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We discuss several stabilized finite element methods, which are penalty, regular, multiscale enrichment, and local Gauss integration
method, for the steady incompressible flow problem with damping based on the lowest equal-order finite element space pair. Then
we give the numerical comparisons between them in three numerical examples which show that the local Gauss integrationmethod
has good stability, efficiency, and accuracy properties and it is better than the others for the steady incompressible flow problem
with damping on the whole. However, to our surprise, the regular method spends less CPU-time and has better accuracy properties
by using Crout solver.

1. Introduction

In this paper, we will consider the following steady incom-
pressible flow problem with damping: seek (u, 𝑝) such that

−]Δu + 𝛼|u|𝑟−2u + ∇𝑝 = f in Ω,

∇ ⋅ u = 0 in Ω,

u = 0 on 𝜕Ω,

(1)

whereΩ ⊂ R2 is a convex polygonal domain with a Lipschitz
continuous boundary 𝜕Ω and the symbols Δ, ∇, and ∇⋅

denote the Laplacian, gradient, and divergence operators,
respectively; u = (𝑢

1
(𝑥, 𝑦), 𝑢

2
(𝑥, 𝑦)), 𝑝 = 𝑝(𝑥, 𝑦), and f =

(𝑓
1
(𝑥, 𝑦), 𝑓

2
(𝑥, 𝑦)) represent the velocity vector, the pressure,

and the prescribed body force, respectively. Further, 𝛼|u|𝑟−2u
represents the damping term with two constants 𝛼 > 0 and
𝑟 > 2. In addition, |u| = √𝑢2

1
+ 𝑢2
2
, and we linearize the

nonlinear term 𝛼|u|𝑟−2u by allowing it to lag one step behind.
These equations describe various physical situations such

as porous media flow, drag or friction effects, and some
dissipative mechanisms from the resistance to the motion of
the flow. If the damping system is different, energy dissipation
is different. So the application of these equations is very
extensive in the daily life (see [1–6] and references therein).

It is well known that it is very difficult to compute some
PDEs directly while numerical method plays an important
role in these problems, so developing an efficient and effec-
tive computational method for solving the incompressible
flow problem has practical significance and has drawn the
attention of many researchers (see [4, 7–12] and the refer-
ences cited therein). During this time, mixed finite element
methods [13] are a natural choice for solving fluid mechanics
equations because these equations naturally appear in mixed
form in terms of velocity and pressure.

In the analysis and practice of employing mixed finite
element methods in solving the incompressible flow prob-
lems, the inf-sup condition has played an important role
because it ensures stability and accuracy of the underlying
numerical schemes. Pairs of finite element spaces that are
used to approximate the velocity and the pressure unknown
are said to be stable if they satisfy the inf-sup condition.
Intuitively speaking, the inf-sup condition is something that
enforces a certain correlation between two finite element
spaces so that they both have the required properties when
employed for the incompressible flow problems. However,
due to computational convenience and efficiency in practice,
some mixed finite element pairs which do not satisfy the
inf-sup condition are also popular. Thus, much attention has
been paid to the study of the stabilized method for the Stokes
problem [4, 7].
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In the present years, studies have focused on stabilization
techniques [14, 15], which include penalty method [16, 17],
regular method [15], multiscale enrichment method [18],
and local Gauss integration method [19]. There exist a lot
of theoretical results for the stabilized mixed finite element
methods for the Stokes equations and the comparisons
between them are also given (see [4, 7, 15, 16, 18–21] and
the references cited therein). It is pointed out that authors
considered the performance of several stabilized methods for
the Stokes equations based on the lowest equal-order pairs in
[21]. And authors studied several stabilized methods for the
Stokes eigenvalue problem by using different conforming and
nonconforming lower-order pairs in [7]. In this report, we
will adopt four kinds of stabilized finite element methods but
will mainly focus on the incompressible flow problem with
damping based on the lowest equal-order pairs. Moreover,
we present the comparisons between these methods of the
considered problem.

