any
interval interior to [𝑎, 𝑏], then

lim
𝑘→∞

𝐿
𝑘
𝑓 = ⟨𝑓,Φ

1
⟩Φ
1
. (15)

(iii) If (2) is left focal in an interval [𝑎󸀠, 𝑏󸀠] interior to [𝑎, 𝑏]
(i.e., [𝑎󸀠, 𝑏󸀠] ⊂ [𝑎, 𝑏]), and ⟨𝑓,Φ

1
⟩ ̸= 0, then

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩2
= ∞, (16)

lim
𝑘→∞

𝐿
𝑘
𝑓 (𝑏) = ±∞, (17)

the sign corresponding to that of ⟨𝑓,Φ
1
⟩Φ
1
(𝑏).

Proof. Let us consider the eigenvalue problem

𝑦
󸀠󸀠
+ 𝜆𝑞 (𝑥) 𝑦 = 0, 𝑥 ∈ ]𝑎, 𝑏[ , 𝑦 (𝑎) = 𝑦

󸀠

(𝑏) = 0. (18)

From the theory of ordinary differential equations (see [12,
Theorems V.8 and V.9]) it is known that there exists a count-
ably infinite number of eigenvalues 𝜆

𝑛
which form an

increasing sequence with lim
𝑛→∞

𝜆
𝑛
= ∞, each of which

has its corresponding orthonormal (with the norm (4)) eigen-
function Φ

𝑛
(𝑥) and that the set of eigenfunctions Φ

𝑛
forms

an orthonormal basis of 𝐶[𝑎, 𝑏]. Applying the operator 𝐿 to
these eigenfunctionsΦ

𝑛
(𝑥) and integrating by parts it is easy

to show that

𝐿Φ
𝑛
=
Φ
𝑛

𝜆
𝑛

, 𝑛 ≥ 1, (19)

which implies that Φ
𝑛
are also the eigenfunctions of the

operator 𝐿 with corresponding eigenvalue 1/𝜆
𝑛
. Since from

Lemmas 1, 2, and 3, 𝐿 is linear, self-adjoint, and compact, we

can apply [11,Theorem 7.5.2] and represent 𝐿 in the canonical
form

𝐿𝑓 =

∞

∑

𝑛=1

⟨𝑓,Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛
. (20)

Applying 𝐿 again to (20) yields

𝐿
2
𝑓 =

∞

∑

𝑛=1

⟨𝐿𝑓,Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛

=

∞

∑

𝑛=1

⟨∑
∞

𝑗=1
(⟨𝑓,Φ

𝑗
⟩ /𝜆
𝑗
)Φ
𝑗
, Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛

=

∞

∑

𝑛=1

⟨𝑓,Φ
𝑛
⟩

𝜆2
𝑛

Φ
𝑛
,

(21)

given that ⟨Φ
𝑖
, Φ
𝑖
⟩ = 1 and ⟨Φ

𝑖
, Φ
𝑗
⟩ = 0 for 𝑖 ̸= 𝑗. Applying 𝐿

recursively to (21), one gets that

𝐿
𝑘
𝑓 =

∞

∑

𝑛=1

⟨𝐿
𝑘−1

𝑓,Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛

=

∞

∑

𝑛=1

⟨∑
∞

𝑗=1
(⟨𝑓,Φ

𝑗
⟩ /𝜆
𝑘−1

𝑗
)Φ
𝑗
, Φ
𝑛
⟩

𝜆
𝑛

Φ
𝑛

=

∞

∑

𝑛=1

⟨𝑓,Φ
𝑛
⟩

𝜆𝑘
𝑛

Φ
𝑛
,

(22)

which is in fact (13).
To prove (14), let us note that if (2) is left disfocal in [𝑎, 𝑏]

the first eigenvalue 𝜆
1
(and therefore all the others) must be

strictly greater than 1. In that case, by Parseval’s identity (see
[11, Theorem 1.5.18]) one has

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩2
= √

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨⟨𝑓,Φ𝑛⟩
󵄨󵄨󵄨󵄨
2

𝜆2𝑘
𝑛

≤ √

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨⟨𝑓,Φ𝑛⟩
󵄨󵄨󵄨󵄨
2

𝜆
2𝑘

1

=

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

𝜆
𝑘

1

.

(23)

From (23) and given that 𝜆
1
> 1 one has

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩2
= 0. (24)

From (24) and Lemma 4 one gets (14).
Let us focus now on (15). If (2) is left focal in [𝑎, 𝑏] but it is

left disfocal in any interval interior to [𝑎, 𝑏], then 𝜆 = 1must
be the first eigenvalue of (18). Then we can write

𝐿
𝑘
𝑓 − ⟨𝑓,Φ

1
⟩Φ
1
=

∞

∑

𝑛=2

⟨𝑓,Φ
𝑛
⟩

𝜆𝑘
𝑛

Φ
𝑛
. (25)

Applying Parseval’s formula to the right hand side of (25) one
has

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑘
𝑓 − ⟨𝑓,Φ

1
⟩Φ
1

󵄩󵄩󵄩󵄩󵄩2
= √

∞

∑

𝑛=2

󵄨󵄨󵄨󵄨⟨𝑓,Φ𝑛⟩
󵄨󵄨󵄨󵄨
2

𝜆2𝑘
𝑛

≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

𝜆
𝑘

2

. (26)
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And given that 𝜆
2
> 1, from (26) one gets

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑘
𝑓 − ⟨𝑓,Φ

1
⟩Φ
1

󵄩󵄩󵄩󵄩󵄩2
= 0. (27)

Again, from (27) and Lemma 4 one gets (15).
Finally, let us prove now (16) and (17). Since (2) is left focal

in an interval [𝑎󸀠, 𝑏󸀠] interior to [𝑎, 𝑏], then at least the first
eigenvalue 𝜆

1
must be smaller than 1. We can apply Parseval’s

identity to obtain

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩2
= √

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨⟨𝑓,Φ𝑛⟩
󵄨󵄨󵄨󵄨
2

𝜆2𝑘
𝑛

≥

󵄨󵄨󵄨󵄨⟨𝑓,Φ1⟩
󵄨󵄨󵄨󵄨

𝜆
𝑘

1

. (28)

Since ⟨𝑓,Φ
1
⟩ ̸= 0 by hypothesis and 𝜆

1
< 1, from (28) we get

that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩2
= ∞, (29)

which is (16). One the other hand, we can write

𝐿
𝑘
𝑓 −

⟨𝑓,Φ
1
⟩

𝜆
𝑘

1

Φ
1
=

∞

∑

𝑛=2

⟨𝑓,Φ
𝑛
⟩

𝜆𝑘
𝑛

Φ
𝑛
. (30)

We can divide both sides of (30) by ⟨𝑓,Φ
1
⟩/𝜆
𝑘

1
to yield

𝐿
𝑘
𝑓 − (⟨𝑓,Φ

1
⟩ /𝜆
𝑘

1
)Φ
1

⟨𝑓,Φ
1
⟩ /𝜆
𝑘

1

=
∑
∞

𝑛=2
(⟨𝑓,Φ

𝑛
⟩ /𝜆
𝑘

𝑛
)Φ
𝑛

⟨𝑓,Φ
1
⟩ /𝜆
𝑘

1

. (31)

Applying Parseval’s identity to (31) one gets

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐿
𝑘
𝑓 − (⟨𝑓,Φ

1
⟩ /𝜆
𝑘

1
)Φ
1

⟨𝑓,Φ
1
⟩ /𝜆
𝑘

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

= √
∑
∞

𝑛=2
(
󵄨󵄨󵄨󵄨⟨𝑓,Φ𝑛⟩

󵄨󵄨󵄨󵄨
2

/𝜆
2𝑘

𝑛
)

󵄨󵄨󵄨󵄨⟨𝑓,Φ1⟩
󵄨󵄨󵄨󵄨
2

/𝜆
2𝑘

1

≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

󵄨󵄨󵄨󵄨⟨𝑓,Φ1⟩
󵄨󵄨󵄨󵄨

𝜆
𝑘

1

𝜆
𝑘

2

.