A brief outline of the rest of our paper is organized as fol-
lows: in Section 2, we introduce some notations and present
some preliminary materials and some well-known results of
the steady incompressible flow problem with damping to be
used in our subsequent sections; then in Section 3, we review
several stabilized mixed finite element methods and recall
their key stabilization techniques; in Section 4, comparisons
between these stabilizedmethods are performednumerically;
finally, we end with some short conclusions in Section 5.

2. Notations and Preliminaries

We will use the following Hilbert spaces:

X = 𝐻
1

0
(Ω)
2

∩ 𝐿
𝑟

(Ω)
2

,

Y = 𝐿
2

(Ω)
2

,

𝑀 = 𝐿
2

0
(Ω) = {𝑞 ∈ 𝐿

2

(Ω) : ∫
Ω

𝑞𝑑𝑥 = 0} .

(2)

Here and in what follows, the spaces 𝐿2(Ω)
𝑚 (𝑚 = 1, 2) are

equipped with the 𝐿2-scalar product (⋅, ⋅) and 𝐿2-norm ‖ ⋅ ‖
𝐿
2

or ‖ ⋅ ‖
0
, respectively. Further, we will consider the standard

definitions for Sobolev spaces𝑊𝑚,𝑝(Ω)which, for any integer
𝑚 > 0 and any number 𝑝 ≥ 1, are equipped with the norm

‖𝑢‖
𝑚,𝑝,Ω

= ‖𝑢‖
𝑚,𝑝

. (3)

Notice that

𝑊
𝑚,2

(Ω) = 𝐻
𝑚

(Ω) , ‖⋅‖
𝑚,2

= ‖⋅‖
𝑚
. (4)

Then the variational formulation of problem (1) is to seek
(u, 𝑝) ∈ X × 𝑀 such that

𝐵 ((u, 𝑝) ; (k, 𝑞)) + 𝛼 (|u|𝑟−2u, k) = (f , k) ,

∀ (k, 𝑞) ∈ X × 𝑀,

(5)

where
𝐵 ((u, 𝑝) ; (k, 𝑞)) = 𝑎 (u, k) + 𝑑 (k, 𝑝) + 𝑑 (u, 𝑞) ,

∀ (u, 𝑝) , (k, 𝑞) ∈ X × 𝑀,

𝑎 (u, k) = ] (∇u, ∇k) , ∀u, k ∈ X,

𝑑 (k, 𝑝) = − (𝑝, div k) , ∀ (k, 𝑝) ∈ X × 𝑀.

(6)

Now, for convenience, we introduce the finite subspaces
X
ℎ
× 𝑀
ℎ

⊂ X × 𝑀, assumed to be uniformly regular in the
usual sense. Suppose that 𝐾

ℎ
is a triangular decomposition

of the domain Ω and ℎ is the maximum mesh size of the
partition. Therefore, we define

X
ℎ
= {u ∈ 𝐶

0

(Ω)
2

∩ X : u|
𝐾

∈ 𝑃
1
(𝐾)
2

, ∀𝐾 ∈ 𝐾
ℎ
} ,

𝑀
ℎ
= {𝑞 ∈ 𝐶

0

(Ω) ∩ 𝑀 : 𝑞
𝐾 ∈ 𝑃

1
(𝐾) , ∀𝐾 ∈ 𝐾

ℎ
} ,

(7)

where 𝑃
1
(𝐾) represents the space of linear functions on 𝐾.

And we assume the following basis functions:

X
ℎ
= 𝑋
ℎ
× 𝑋
ℎ
, 𝑋

ℎ
= span {𝜙

ℎ

1
, . . . , 𝜙

ℎ

𝑛
} ,

𝑀
ℎ
= span {𝜑

ℎ

1
, . . . , 𝜑

ℎ

𝑚
} ,

(8)

where 𝑛 and𝑚 are the dimensions of𝑋
ℎ
and𝑀

ℎ
, respectively.

And the bilinear forms 𝑎(k
ℎ
, k
ℎ
) and 𝑑(k

ℎ
, 𝑞
ℎ
) satisfy the

following conditions [7].