(32)

Since 𝜆
1
< 𝜆
2
from (32) one yields

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐿
𝑘
𝑓 − (⟨𝑓,Φ

1
⟩ /𝜆
𝑘

1
)Φ
1

⟨𝑓,Φ
1
⟩ /𝜆
𝑘

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

= 0, (33)

which implies that there exists an index 𝑘
0
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐿
𝑘
𝑓 − (⟨𝑓,Φ

1
⟩ /𝜆
𝑘

1
)Φ
1

⟨𝑓,Φ
1
⟩ /𝜆
𝑘

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

< 𝜖, 𝑘 > 𝑘
0
. (34)

From Lemma 4 and (34) one has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿
𝑘
𝑓 (𝑏) − (⟨𝑓,Φ

1
⟩ /𝜆
𝑘

1
)Φ
1
(𝑏)

⟨𝑓,Φ
1
⟩ /𝜆
𝑘

1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜖 (𝑏 − 𝑎)√∫

𝑏

𝑎

𝑞 (𝑥) 𝑑𝑥, 𝑘 > 𝑘
0
+ 1;

(35)

that is,
󵄨󵄨󵄨󵄨⟨𝑓,Φ1⟩

󵄨󵄨󵄨󵄨

𝜆
𝑘

1

× (sign (⟨𝑓,Φ
1
⟩)Φ
1
(𝑏) − 𝜖 (𝑏 − 𝑎)√∫

𝑏

𝑎

𝑞 (𝑥) 𝑑𝑥)

< 𝐿
𝑘
𝑓 (𝑏)

<

󵄨󵄨󵄨󵄨⟨𝑓,Φ1⟩
󵄨󵄨󵄨󵄨

𝜆
𝑘

1

× (sign (⟨𝑓,Φ
1
⟩)Φ
1
(𝑏) + 𝜖 (𝑏 − 𝑎)√∫

𝑏

𝑎

𝑞 (𝑥) 𝑑𝑥) ,

𝑘 > 𝑘
0
+ 1.

(36)

Since Φ
1
(𝑏) ̸= 0 (otherwise Φ

1
(𝑏) = Φ

󸀠

1
(𝑏) = 0 and Φ

1
≡ 0)

and 𝜆
1
< 1, (36) leads to (17).

Last, but not least, we will prove the next lemma, which
will be of interest for the analysis of the next section.

Lemma 6. For enclosed intervals [𝑎󸀠, 𝑏󸀠] ⊂ [𝑎
󸀠󸀠
, 𝑏
󸀠󸀠
] and pro-

vided that 𝑓(𝑥) is positive almost everywhere on [𝑎󸀠󸀠, 𝑏󸀠󸀠], the
operator 𝐿 verifies

𝐿
𝑎
󸀠
,𝑏
󸀠𝑓 (𝑥) < 𝐿

𝑎
󸀠󸀠
,𝑏
󸀠󸀠𝑓 (𝑥) < 𝐿

𝑎
󸀠󸀠
,𝑏
󸀠󸀠𝑓 (𝑏
󸀠󸀠
) ,

𝑥 ∈ ]𝑎
󸀠
, 𝑏
󸀠
] .

(37)

Proof. The proof is obvious by simple inspection of (6) and
the fact that 𝑞(𝑥) and 𝑓(𝑥) are positive almost everywhere on
[𝑎
󸀠󸀠
, 𝑏
󸀠󸀠
].

Remark 7. It is straightforward to show that both Lemmas 1–6
andTheorem 5 are also applicable to the operator

𝑃𝑓 = ∫

𝑏

𝑥

∫

𝑡

𝑎

𝑞 (𝑠) 𝑓 (𝑠) 𝑑𝑠 𝑑𝑡, (38)

for the same conditions of 𝑞(𝑥), just changing all the refer-
ences to left focal and left disfocal by right focal and right
disfocal, respectively.

3. Application to the Distance between a Zero
and Its Adjacent Critical Points

This section will elaborate on the results of the previous
section in order to obtain conditions for focality or disfocality
of (2) in the interval [𝑎, 𝑏]. Critical pieces for that will be the
next theorem and its corollary.

Theorem 8. Let one suppose that there exists a nontrivial
solution 𝑦(𝑥) of (2) such that 𝑦(𝑎) = 𝑦

󸀠
(𝑏) = 0 and 𝑦(𝑏) > 0.
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For any [𝑎󸀠, 𝑏󸀠] such that [𝑎, 𝑏] ⊆ [𝑎
󸀠
, 𝑏
󸀠
], if 𝑓 > 𝑦 on ]𝑎, 𝑏[

and 𝑓 > 0 on ]𝑎󸀠, 𝑏󸀠] then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑥) > 𝑦 (𝑥) , 𝑥 ∈ ]𝑎, 𝑏] , 𝑘 ≥ 1, (39)

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑏
󸀠
) > 𝑦 (𝑏) , 𝑘 ≥ 1. (40)

For any [𝑎󸀠, 𝑏󸀠] such that [𝑎󸀠, 𝑏󸀠] ⊆ [𝑎, 𝑏], if 0 < 𝑓 < 𝑦 on
]𝑎
󸀠
, 𝑏
󸀠
[ then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑥) < 𝑦 (𝑥) , 𝑥 ∈ ]𝑎

󸀠
, 𝑏
󸀠
] , 𝑘 ≥ 1. (41)

In particular

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑏
󸀠
) < 𝑦 (𝑏) , 𝑘 ≥ 1. (42)

Proof. Let us prove first (39). Since 𝐿 is linear and positive we
can apply Lemma 1 recursively to yield

𝐿
𝑘

𝑎,𝑏
𝑓 (𝑥) > 𝐿

𝑘

𝑎,𝑏
𝑦 (𝑥) = 𝑦 (𝑥) , 𝑥 ∈ ]𝑎, 𝑏] , 𝑘 ≥ 1. (43)

And given that 𝑓(𝑥) > 0 on ]𝑎󸀠, 𝑏󸀠], from Lemma 6 and (43)
one gets (39) and (40).

As for (41), applying again Lemmas 1 and 6 recursively
one has

𝑦 (𝑏) ≥ 𝑦 (𝑥) = 𝐿
𝑘

𝑎,𝑏
𝑦 (𝑥) ≥ 𝐿

𝑘

𝑎
󸀠
,𝑏
󸀠𝑦 (𝑥) > 𝐿

𝑘

𝑎
󸀠
,𝑏
󸀠𝑓 (𝑥) ,

𝑥 ∈ ]𝑎
󸀠
, 𝑏
󸀠
] , 𝑘 ≥ 1,

(44)

which gives (41) and (42).

Corollary 9. Under the same conditions ofTheorem 8 one has

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 {1} (𝑏

󸀠
) > 1, [𝑎, 𝑏] ⊆ [𝑎

󸀠
, 𝑏
󸀠
] , 𝑘 ≥ 1, (45)

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 {

𝑥 − 𝑎
󸀠

𝑏󸀠 − 𝑎󸀠
} (𝑏
󸀠
) < 1, [𝑎

󸀠
, 𝑏
󸀠
] ⊆ [𝑎, 𝑏] , 𝑘 ≥ 1. (46)

Proof. Equation (45) can be easily obtained by setting 𝑓(𝑥) ≡
𝑦(𝑏) in (40). In turn, (46) can be obtained by setting 𝑓(𝑥) ≡
𝑦(𝑏
󸀠
)((𝑥−𝑎

󸀠
)/(𝑏
󸀠
−𝑎
󸀠
)) (with𝑦(𝑏󸀠) > 0) and 𝑥 = 𝑏

󸀠 in (41) and
taking into account that 𝑦 is concave (its second derivative
is negative almost everywhere on ]𝑎, 𝑏] since 𝑞(𝑥) is positive
almost everywhere and 𝑦(𝑥) is positive on ]𝑎, 𝑏]).