(i) There is a constant 𝑐
1
> 0 such that

𝑎 (k
ℎ
, k
ℎ
) ≥ 𝑐
1

kℎ

2

1,Ω
, ∀k

ℎ
∈ Z
ℎ
, (9)

where Z
ℎ
= {k
ℎ
∈ X
ℎ
| 𝑑(k
ℎ
, 𝑞
ℎ
) = 0, ∀𝑞

ℎ
∈ 𝑀
ℎ
}.

(ii) There is a constant 𝑐
2
> 0 independent of ℎ such that

sup
k
ℎ
∈X
ℎ

𝑑 (k
ℎ
, 𝑞
ℎ
)


kℎ
0

≥ 𝑐
2

𝑞ℎ
 , ∀ (k

ℎ
, 𝑞
ℎ
) ∈ X
ℎ
× 𝑀
ℎ
. (10)

Then we have a unique solution (u
ℎ
, 𝑝
ℎ
) of (5) satisfying

u − u
ℎ

1,Ω +
𝑝 − 𝑝

ℎ

0,Ω

≤ 𝑐
3
( inf
k
ℎ
∈X
ℎ

𝑢 − V
ℎ

1,Ω + inf
𝑞
ℎ
∈𝑀
ℎ

𝑝 − 𝑞
ℎ

0,Ω) ,
(11)

where 𝑐
3
is a positive constant.

3. Stabilized Mixed Finite Element Methods

In this section, we will give several stabilized mixed finite
element algorithms to show their different aspects and several
ways have been used to stabilize the lowest equal-order finite
element space pair as follows (see [7, 21]). First we introduce
the following classical Uzawa iterative algorithm.

LetH
1
andH

2
be finite dimensional spaces. We consider

the following saddle point problems:

[
A B𝑇
B −C] [

X
Y] = [

f
g] , (12)
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whereX ∈ H
1
andY ∈ H

2
are unknown variables; f ∈ H

1
, g ∈

H
1
; A : H

1
→ H

1
is symmetric positive definite operator,

B : H
1

→ H
2
is linear map, B𝑇 : H

2
→ H
1
is the transpose

operator of B, and C : H
2

→ H
2
is symmetric semidefinite

operator. If the initial values X
0
∈ H
1
and Y

0
∈ H
2
are given,

then X
𝑖
and Y

𝑖
(𝑖 = 1, 2, . . .) are defined by

X
𝑖
= X
𝑖−1

+ A−1 (f − AX
𝑖−1

− B𝑇Y
𝑖−1

) ,

Y
𝑖
= Y
𝑖−1

+ 𝜏 (BX
𝑖
− CY
𝑖−1

− g) ,
(13)

where 𝜏 is a given real number.
Let 𝑒Y
𝑖

= Y − Y
𝑖
be the iteration error generated by the

above method. It is easy to show that

𝑒
Y
𝑖

= (I − 𝜏 (BA−1B𝑇 + C)) 𝑒
Y
𝑖−1

. (14)

Let 𝜆
1
denote the largest eigenvalue of matrix BA−1B𝑇 + C.

Then Y
𝑖
converges to Y if 𝜏 is chosen such that 0 < 𝜏 ≤ 2/𝜆

1
.

In this case,X
𝑖
and Y

𝑖
converge, respectively, toX and Ywith

a rate of convergence bounded by the absolute value of 1−𝜏𝜆
1
.

For more details about the saddle point problems, please see
[22–24] and the references cited therein.

Next we present four kinds of stabilized finite element
method for the steady incompressible flow problem with
damping.

Remark 1 (nonconforming finite element space). For conve-
nience, we let ℎ be a positive parameter and 𝐾

ℎ
= {𝐾
𝑗
} a

regular triangulation of Ω. Denote by Γ
𝑗

= 𝜕Ω ∩ 𝜕𝐾
𝑗
the

boundary edge and by Γ
𝑗𝑘

= Γ
𝑘𝑗

= 𝜕𝐾
𝑗
∩ 𝜕𝐾
𝑘
the inte-

rior boundary. Set the centers of Γ
𝑗
and Γ

𝑗𝑘
by 𝜁
𝑗
and 𝜁

𝑗𝑘
,

respectively. The nonconforming finite element space can be
defined as

NC
ℎ
= {k : k

𝑗
= k|
𝐾
𝑗

∈ 𝑃
1
(𝐾
𝑗
)
2

, k
𝑗
(𝜁
𝑗𝑘
) = k
𝑘
(𝜁
𝑘𝑗
) ,

k (𝜁
𝑗
) = 0, 𝐾

𝑗
∈ 𝐾
ℎ
, ∀𝑗, 𝑘} ,

(15)