Remark 10. The inequality (45) was proposed by Harris in
[3, Section 3], and the inequality (46) was obtained by the
authors in [10, Corollary 1] for the case 𝑘 = 1.

Equations (45) and (46) are obvious selections of 𝑓(𝑥),
but in many cases it is interesting to use other functions
“closer” in a way to the solution 𝑦(𝑥) of (2) in order to ease
the convergence of the sequence 𝐿𝑘𝑓.The following corollary
gives examples of such functions.

Corollary 11. Under the same conditions of Theorem 8, the
functions defined by

𝑓 (𝑥) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

sin(√max {𝑞 (𝑡) , 𝑎󸀠 ≤ 𝑡 ≤ 𝑏󸀠} (𝑥 − 𝑎
󸀠
)) ,

𝑥 ∈
[
[

[

𝑎
󸀠
, 𝑎
󸀠
+

𝜋

2√max {𝑞 (𝑡) , 𝑎󸀠 ≤ 𝑡 ≤ 𝑏󸀠}

]
]

]

;

1,

𝑥 ∈
[
[

[

𝑎
󸀠
+

𝜋

2√max {𝑞 (𝑡) , 𝑎󸀠 ≤ 𝑡 ≤ 𝑏󸀠}

, 𝑏
󸀠]
]

]

;

(47)

𝑔 (𝑥) =

sin(√min {𝑞 (𝑡) , 𝑎󸀠 ≤ 𝑡 ≤ 𝑏󸀠} (𝑥 − 𝑎
󸀠
))

sin(√min {𝑞 (𝑡) , 𝑎󸀠 ≤ 𝑡 ≤ 𝑏󸀠} (𝑏󸀠 − 𝑎󸀠))

,

𝑥 ∈ [𝑎
󸀠
, 𝑏
󸀠
] ,

(48)

satisfy

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 {𝑓} (𝑏

󸀠
) > 1, [𝑎, 𝑏] ⊆ [𝑎

󸀠
, 𝑏
󸀠
] , 𝑘 ≥ 1,

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 {𝑔} (𝑏

󸀠
) < 1, [𝑎

󸀠
, 𝑏
󸀠
] ⊆ [𝑎, 𝑏] , 𝑘 ≥ 1.

(49)

Proof. It is straightforward from Theorem 8 by taking the
solution𝑦(𝑥) of (2) such that𝑦(𝑏) = 1 and noting that𝑓(𝑥) >
𝑦(𝑥) on ]𝑎, 𝑏[ and 𝑦(𝑥) > 𝑔(𝑥) on ]𝑎󸀠, 𝑏󸀠[.

Theorem 8 and Corollaries 9 and 11 provide separated
necessary and sufficient conditions to assess the left disfocal-
ity of (2) in [𝑎, 𝑏]. However, at least in the way they have been
presented, they do not allow determining if (2) is exactly left
focal or left disfocal in that interval. That will be the purpose
of the next theorems.

Theorem 12. Let one suppose that there exists a nontrivial
solution 𝑦(𝑥) of (2) with 𝑦(𝑎) = 𝑦

󸀠
(𝑏) = 0. Let 𝑓(𝑥) be such

that𝑓(𝑥) > 𝑦(𝑥) on ]𝑎, 𝑏[ and let 𝑏
𝑘
be a sequence of real values

such that

𝐿
𝑘

𝑎,𝑏
𝑘

𝑓 (𝑏
𝑘
) = 𝑦 (𝑏) , (50)

with 𝑓 > 0 on ]𝑎, 𝑏
𝑘
]. Then 𝑏

𝑘
< 𝑏 for 𝑘 ≥ 1 and {𝑏

𝑘
} tends to 𝑏

as 𝑘 → ∞.

Proof. From the fact that 𝑓(𝑥) > 𝑦(𝑥) on ]𝑎, 𝑏[, 𝑓(𝑥) > 0 on
]𝑎, 𝑏
𝑘
], (40) and (50), it is clear that [𝑎, 𝑏

𝑘
] ⊂ [𝑎, 𝑏] (i.e., 𝑎 <

𝑏
𝑘
< 𝑏) for 𝑘 ≥ 1. Now, let us assume that {𝑏

𝑘
} does not have a

limit in 𝑏. In that case there exist a 𝛿 > 0 and a subsequence
{𝑏
𝑘
𝑗

} of {𝑏
𝑘
} such that 𝑏

𝑘
𝑗

< 𝑏 − 𝛿. But then, from Theorem 5
and Lemma 6 one has

lim
𝑘
𝑗
→∞

𝐿
𝑘
𝑗

𝑎,𝑏
𝑘
𝑗

𝑓(𝑏
𝑘
𝑗

) ≤ lim
𝑘
𝑗
→∞

𝐿
𝑘
𝑗

𝑎,𝑏−𝛿
𝑓 (𝑏 − 𝛿) = 0. (51)

Therefore for every 𝜖 > 0 there will exist infinitely many 𝑏
𝑘
𝑗

such that

𝐿
𝑘
𝑗

𝑎,𝑏
𝑘
𝑗

𝑓(𝑏
𝑘
𝑗

) < 𝜖, (52)
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which contradicts that fact that, from (50), 𝐿𝑘𝑗
𝑎,𝑏
𝑘
𝑗

𝑓(𝑏
𝑘
𝑗

) =

𝑦(𝑏). This proves the assertion.

Theorem 13. Let one suppose that there exists a nontrivial
solution 𝑦(𝑥) of (2) with 𝑦(𝑎) = 𝑦

󸀠
(𝑏) = 0. Let 𝑓(𝑥) be such

that 0 < 𝑓(𝑥) < 𝑦(𝑥) on ]𝑎, 𝑏[ and let 𝑏
𝑘
be a sequence of real

values such that

𝐿
𝑘

𝑎,𝑏
𝑘

𝑓 (𝑏
𝑘
) = 𝑦 (𝑏) . (53)

Then 𝑏
𝑘
> 𝑏 for 𝑘 ≥ 1 and {𝑏

𝑘
} tends to 𝑏 as 𝑘 → ∞.

Proof. From the fact that 𝑦(𝑥) > 𝑓(𝑥) > 0 on ]𝑎, 𝑏[, (42) and
(53), it is clear that [𝑎, 𝑏

𝑘
] ⊃ [𝑎, 𝑏] (i.e., 𝑎 < 𝑏 < 𝑏

𝑘
) for 𝑘 ≥ 1.

Now, let us assume that {𝑏
𝑘
} does not have a limit in 𝑏. In that

case there exist a 𝛿 > 0 and a subsequence {𝑏
𝑘
𝑗

} of {𝑏
𝑘
} such

that 𝑏
𝑘
𝑗

> 𝑏 + 𝛿. But then, fromTheorem 5 and Lemma 6 one
has

lim
𝑘
𝑗
→∞

𝐿
𝑘
𝑗

𝑎,𝑏
𝑘
𝑗

𝑓(𝑏
𝑘
𝑗

) ≥ lim
𝑘
𝑗
→∞

𝐿
𝑘
𝑗

𝑎,𝑏+𝛿
𝑓 (𝑏 + 𝛿) = +∞, (54)

the sign coming from the fact that 𝑓(𝑥) > 0 on ]𝑎, 𝑏 + 𝛿] and
therefore ⟨𝑓,Φ

1
⟩Φ
1
(𝑏 + 𝛿) > 0 in Theorem 5. Therefore for

every𝑀 > 𝑦(𝑏) > 0 there will exist infinitely many 𝑏
𝑘
𝑗

such
that

𝐿
𝑘
𝑗

𝑎,𝑏
𝑘
𝑗

𝑓(𝑏
𝑘
𝑗

) > 𝑀, (55)

which contradicts that fact that, from (53), 𝐿𝑘𝑗
𝑎,𝑏
𝑘
𝑗

𝑓(𝑏
𝑘
𝑗

) =

𝑦(𝑏). This proves the assertion.