where 𝑃
1
(𝐾
𝑗
) is the set of all polynomials on𝐾

𝑗
of degree less

than 1. Note thatNC
ℎ
is not a subspace ofX. However, in this

nonconforming case, the pair of finite element spaces isNC
ℎ
×

𝑀
ℎ
; that is, the conforming space is still used for pressure.

So the corresponding discrete variational formulation of
(5) for the Stokes equations with damping reads as follows.
Seek (u

ℎ
, 𝑝
ℎ
) ∈ X
ℎ
× 𝑀
ℎ
such that

𝐵 ((u
ℎ
, 𝑝
ℎ
) ; (k, 𝑞)) + 𝛼 (

uℎ

𝑟−2u
ℎ
, k) = (f , k) ,

∀ (k, 𝑞) ∈ X
ℎ
× 𝑀
ℎ
.

(16)

Then we can get the following equations from (16):

𝐴
1
{𝑢
1,ℎ

} + 𝛼𝐴
2
{𝑢
1,ℎ

} + 𝐵
𝑇

𝑥
{𝑝
ℎ
} = {∫

Ω

𝜙
𝑖
𝑓
1
} ,

𝐴
1
{𝑢
2,ℎ

} + 𝛼𝐴
2
{𝑢
2,ℎ

} + 𝐵
𝑇

𝑦
{𝑝
ℎ
} = {∫

Ω

𝜙
𝑖
𝑓
2
} ,

𝐵
𝑥
{𝑢
1,ℎ

} + 𝐵
𝑦
{𝑢
2,ℎ

} = 0.

(17)

Next, let U
ℎ
and P

ℎ
be the array of the velocity and pressure,

respectively. Then it is easy to see that (17) can be written in
matrix form:

[
A
1
+ 𝛼A
2
B𝑇
1

B
1

0
] [

U
ℎ

P
ℎ

] = [
F
ℎ

0
] , (18)

where A
1

= diag(𝐴
1
, 𝐴
1
), 𝐴
1

= (𝐴
1𝑖,𝑗

), and 𝐴
1𝑖,𝑗

=

](∇𝜙ℎ
𝑗
, ∇𝜙ℎ
𝑖
), 𝑖, 𝑗 = 1, . . . , 𝑛; A

2
= diag(𝐴

2
, 𝐴
2
), 𝐴
2
= (𝐴
2𝑖,𝑗

),
and 𝐴

2𝑖,𝑗
= U(𝜙

ℎ

𝑗
, 𝜙
ℎ

𝑖
), 𝑖, 𝑗 = 1, 2, . . . , 𝑛; B

1
= (𝐵
𝑥
, 𝐵
𝑦
),

𝐵
𝑥

= (𝐵
𝑥
𝑖𝑗

), 𝐵
𝑦

= (𝐵
𝑦
𝑖𝑗

), 𝐵
𝑥
𝑖𝑗

= −∫
Ω

(𝜕𝜙ℎ
𝑗
/𝜕𝑥)𝜑ℎ

𝑖
, and

𝐵
𝑦
𝑖𝑗

= −∫
Ω

(𝜕𝜙ℎ
𝑗
/𝜕𝑦)𝜑ℎ

𝑖
, 𝑖, 𝑗 = 1, . . . , 𝑛; U

ℎ
= [{𝑢
1,ℎ

}, {𝑢
2,ℎ

}]
𝑇;

F
ℎ
= [{∫
Ω

𝜙ℎ
𝑖
𝑓
1
}, {∫
Ω

𝜙ℎ
𝑖
𝑓
2
}]
𝑇; and P

ℎ
= [𝑝
1
, . . . , 𝑝

𝑚
]
𝑇.