The following variant of Theorem 13 will also be very
useful in some cases.

Theorem 14. Let one suppose that there exists a solution 𝑦(𝑥)
of (2)with 𝑦(𝑎) = 𝑦

󸀠
(𝑏) = 0. Let 𝑏

𝑘
be a sequence of real values

such that

𝐿
𝑘

𝑎,𝑏
𝑘

𝑓
𝑎,𝑏
𝑘

(𝑏
𝑘
) = 𝑦 (𝑏

𝑘
) , (56)

where 0 < 𝑓
𝑎,𝑏
𝑘

(𝑥) < 𝑦(𝑥) for 𝑥 ∈ ]𝑎, 𝑏
𝑘
]. Let one suppose

that there exists a function 𝑓 such that 0 < 𝑓(𝑥) < 𝑓
𝑎,𝑏
𝑘

(𝑥)

for 𝑥 ∈ ]𝑎, 𝑏
𝑘
]. Then 𝑏

𝑘
> 𝑏 for 𝑘 ≥ 1 and {𝑏

𝑘
} tends to 𝑏 as

𝑘 → ∞.

Proof. From the fact that 𝑦(𝑥) > 𝑓
𝑎,𝑏
𝑘

(𝑥) > 0 on ]𝑎, 𝑏
𝑘
], (41)

and (56), it is clear that [𝑎, 𝑏
𝑘
] ⊃ [𝑎, 𝑏] (i.e., 𝑎 < 𝑏 < 𝑏

𝑘
) for

𝑘 ≥ 1. Now, let us assume that {𝑏
𝑘
} does not have a limit in 𝑏.

In that case there exist a 𝛿 > 0 and a subsequence {𝑏
𝑘
𝑗

} of {𝑏
𝑘
}

such that 𝑏
𝑘
𝑗

> 𝑏 + 𝛿. But then, fromTheorem 5 and Lemmas
1 and 6 one has

lim
𝑘
𝑗
→∞

𝐿
𝑘
𝑗

𝑎,𝑏
𝑘
𝑗

𝑓
𝑎,𝑏
𝑘
𝑗

(𝑏
𝑘
𝑗

) ≥ lim
𝑘
𝑗
→∞

𝐿
𝑘
𝑗

𝑎,𝑏
𝑘
𝑗

𝑓(𝑏
𝑘
𝑗

)

≥ lim
𝑘
𝑗
→∞

𝐿
𝑘
𝑗

𝑎,𝑏+𝛿
𝑓 (𝑏 + 𝛿) = +∞,

(57)

the sign coming from the fact that 𝑓(𝑥) > 0 on ]𝑎, 𝑏 + 𝛿] and
therefore ⟨𝑓,Φ

1
⟩Φ
1
(𝑏 + 𝛿) > 0 in Theorem 5. Therefore for

every 𝑀 > 𝑦(𝑏) ≥ sup{𝑦(𝑏
𝑘
)} > 0 there will exist infinitely

many 𝑏
𝑘
𝑗

such that

𝐿
𝑘
𝑗

𝑎,𝑏
𝑘
𝑗

𝑓
𝑎,𝑏
𝑘
𝑗

(𝑏
𝑘
𝑗

) > 𝑀, (58)

which contradicts that fact that, from (56), 𝐿𝑘𝑗
𝑎,𝑏
𝑘
𝑗

𝑓
𝑎,𝑏
𝑘
𝑗

(𝑏
𝑘
𝑗

) =

𝑦(𝑏
𝑘
). This proves the assertion.

Remark 15. Theorem 14 is specially relevant when the func-
tions to be used to calculate the sequence {𝑏

𝑘
} are 𝑓

𝑎,𝑏
𝑘

(𝑥) =

(𝑥 − 𝑎)/(𝑏
𝑘
− 𝑎) or the function 𝑔(𝑥) defined in (48) with

𝑏
󸀠
= 𝑏
𝑘
. In the first case, the function 𝑓(𝑥) of the hypothesis

can be, for example, 𝑓(𝑥) = (𝑥 − 𝑎)/2(sup 𝑏
𝑘
− 𝑎).

Remark 16. Theorems 12–14 guarantee that, given [𝑎, 𝑏], one
can determine if (2) is left disfocal in such an interval by
calculating the sequences defined by (50), (53), and (56). All
these sequences will converge to the value 𝑏∗ such that (2)
is exactly left focal in [𝑎, 𝑏

∗
]. If 𝑏 < 𝑏

∗, then (2) will be left
disfocal in [𝑎, 𝑏], being left focal otherwise.

Remark 17. As indicated in Remark 7, all the results presented
in this section are applicable to the right focal case; that is,
𝑦
󸀠
(𝑎) = 𝑦(𝑏) = 0, with the operator 𝑃 defined in (38). In

particular, one has

𝑃
𝑘

𝑎
󸀠
,𝑏
󸀠 {

𝑏
󸀠
− 𝑥

𝑏󸀠 − 𝑎󸀠
} (𝑎
󸀠
) < 1, 𝑘 ≥ 1, [𝑎

󸀠
, 𝑏
󸀠
] ⊆ [𝑎, 𝑏] ,

𝑃
𝑘

𝑎
󸀠
,𝑏
󸀠 {1} (𝑎

󸀠
) > 1, 𝑘 ≥ 1, [𝑎, 𝑏] ⊆ [𝑎

󸀠
, 𝑏
󸀠
] .

(59)

4. Calculating 𝐿𝑘𝑓

Section 3 has reflected the importance of the calculation
of 𝐿𝑘𝑓(𝑏) for different functions 𝑓 in order to determine
whether (2) is left disfocal in a given interval or not. Bearing
this in mind, our aim for this section is to find manners to
facilitate the calculation of 𝐿𝑘𝑓(𝑏). That will be done with the
following theorems, in all of which the internal product ⟨⋅, ⋅⟩
will be understood with 𝑡 as integration variable.

Theorem 18. The operator 𝐿 defined in (1) verifies

𝐿𝑓 (𝑥) = ⟨min (𝑥 − 𝑎, 𝑡 − 𝑎) , 𝑓 (𝑡)⟩ , 𝑥 ∈ [𝑎, 𝑏] . (60)

Furthermore,

𝐿𝑓 (𝑏) = ⟨𝑡 − 𝑎, 𝑓 (𝑡)⟩ . (61)

Proof. Equation (60) is straightforward from the definition of
the internal product (3) and the representation of 𝐿 given in
(6). And applying to (60) the fact that 𝑡−𝑎 ≤ 𝑏−𝑎 for 𝑡 ∈ [𝑎, 𝑏]
one gets easily (61).
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Theorem 19. The operator 𝐿 defined in (1) verifies

𝐿
𝑛+𝑚+1

𝑓 (𝑏) = ⟨𝐿
𝑛

{𝑡 − 𝑎} , 𝐿
𝑚
𝑓 (𝑡)⟩ , 𝑛, 𝑚 ≥ 0. (62)

And in particular

𝐿
𝑘+1

𝑓 (𝑏) = ⟨𝐿
𝑘

{𝑡 − 𝑎} , 𝑓 (𝑡)⟩ , 𝑘 ≥ 0. (63)

Proof. From (61) one has

𝐿
𝑛+𝑚+1

𝑓 (𝑏) = ⟨𝑡 − 𝑎, 𝐿
𝑛+𝑚

𝑓 (𝑡)⟩ , 𝑛, 𝑚 ≥ 0, (64)

and given that 𝐿 is self-adjoint (Lemma 3), we can apply that
property recursively to (64) to obtain

𝐿
𝑛+𝑚+1

𝑓 (𝑏) = ⟨𝐿 {𝑡 − 𝑎} , 𝐿
𝑛+𝑚−1

𝑓 (𝑡)⟩

= ⟨𝐿
𝑛

{𝑡 − 𝑎} , 𝐿
𝑚
𝑓 (𝑡)⟩ , 𝑛, 𝑚 ≥ 0.