Remark 2. Here, U = (√{𝑢
1,ℎ

}
2

+ {𝑢
2,ℎ

}
2

)
𝑟−2

. Because we
linearized the nonlinear term 𝛼|u|𝑟−2u, then U is a known-
term in the process of solving (18). And for (16), the process
of linearizing is as follows.

Given (u𝑛
ℎ
, p𝑛
ℎ
), seek (u𝑛+1

ℎ
, p𝑛+1
ℎ

) ∈ X
ℎ
× 𝑀
ℎ
such that

𝐵 ((u𝑛+1
ℎ

, 𝑝
𝑛+1

ℎ
) ; (k, 𝑞)) + 𝛼 (

u
𝑛

ℎ


𝑟−2u𝑛+1
ℎ

, k) = (f , k) . (19)

In the nonconforming case, the discrete nonconforming
formulation for the steady incompressible flow problem with
damping is to seek (u

ℎ
, 𝑝
ℎ
) ∈ NC

ℎ
× 𝑀
ℎ
such that

𝐵


((u
ℎ
, 𝑝
ℎ
) ; (k, 𝑞)) + 𝛼 ∑

𝐾∈𝐾
ℎ

(
uℎ


𝑟−2u
ℎ
, k)
𝐾

= ∑
𝐾∈𝐾
ℎ

(f , k)
𝐾
,

(20)

where

𝐵


((u, 𝑝) ; (k, 𝑞)) = 𝑎


(u, k) + 𝑑


(k, 𝑝) + 𝑑


(u, 𝑞) ,

𝑎


(u, k) = ] ∑
𝐾∈𝐾
ℎ

(∇u, ∇k)
𝐾
,

𝑑


(k, 𝑝) = − ∑
𝐾∈𝐾
ℎ

(div k, 𝑝)
𝐾
.

(21)

Note that (17) is a saddle point problem and the lowest
equal-order pair does not satisfy the discrete inf-sup condi-
tion

sup
k
ℎ
∈X
ℎ

𝑑 (k
ℎ
, 𝑝
ℎ
)

∇kℎ
0

≥ 𝑐
4

𝑝ℎ
0

or sup
k
ℎ
∈NC
ℎ

𝑑 (k
ℎ
, 𝑝
ℎ
)

∇kℎ
0,ℎ

≥ 𝑐
4

𝑝ℎ
0 ∀𝑞

ℎ
∈ 𝑀
ℎ
,

(22)

where the constant 𝑐
4
> 0 is independent of ℎ and ‖∇k

ℎ
‖
0,ℎ

=

(∑
𝑗
|k|2
1,𝑘
𝑗

)
2, for all k ∈ NC

ℎ
.

Algorithm I (Penalty method). The penalty method com-
pensates for the inf-sup condition deficiency by adding the
penalty term as follows.
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Seek (u
ℎ
, 𝑝
ℎ
) ∈ X
ℎ
× 𝑀
ℎ
such that

𝐵 ((u
ℎ
, 𝑝
ℎ
) ; (k, 𝑞)) + 𝛼 (

uℎ

𝑟−2u
ℎ
, k) +

𝜀

]
(𝑝
ℎ
, 𝑞) = (f , k) ,

∀ (k, 𝑞) ∈ X
ℎ
× 𝑀
ℎ
,

(23)

where 𝜀 > 0 is a penalty parameter. The performance of
this method obviously depends on the choice of the penalty
parameter 𝜀. Then the matrix form of (23) can be expressed
as

[
A
1
+ 𝛼A
2

B𝑇
1

B
1

𝜀

]
D
1

][
Uℎ
Pℎ] = [

Fℎ
0
] , (24)

where the matrixes A
1
and B

1
are presented and D

1
is

deduced from (𝑝
ℎ
, 𝑞), using the base for 𝑀

ℎ
in the usual

manner; that is,

D
1
= (𝐷
1𝑖,𝑗

) , 𝐷
1𝑖,𝑗

= ∫
Ω

𝜑
ℎ

𝑖
𝜑
ℎ

𝑗
𝑑𝑥 𝑑𝑦, 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(25)