(65)

Equation (63) is a particular case of (62) for𝑚 = 0.

Remark 20. The advantage of the formula (63) is that, given
(2) and fixing the value 𝑘wewant to apply to 𝐿𝑘, it allows test-
ing easily different functions𝑓, 𝑔 (as many as we want) in the
Theorems 8–14 in a simple way, just leaving the complication
of the method to the calculation of 𝐿𝑘−1{𝑡 − 𝑎}.

Remark 21. The combination of (40) and (63) (a similar
argument can bemadewith (42) and (63)) gives the inequality

⟨𝐿
𝑘

{𝑡 − 𝑎} , 𝑓 (𝑡)⟩ > 𝑦 (𝑏) , 𝑘 ≥ 1, (66)

for any 𝑓 such that 𝑓(𝑥) > 𝑦(𝑥) on ]𝑎, 𝑏[. Equation (66)
defines clearly two roles:

(i) the role of 𝐿𝑘{𝑡 − 𝑎}, which can be regarded as a
function “similar” to the solution 𝑦(𝑥) of (2) but
whose value shrinks severely with the index 𝑘 if 𝑦(𝑥)
is left disfocal in [𝑎, 𝑏], thereby forcing the integration
extremes 𝑎, 𝑏 to be “closer” to the values which make
𝑦(𝑥) focal in that interval, in order to satisfy (66);

(ii) the role of 𝑓, which is the starting function for the
iteration.

In consequence, (66) reflects the importance of the selection
of the function 𝑓(𝑥) to make the method converge quickly:
the “closer” such𝑓 is to the solution 𝑦(𝑥), the lesser the inter-
nal product ⟨𝐿𝑘{𝑡 − 𝑎}, 𝑓(𝑡)⟩ will be for any 𝑘, which in turn
will reduce the number of iterations 𝐿𝑘{𝑡 − 𝑎} required to
establish a lower bound for 𝑏−𝑎 (i.e., to find a 𝑏which violates
(66)). This favours the use of functions 𝑓 like that defined
in (47) instead of 𝑓 = 1 (see (45)), whose convergence is
normally quite slow.

Remark 22. It is very easy to show that, for the right focal case
(𝑦󸀠(𝑎) = 𝑦(𝑏) = 0), (63) becomes

𝑃
𝑘+1

𝑓 (𝑎) = ⟨𝑃
𝑘

{𝑏 − 𝑡} , 𝑓 (𝑡)⟩ , 𝑘 ≥ 0, (67)

with the operator 𝑃 defined by (38).

5. Some Examples

Throughout this section we will introduce examples where
Corollaries 9 and 11 andTheorem 19will be used to determine
conditions for focality and disfocality of (2) for different
functions 𝑞(𝑥) and several values of the recursivity index 𝑘.
For the sake of simplicity, the analysis will fix the value of the
starting point 𝑎 (in all the examples a zero) andwill search for
upper and lower bounds of the adjacent right critical point
𝑏 (the case 𝑎 being a critical point and 𝑏 being a zero can
be treated in a similar way). A comparison between these
bounds and the bounds obtained via other methods, like
Brown and Hinton’s one (see [4]), will also be done.

In all examples the calculation of 𝐿𝑘 will be done numer-
ically with two starting functions 𝑓: the one defined by (𝑥 −
𝑎)/(𝑏−𝑎) (in fact 𝑥/𝑏), which will be used to determine upper
bounds of 𝑏, and the one defined in (47), whichwill be used to
deal with lower bounds of 𝑏 andwhich in the examples will be
denoted byΦ(𝑥). It is also worth noting that we have decided
to set up a top level of iterations in all the calculations for
simplicity reasons, top level which varies between 5 and 10 for
𝑥/𝑏 and between 12 and 23 forΦ(𝑥). Of course more accurate
bounds can be obtained by increasing these thresholds.

Example 1. Let us consider the following linear differential
equation:

𝑦
󸀠󸀠
+ 𝐴𝑒
𝑥
= 0, 𝑥 ≥ 0, 𝑎 = 0, (68)

for different values of the constant 𝐴.
The application of Corollaries 9 and 11 and Theorem 19

gives Table 1.
As can be seen in Table 1, with thismethod it is possible to

find very accurate bounds of the critical point 𝑏 for all values
of the constant 𝐴, bounds which could be even closer to the
value of 𝑏 if more iterations of 𝐿𝑘 were calculated. It is also
worth remarking, on one hand, the excellent approximation
that Brown and Hinton’s method (with comparatively little
computation effort) gives for the lower bound, which can
only be improved by the presentmethod aftermany iterations
(𝑘 = 15 if 𝐴 = 1), and on the other hand the fact that it
seems possible to detect upper and lower bounds of 𝑏without
having to guarantee the fulfillment of inequalities given by
Corollaries 9 and 11, just by checking whether 𝐿𝑘{𝑓}(𝑏) grows
or shrinks with 𝑘, a behaviour which is in line with the results
of Theorem 5. These two phenomena will be common to all
the analysed cases.

Example 2. Let us consider the following linear differential
equation:

𝑦
󸀠󸀠
+ 𝐵𝑥𝑦 = 0, 𝑥 ≥ 0, 𝑎 = 0, (69)

for different values of the constant 𝐵.
The application of Corollaries 9 and 11 and Theorem 19

gives Table 2, where one can observe results and trends
similar to those mentioned in the previous example.
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Table 1: Comparison of bounds for 𝑏 in Example 1.

Value of 𝐴 Used formula Bound

𝐴 = 1

𝐿
10

{𝑥/𝑏} (𝑏) 𝑏 < 1.072

𝐿
15
{Φ}(𝑏) 𝑏 > 1.0635

𝐿
17
{Φ} (𝑏) 𝑏 > 1.0637

Brown and Hinton 𝑏 > 1.0635

𝐴 = 3

𝐿
6
{𝑥/𝑏} (𝑏) 𝑏 < 0.712

𝐿
9
{Φ} (𝑏) 𝑏 > 0.7020

𝐿
12
{Φ} (𝑏) 𝑏 > 0.7025

Brown and Hinton 𝑏 > 0.7020

𝐴 = 5

𝐿
6
{𝑥/𝑏} (𝑏) 𝑏 < 0.580

𝐿
8
{Φ} (𝑏) 𝑏 > 0.5707

𝐿
12
{Φ} (𝑏) 𝑏 > 0.5712

Brown and Hinton 𝑏 > 0.5707

Table 2: Comparison of bounds for 𝑏 in Example 2.

Value of 𝐵 Used formula Bound

𝐵 = 1

𝐿
5
{𝑥/𝑏} (𝑏) 𝑏 < 1.530

𝐿
22
{Φ} (𝑏) 𝑏 > 1.513

Brown and Hinton 𝑏 > 1.513

𝐵 = 3

𝐿
5
{𝑥/𝑏}(𝑏) 𝑏 < 1.062

𝐿
23
{Φ} (𝑏) 𝑏 > 1.049

Brown and Hinton 𝑏 > 1.049

𝐵 = 5

𝐿
5
{𝑥/𝑏} (𝑏) 𝑏 < 0.894

𝐿
23
{Φ} (𝑏) 𝑏 > 0.884

Brown and Hinton 𝑏 > 0.884

Table 3: Comparison of bounds for 𝑏 in Example 3.

Value of 𝐶 Used formula Bound

𝐶 = 5

𝐿
7
{𝑥/𝑏} (𝑏) 𝑏 < 1.007

𝐿
10
{Φ}(𝑏) 𝑏 > 0.969

𝐿
16
{Φ} (𝑏) 𝑏 > 0.972

Brown and Hinton 𝑏 > 0.969

𝐶 = 10

𝐿
5
{𝑥/𝑏} (𝑏) 𝑏 < 0.633

𝐿
8
{Φ} (𝑏) 𝑏 > 0.609

𝐿
15
{Φ} (𝑏) 𝑏 > 0.611

Brown and Hinton 𝑏 > 0.609

𝐶 = 20

𝐿
5
{𝑥/𝑏} (𝑏) 𝑏 < 0.415

𝐿
5
{Φ} (𝑏) 𝑏 > 0.401

𝐿
14
{Φ} (𝑏) 𝑏 > 0.403

Brown and Hinton 𝑏 > 0.401

Example 3. Let us consider the following linear differential
equation:

𝑦
󸀠󸀠
+ 𝐶𝑒
−𝑥
𝑦 = 0, 𝑥 ≥ 0, 𝑎 = 0, (70)

for different values of the constant 𝐶.
The application of Corollaries 9 and 11 and Theorem 19

gives Table 3.

6. The Case 𝑞(𝑥)<0

The previous sections have addressed the case 𝑞(𝑥) > 0

almost everywhere on [𝑎, 𝑏], but it is logical to wonder if the
method presented here can be extended to the case 𝑞(𝑥) ≤ 0

in a subset of [𝑎, 𝑏] of positive measure. The answer to that
question is no, since in that case

⟨𝑓, 𝑔⟩ = ∫

𝑏

𝑎

𝑞 (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 (71)

fails to satisfy one of the properties required by an internal
product, namely, that ⟨𝑓, 𝑓⟩ = 0 if and only if 𝑓 = 0. That in
turn implies that the operator 𝐿 defined by (1) cannot be self-
adjoint. Likewise 𝐿 fails to be positive and monotonic, which
difficults the setup of order relationships like those presented
inTheorem 8 between a function 𝑓 and a solution 𝑦 of (2).

However, if we define

𝑞
𝜖
(𝑥) = max (𝜖, 𝑞 (𝑥)) , (72)

𝑞
0
(𝑥) = max (0, 𝑞 (𝑥)) , (73)

it is easy to notice that 𝑞(𝑥) ≤ 𝑞
0
(𝑥) ≤ 𝑞

𝜖
(𝑥); that is, 𝑞

𝜖
(𝑥) is

a Sturmian majorant of 𝑞
0
(𝑥) and this in turn is a Sturmian

majorant of 𝑞(𝑥). That implies that if (2) has a solution with
a zero in 𝑎 and an adjacent right critical point 𝑏, then it is
possible to find a solution 𝑦

0
(𝑥) of

𝑦
󸀠󸀠

0
+ 𝑞
0
(𝑥) 𝑦
0
= 0, (74)

left focal on an interval [𝑎
0
, 𝑏
0
] ⊂ [𝑎, 𝑏], and, in turn, to find a

solution of

𝑦
󸀠󸀠

𝜖
+ 𝑞
𝜖
(𝑥) 𝑦
𝜖
= 0, (75)

left focal on an interval [𝑎
𝜖
, 𝑏
𝜖
] ⊂ [𝑎

0
, 𝑏
0
] ⊂ [𝑎, 𝑏].

With this in mind, our strategy will be to start from the
case 𝑞

𝜖
(𝑥), which does allow the application of all the results

of Sections 2–4, and treat the case 𝑞
0
(𝑥) as a limit when

𝜖 → 0. This will provide us with results for the case 𝑞
0
(𝑥)

and therefore with results around disfocality of the more
general case 𝑞(𝑥) (just disfocality since the Sturmianmajorant
character of 𝑞

0
(𝑥) versus 𝑞(𝑥) avoids the extrapolation to 𝑞(𝑥)

of focality results related to 𝑞
0
(𝑥)).

To this end we will define the operators

𝐿
𝑎,𝑏
[𝜖] 𝑓 = ∫

𝑥

𝑎

∫

𝑏

𝑡

𝑞
𝜖
(𝑠) 𝑓 (𝑠) 𝑑𝑠 𝑑𝑡,

𝐿
𝑎,𝑏
[0] 𝑓 = ∫

𝑥

𝑎

∫

𝑏

𝑡

𝑞
0
(𝑠) 𝑓 (𝑠) 𝑑𝑠 𝑑𝑡,

(76)

and we will make use of the following lemmas.

Lemma 23. If 𝑓(𝑥) > 0 on ]𝑎󸀠, 𝑏󸀠] such that [𝑎, 𝑏] ⊆ [𝑎
󸀠
, 𝑏
󸀠
],

then the operators defined by (76) satisfy
𝐿
𝑎,𝑏
[𝜖] 𝑓 (𝑥) > 𝐿

𝑎,𝑏
[0] 𝑓 (𝑥) , 𝑥 ∈ ]𝑎, 𝑏] , (77)

𝐿
𝑎,𝑏
[0] 𝑓 (𝑥) > 0, 𝑥 ∈ ]𝑎, 𝑏] , (78)

𝐿
𝑎,𝑏
[0] 𝑓 (𝑥) ≤ 𝐿

𝑎
󸀠
,𝑏
󸀠 [0] 𝑓 (𝑥) ≤ 𝐿

𝑎
󸀠
,𝑏
󸀠 [0] 𝑓 (𝑏

󸀠
) ,

𝑥 ∈ [𝑎, 𝑏] .

(79)
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Proof. The proof of (77) is straightforward given that 𝑞
𝜖
(𝑥) >

𝑞
0
(𝑥) in a set of positive measure. As for (78), 𝐿

𝑎,𝑏
[0]𝑓(𝑥) can

only be zero in ]𝑎, 𝑏] if ∫𝑏
𝑡
𝑞(𝑠)𝑓(𝑠)𝑑𝑠 = 0 for all 𝑡 ∈ [𝑎, 𝑏],

which means that 𝑓(𝑥) must be zero almost everywhere on
[𝑎, 𝑏] and contradicts the hypothesis. And (79) is straightfor-
ward from the fact that, by (73), 𝑞

0
(𝑥) ≥ 0.

Lemma24. Let𝑦
0
(𝑥) and𝑦

𝜖
(𝑥) be nontrivial solutions of (74)

and (75), respectively, such that 𝑦
0
(𝑎) = 𝑦

𝜖
(𝑎) = 0 and 𝑦󸀠

0
(𝑎) =

𝑦
󸀠

𝜖
(𝑎) = 𝑌 > 0. Then,

󵄨󵄨󵄨󵄨𝑦0 (𝑥) − 𝑦𝜖 (𝑥)
󵄨󵄨󵄨󵄨 < 𝐾 (𝑇) 𝜖, 𝑥 ∈ [𝑎, 𝑇] ,

󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

0
(𝑥) − 𝑦

󸀠

𝜖
(𝑥)

󵄨󵄨󵄨󵄨󵄨
< 𝐾 (𝑇) 𝜖, 𝑥 ∈ [𝑎, 𝑇] .