Let 𝑒P
ℎ

𝑖
= Pℎ − Pℎ

𝑖
(𝑖 = 1, 2, . . .); we use the above Uzawa

iterative algorithm and get

𝑒
Pℎ
𝑖+1

= (I − 𝜏 (B
1
(A
1
+ 𝛼A
2
)
−1B𝑇
1
−

𝜀

]
D
1
)) 𝑒

Pℎ
𝑖

. (26)

Algorithm II (Regular method). This method uses a simple
way to stabilize the mixed finite element approximation
without a loss of accuracy, that is, to seek (u

ℎ
, 𝑝
ℎ
) ∈ X
ℎ
× 𝑀
ℎ

such that

𝐵 ((u
ℎ
, 𝑝
ℎ
) ; (k, 𝑞)) + 𝛼 (

uℎ

𝑟−2u
ℎ
, k)

− 𝛿 ∑
𝐾∈𝐾
ℎ

(∇𝑝
ℎ
− f , ∇𝑞)

𝐾
= (f , k) ,

(27)

for all (k, 𝑞) ∈ X
ℎ
× 𝑀
ℎ
, where 𝛿 = ℎ2/(𝛽]) is a stabilization

parameter and 𝛽 > 0. Thematrix form of the above stabilized
version can be expressed as

[
A
1
+ 𝛼A
2

B𝑇
1

B
1

𝛿D
2

] [
Uℎ
Pℎ] = [

Fℎ
Cℎ
1

] , (28)

where additional blocksD
2
and Cℎ

1
correspond to

− ∑
𝐾∈𝐾
ℎ

(∇𝑝
ℎ
, ∇𝑞)
𝐾
,

−𝛿 ∑
𝐾∈𝐾
ℎ

(f , ∇𝑞)
𝐾
,

(29)

respectively; that is,

D
2
= (𝐷
2𝑖,𝑗

) , 𝐷
2𝑖,𝑗

= − ∑
𝐾∈𝐾
ℎ

∫
𝐾

∇𝜑
ℎ

𝑖
∇𝜑
ℎ

𝑗
𝑑𝑥 𝑑𝑦,

𝑖, 𝑗 = 1, . . . , 𝑚,

(30)

and Cℎ
1

= [−𝛿{∑∫
𝐾

(𝜕𝜑ℎ
𝑖
/𝜕𝑥)𝑓

1
}, −𝛿{∑∫

𝐾

(𝜕𝜑ℎ
𝑖
/𝜕𝑦)𝑓

2
}]
𝑇,

where

{∑∫
𝐾

𝜕𝜑ℎ
𝑖

𝜕𝑥
𝑓
1
} = ∑[∫

𝐾

𝜕𝜑ℎ
1

𝜕𝑥
𝑓
1
, . . . , ∫

𝐾

𝜕𝜑ℎ
𝑚

𝜕𝑥
𝑓
1
]

𝑇

,

{∑∫
𝐾

𝜕𝜑ℎ
𝑖

𝜕𝑦
𝑓
2
} = ∑[∫

𝐾

𝜕𝜑ℎ
1

𝜕𝑦
𝑓
2
, . . . , ∫

𝐾

𝜕𝜑ℎ
𝑚

𝜕𝑦
𝑓
2
]

𝑇

.

(31)

Similar to (26), we also have

𝑒
Pℎ
𝑖+1

= (I − 𝜏 (B
1
(A
1
+ 𝛼A
2
)
−1B𝑇
1
− 𝛿D
2
)) 𝑒

Pℎ
𝑖

. (32)

Algorithm III (Multiscale enrichment method). Another sta-
bilized way is the multiscale enrichment approach which
includes the usual Galerkin least squares stabilized terms on
each finite element and positive jump terms at interelement
boundaries. Namely, seek (u

ℎ
, 𝑝
ℎ
) ∈ X
ℎ
× 𝑀
ℎ
such that

𝐵 ((u
ℎ
, 𝑝
ℎ
) ; (k, 𝑞)) + 𝛼 (

uℎ

𝑟−2u
ℎ
, k)

− 𝛿
1
∑
𝐾∈𝐾
ℎ

(∇𝑝
ℎ
− f , ∇𝑞)

𝐾

+ 𝛿
2
∑
Γ
𝑗𝑘

([]𝜕
𝑛
u
ℎ
] , []𝜕
𝑛
k])
Γ
𝑗𝑘

= (f , k) ,

∀ (k, 𝑞) ∈ X
ℎ
× 𝑀
ℎ
,

(33)

where 𝛿
1

= ℎ2/(𝛽
1
]) and 𝛿

2
= ℎ/(𝛽

2
]) are the positive

stabilization parameters, 𝑛 is the normal outward vector, 𝜕
𝑛

is normal derivative operator, and [k] denotes the jump of k
across 𝑒. Moreover, a direct algebraic manipulation leads to
the matrix form

[
A
1
+ 𝛼A
2

B𝑇
1

B
1
+ 𝛿
2
D
3

𝛿
1
D
2

] [
Uℎ
Pℎ] = [

Fℎ
Cℎ
2

] , (34)

where the matrix D
3
is deduced from the term 𝛿

2
∑
Γ
𝑗𝑘

([]𝜕
𝑛
u
ℎ
], []𝜕
𝑛
k])
Γ
𝑗𝑘

.
Similar to (26), we have

𝑒
Pℎ
𝑖+1

= (I − 𝜏 ((B
1
+ 𝛿
2
D
3
) (A
1
+ 𝛼A
2
)
−1B𝑇
1
− 𝛿
1
D
2
)) 𝑒

Pℎ
𝑖

.

(35)

Algorithm IV (Local Gauss integration method). The local
Gauss integrationmethod is to add twoGauss integrals rather
than any stabilization parameter to the original discrete
formulation (16) as follows. Seek (u

ℎ
, 𝑝
ℎ
) ∈ X

ℎ
× 𝑀
ℎ
such

that

𝐵 ((u
ℎ
, 𝑝
ℎ
) ; (k, 𝑞)) + 𝛼 (

uℎ

𝑟−2u
ℎ
, k)

− 𝐺 (𝑝
ℎ
, 𝑞) = (f , k) , (k, 𝑞) ∈ X

ℎ
× 𝑀
ℎ
,

(36)

where 𝐺(𝑝
ℎ
, 𝑞) is defined by

𝐺 (𝑝
ℎ
, 𝑞)

= 𝛿
3
∑
𝐾∈𝐾
ℎ

{∫
𝐾,2

𝑝
ℎ
𝑞𝑑𝑥 − ∫

𝐾,1

𝑝
ℎ
𝑞𝑑𝑥} , ∀𝑝

ℎ
, 𝑞 ∈ 𝑀

ℎ
,

(37)
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Table 1: Numerical results for the penalty method with ] = 1.0𝑒 − 4, 𝛼 = 1.0𝑒 − 4, and 𝑟 = 3.

1/ℎ CPU-time ‖𝑢 − 𝑢
ℎ
‖
1
/‖𝑢‖
1

‖𝑝 − 𝑝
ℎ
‖
0
/‖𝑝‖
0

𝑢
𝐻
1 -rate 𝑝

𝐿
2 -rate

12 0.375 2.3745𝐸 − 1 1.3649𝐸 − 1 — —
24 3.265 1.1800𝐸 − 1 6.8136𝐸 − 2 1.0088 1.0023
36 10.39 7.8528𝐸 − 2 4.5442𝐸 − 2 1.0045 0.9990
48 27.562 5.8844𝐸 − 2 3.4113𝐸 − 2 1.0031 0.9968
60 61.25 4.7051𝐸 − 2 2.7326𝐸 − 2 1.0023 0.9942

Table 2: Results got from the regular method with ] = 1.0𝑒 − 4, 𝛼 = 1.0𝑒 − 4, and 𝑟 = 3.