(80)

Proof. If we use the matrix notation

𝑌
𝜖
(𝑥) = (

𝑦
𝜖
(𝑥)

𝑦
󸀠

𝜖
(𝑥)

) , 𝑌
0
(𝑥) = (

𝑦
0
(𝑥)

𝑦
󸀠

0
(𝑥)

) , 𝑥 ∈ [𝑎, 𝑇] ,

(81)

𝑄
𝜖
(𝑥) = (

0 1

−𝑞
𝜖
(𝑥) 0

) , 𝑄
0
(𝑥) = (

0 1

−𝑞
0
(𝑥) 0

)

𝑥 ∈ [𝑎, 𝑇] ,

(82)

we can write (74) and (75) as

𝑌
󸀠

𝜖
= 𝑄
𝜖
(𝑥) 𝑌
𝜖
, 𝑌
󸀠

0
= 𝑄
0
(𝑥) 𝑌
0
, 𝑥 ∈ [𝑎, 𝑇] , (83)

which implies that

(𝑌
𝜖
− 𝑌
0
)
󸀠

= 𝑄
𝜖
(𝑥) 𝑌
𝜖
− 𝑄
0
(𝑥) 𝑌
0

= 𝑄
𝜖
(𝑥) (𝑌

𝜖
− 𝑌
0
) + (𝑄

𝜖
(𝑥) − 𝑄

0
(𝑥)) 𝑌

0
.

(84)

Integrating (84) from 𝑎 to 𝑥 one gets

𝑌
𝜖
(𝑥) − 𝑌

0
(𝑥)

= ∫

𝑥

𝑎

𝑄
𝜖
(𝑡) (𝑌
𝜖
− 𝑌
0
) 𝑑𝑡

+ ∫

𝑥

𝑎

(𝑄
𝜖
(𝑡) − 𝑄

0
(𝑡)) 𝑌
0
𝑑𝑡, 𝑥 ∈ [𝑎, 𝑇] .

(85)

Taking norms in (85) one has

󵄩󵄩󵄩󵄩𝑌𝜖 (𝑥) − 𝑌0 (𝑥)
󵄩󵄩󵄩󵄩

≤ ∫

𝑥

𝑎

󵄩󵄩󵄩󵄩𝑄𝜖 (𝑡)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑌𝜖 − 𝑌0

󵄩󵄩󵄩󵄩 𝑑𝑡

+ ∫

𝑥

𝑎

󵄩󵄩󵄩󵄩𝑄𝜖 (𝑡) − 𝑄0 (𝑡)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑌0

󵄩󵄩󵄩󵄩 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑇] .

(86)

Nowwe can apply Gronwall-Bellman’s inequality (see [13]) to
(86) to yield

󵄩󵄩󵄩󵄩𝑌𝜖 (𝑥) − 𝑌0 (𝑥)
󵄩󵄩󵄩󵄩

≤ ∫

𝑥

𝑎

󵄩󵄩󵄩󵄩𝑄𝜖 (𝑡) − 𝑄0 (𝑡)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑌0

󵄩󵄩󵄩󵄩 𝑑𝑡

+ ∫

𝑥

𝑎

∫

𝑡

𝑎

󵄩󵄩󵄩󵄩𝑄𝜖 (𝑠) − 𝑄0 (𝑠)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑌0

󵄩󵄩󵄩󵄩 𝑑𝑠
󵄩󵄩󵄩󵄩𝑄𝜖 (𝑡)

󵄩󵄩󵄩󵄩

× exp(∫
𝑥

𝑡

󵄩󵄩󵄩󵄩𝑄𝜖 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠) 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑇] .

(87)

From (87) and the fact that
󵄩󵄩󵄩󵄩𝑄𝜖 (𝑡) − 𝑄0 (𝑡)

󵄩󵄩󵄩󵄩 < 𝜖, 𝑥 ∈ [𝑎, 𝑇] , (88)

by (72), (73), and (82), one obtains
󵄩󵄩󵄩󵄩𝑌𝜖 (𝑥) − 𝑌0 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝐾 (𝑇) 𝜖, 𝑥 ∈ [𝑎, 𝑇] , (89)

for

𝐾 (𝑇)

= ∫

𝑇

𝑎

󵄩󵄩󵄩󵄩𝑌0
󵄩󵄩󵄩󵄩 𝑑𝑡 + ∫

𝑇

𝑎

∫

𝑡

𝑎

󵄩󵄩󵄩󵄩𝑌0
󵄩󵄩󵄩󵄩 𝑑𝑠

󵄩󵄩󵄩󵄩𝑄𝜖 (𝑡)
󵄩󵄩󵄩󵄩

× exp(∫
𝑇

𝑡

󵄩󵄩󵄩󵄩𝑄𝜖 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠) 𝑑𝑡,

(90)

which implies (80).

Lemma 25. Let 𝑦
0
(𝑥) and 𝑦

𝜖
(𝑥) be defined as in Lemma 24.

Let 𝑏
0
and 𝑏

𝜖
be the first critical point of 𝑦

0
(𝑥) and 𝑦

𝜖
(𝑥),

respectively, at the right of 𝑎. Then

sup {𝑏
𝜖
, 𝜖 > 0} = 𝑏

0
. (91)

Proof. Let us suppose, on the contrary, that sup{𝑏
𝜖
, 𝜖 > 0} =

𝑏
∗
< 𝑏
0
. Then we have

𝑦
󸀠

0
(𝑏
0
) = 𝑦
󸀠

0
(𝑏
𝜖
) + ∫

𝑏
0

𝑏
𝜖

𝑦
󸀠󸀠

0
(𝑥) 𝑑𝑥

= 𝑦
󸀠
(𝑏
𝜖
) − ∫

𝑏
0

𝑏
𝜖

𝑞
0
(𝑥) 𝑦
0
(𝑥) 𝑑𝑥

≤ 𝑦
󸀠
(𝑏
𝜖
) − ∫

𝑏
0

𝑏
∗

𝑞
0
(𝑥) 𝑦
0
(𝑥) 𝑑𝑥.

(92)

But from Lemma 24 for every 𝛿 > 0 we can find an 𝜖 such
that

𝑦
󸀠

0
(𝑏
𝜖
) < 𝑦
󸀠

𝜖
(𝑏
𝜖
) + 𝛿 = 𝛿, (93)

which if applied to (92) gives

𝑦
󸀠

0
(𝑏
0
) < 𝛿 − ∫

𝑏
0

𝑏
∗

𝑞
0
(𝑥) 𝑦
0
(𝑥) 𝑑𝑥. (94)
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Since 𝛿 can be as small as required, one gets that

𝑦
󸀠

0
(𝑏
0
) < 0, (95)

which contradicts the fact that, by definition, 𝑦󸀠
0
(𝑏
0
) = 0.

With the help of the previous lemmas we can extrapolate
the results of Section 3 to this case, as the following theorems
will show.

Theorem 26. Let 𝑦
0
(𝑥) be defined as in Lemma 24. Let 𝑏

0
be

the first critical point of 𝑦
0
(𝑥) at the right of 𝑎. For any [𝑎󸀠, 𝑏󸀠]

such that [𝑎, 𝑏
0
] ⊆ [𝑎

󸀠
, 𝑏
󸀠
], if 𝑓 > 𝑦 on ]𝑎, 𝑏

0
[ and 𝑓 > 0 on

]𝑎
󸀠
, 𝑏
󸀠
], then

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 [0] 𝑓 (𝑥) > 𝑦

0
(𝑥) , 𝑥 ∈ ]𝑎, 𝑏

0
] , 𝑘 ≥ 1, (96)

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 [0] 𝑓 (𝑏

󸀠
) > 𝑦
0
(𝑏
0
) , 𝑘 ≥ 1. (97)

Proof. We can apply Lemma 23 recursively to yield

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 [0] 𝑓 (𝑥) ≥ 𝐿

𝑘

𝑎,𝑏
0

[0] 𝑓 (𝑥) > 𝐿
𝑘

𝑎,𝑏
0

[0] 𝑦
0
(𝑥) = 𝑦

0
(𝑥) ,

𝑥 ∈ ]𝑎, 𝑏
0
] , 𝑘 ≥ 1,

𝐿
𝑘

𝑎
󸀠
,𝑏
󸀠 [0] 𝑓 (𝑏

󸀠
) ≥ 𝐿
𝑘

𝑎,𝑏
0

[0] 𝑓 (𝑏
0
) > 𝐿
𝑘

𝑎,𝑏
0

[0] 𝑦
0
(𝑏
0
)

= 𝑦
0
(𝑏
0
) , 𝑘 ≥ 1,

(98)

which are (96) and (97), respectively.

Remark 27. Theorem 26 is the extension of Theorem 8, (39)-
(40), to the function 𝑞

0
(𝑥) defined by (73).

Theorem 28. Let 𝑦
0
(𝑥) and 𝑦

𝜖
(𝑥) be solutions of (74) and

(75), respectively, such that 𝑦
0
(𝑎) = 𝑦

𝜖
(𝑎) = 0. Let 𝑏

0
and 𝑏
𝜖

be the first critical points of 𝑦
0
(𝑥) and 𝑦

𝜖
(𝑥) at the right of 𝑎,

and let one suppose that𝑦
0
(𝑏
0
) = 𝑦
𝜖
(𝑏
𝜖
) = 𝑌
0
(for this it suffices

to apply the proper multiplication constants to 𝑦
0
and 𝑦

𝜖
). Let

𝑓(𝑥) be such that 𝑓(𝑥) > 𝑦
0
(𝑥) on ]𝑎, 𝑏

0
[ and 𝑓(𝑥) > 𝑦

𝜖
(𝑥) on

]𝑎, 𝑏
𝜖
[ for 0 < 𝜖 < 𝜖

∗. If {𝑏
0
𝑘

} is defined by

𝐿
𝑘

𝑎,𝑏
0
𝑘

[0] 𝑓 (𝑏
0
𝑘

) = 𝑌
0
, 𝑘 ≥ 1, (99)

then 𝑏
0
𝑘

< 𝑏
0
and lim

𝑘→∞
𝑏
0
𝑘

= 𝑏
0
.

Proof. ByTheorem 26 and (99) it is clear that

𝑏
0
𝑘

< 𝑏
0
, 𝑘 ≥ 1, (100)

which is the first assertion of the theorem. Now let us define
the sequence

𝐿
𝑘

𝑎,𝑏
𝜖
𝑘

[𝜖] 𝑓 (𝑏
𝜖
𝑘

) = 𝑌
0
, 𝑘 ≥ 1. (101)

FromTheorem 12 one has that 𝑏
𝜖
𝑘

< 𝑏
𝜖
and lim

𝑘→∞
𝑏
𝜖
𝑘

= 𝑏
𝜖
.

And from Lemma 23 and (101) one gets

𝑏
𝜖
𝑘

< 𝑏
0
𝑘

, 𝑘 ≥ 1, (102)

which implies that

lim
𝑘→∞

inf 𝑏
0
𝑘

≥ 𝑏
𝜖
, 𝑘 ≥ 1. (103)

Applying Lemma 25 to (103) yields

lim
𝑘→∞

inf 𝑏
0
𝑘

≥ sup 𝑏
𝜖
= 𝑏
0
. (104)

Finally from (100) and (104) one gets the desired result
lim
𝑘→∞

𝑏
0
𝑘

= 𝑏
0
.

Corollary 29. Let𝑦
0
(𝑥) be a solution of (74) such that𝑦

0
(𝑎) =

𝑦
󸀠

0
(𝑏
0
) = 0 and 𝑦

0
(𝑏
0
) = 1. Let 𝑏

0
𝑘

be defined by

𝐿
𝑘

𝑎,𝑏
0
𝑘

[0] {1} (𝑏
0
𝑘

) = 1, 𝑘 ≥ 1. (105)

Then 𝑏
0
𝑘

< 𝑏
0
and lim

𝑘→∞
𝑏
0
𝑘

= 𝑏
0
.

Proof. It is a consequence of picking the function 𝑓(𝑥) = 1

and 𝑌
0
= 1 in Theorem 28, given that 𝑦

0
(𝑥) < 𝑦

0
(𝑏
0
) = 1 on

]𝑎, 𝑏
0
[ and 𝑦

𝜖
(𝑥) < 𝑦

𝜖
(𝑏
𝜖
) = 1 on ]𝑎, 𝑏

𝜖
[.

Remark 30. In a similar manner to Theorem 12, Theorem 28
proves that it is possible to obtain, for the function 𝑞

0
(𝑥)

defined by (73), a sequence of lower bounds of 𝑏
0
which con-

verges to 𝑏
0
.

Remark 31. As in the previous sections, the results of this
one are applicable to the right focal case 𝑦󸀠(𝑎) = 𝑦(𝑏) = 0

replacing 𝐿 by the operator 𝑃 defined in (38) and evaluating
𝑃
𝑘
𝑓 at 𝑎.

7. Conclusions

Themethod described in this paper provides criteria (in fact,
infinitely many) to determine if the second-order differential
equation (2) is left/right disfocal or nondisfocal in a given
interval provided that 𝑞(𝑥) is continuous and positive almost
everywhere in such an interval.This is relevant since although
there exist several criteria for disfocality for such an equa-
tion in the literature, the number of criteria to determine
nondisfocality is very low. It also does it in a way that
most of the calculations required to assess disfocality can be
reused to analyse nondisfocality and the other way around, as
Remark 20 indicates.

The most differential feature of this method is the fact
that, unlike other existing methods, it allows generating
sequences of points which converge to the values of the
extremes which make (2) exactly left/right focal; that is, it
allows determining if (2) is exactly disfocal or nondisfocal in
a given interval.

The method also yields criteria to determine if that equa-
tion is left/right disfocal for the case 𝑞(𝑥) being continuous
but nonpositive (i.e., null or negative) in a subset of the
interval of positive measure. A convergent sequence similar
to that of the previous paragraphs can also be obtained in that
case.

As main drawbacks, we can comment on two. On one
hand, the fact that, although themethod converges, the speed



Abstract and Applied Analysis 11

of convergence can be low, so that it may takemany iterations
to determine the focal/disfocal character of (2) in the given
interval, depending on the selected starting function 𝑓. On
the other hand, the method does not take advantage of the
negative values of 𝑞(𝑥) in the calculations (this is a problem,
however, shared with most of the disfocality criteria pub-
lished so far). But even taking these constraints into consid-
eration, we, the authors, believe that its advantages surpass its
drawbacks largely and that it can become a very powerful tool
to assess the disfocality/nondisfocality nature of (2), whether
directly or by means of other methods based on this which in
turn improves it.
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[10] P. Almenar and L. Jódar, “The distribution of zeroes and critical
points of solutions of a second order half-linear differential
equation,” Abstract and Applied Analysis, vol. 2013, Article ID
147192, 6 pages, 2013.

[11] V. Hutson, J. S. Pym, andM. J. Cloud,Applications of Functional
Analysis andOperatorTheory, vol. 200 ofMathematics in Science
and Engineering, Elsevier, New York, NY, USA, 2005.

[12] H. Sagan, Boundary and Eigenvalue Problems in Mathematical
Physics, Dover, New York, NY, USA, 1989.

[13] R. Bellman, “The stability of solutions of linear differential equa-
tions,” Duke Mathematical Journal, vol. 10, pp. 643–647, 1943.