1/ℎ CPU-time ‖𝑢 − 𝑢
ℎ
‖
1
/‖𝑢‖
1

‖𝑝 − 𝑝
ℎ
‖
0
/‖𝑝‖
0

𝑢
𝐻
1 -rate 𝑝

𝐿
2 -rate

12 0.282 1.1945𝐸 − 0 1.5179𝐸 − 2 — —
24 1.641 4.4196𝐸 − 1 4.7747𝐸 − 3 1.4344 1.6686
36 4.657 2.4423𝐸 − 1 2.5361𝐸 − 3 1.4628 1.5605
48 10.313 1.6070𝐸 − 1 1.6313𝐸 − 3 1.4550 1.5337
60 21.094 1.1646𝐸 − 1 1.1619𝐸 − 3 1.4431 1.5207

𝛿
3
> 0, and ∫

𝐾,𝑖

𝑔(𝑥)𝑑𝑥 indicates a local Gauss integral over
𝐾 that is exact for polynomials of degree 𝑖 (𝑖 = 1, 2). Then the
corresponding matrix form of this stabilized method is

[
A
1
+ 𝛼A
2

B𝑇
1

B
1

𝛿
3
G] [

Uℎ
Pℎ] = [

Fℎ
0
] , (38)

where

G = − ∑
𝐾∈𝐾
ℎ

(𝐺
2
− 𝐺
1
) ,

𝐺
2
= (∫
𝐾,2

𝜑
ℎ

𝑖
𝜑
ℎ

𝑗
) ,

𝐺
1
= (∫
𝐾,1

𝜑
ℎ

𝑖
𝜑
ℎ

𝑗
) , 𝑖, 𝑗 = 1, . . . , 𝑚.

(39)

As (26), we get

𝑒
Pℎ
𝑖+1

= (I − 𝜏 (B
1
(A
1
+ 𝛼A
2
)
−1B𝑇
1
− 𝛿
3
G)) 𝑒

Pℎ
𝑖

. (40)

It is well known that, if 𝜏 is well chosen, then 𝑈
𝑖
and 𝑃

𝑖

converge, respectively, to 𝑈 and 𝑃 with a rate of convergence
based on (26), (32), (35), and (40). From these equations, we
can find that the penalty method converges faster than the
local Gauss integration method. We can obtain that coeffi-
cient matrices of penalty algorithm, regular algorithm, and
local Gauss integration algorithm are all symmetric; however,
the multiscale enrichment method’s coefficient matrices are
not symmetric from (10), (28), (34), and (38). What is more,
it is easy to see that the matrix calculations of multiscale
enrichment algorithm are more complex and cumbersome,
so this method maybe costs more time.

By using the regularity assumptions and well-established
techniques for velocity and pressure [4, 7], the theoretical
convergence rates should be of order 𝑂(ℎ) for the velocity in
the 𝐿
2-norm and of order 𝑂(ℎ2) for the pressure in the 𝐻1-

norm, respectively, by using all these stabilized methods.

4. Numerical Experiments

In this section, we will give three numerical tests to confirm
the numerical theory developed in the previous section.
In the given experiments, the pressure and velocity are
approximated by the lowest equal-order finite element pairs
defined with respect to the same uniform triangulation; that
is, the mesh consists of triangular elements that are obtained
by dividingΩ into subsquares of equal size and then drawing
the diagonal in each subsquare.

4.1. Numerical Test 1. In this example, we consider the exact
solution problem firstly. Let the domainΩ be the unit square
Ω = (0, 1) × (0, 1) ⊂ R2. The exact solution for the velocity
u = (𝑢

1
, 𝑢
2
) and pressure 𝑝 is given as follows:

𝑝 (𝑥, 𝑦) = cos (𝜋𝑥) cos (𝜋𝑦) ,

𝑢
1
(𝑥, 𝑦) = 2𝜋sin2 (𝜋𝑥) sin (𝜋𝑦) cos (𝜋𝑦) ,

𝑢
2
(𝑥, 𝑦) = −2𝜋 sin (𝜋𝑥) cos (𝜋𝑥) sin2 (𝜋𝑦) ,

(41)

and the right-hand side f = (𝑓
1
(𝑥, 𝑦), 𝑓

2
(𝑥, 𝑦)) is determined

by the original problem (1). Our goal in this test is to compare
CPU-time, the 𝐿2-error of the pressure, and 𝐻1-error of
the velocity; the experimental rates of convergence for these
methods with different values of ℎ are tabulated in Tables 1,
2, 3, 4, and 5. What is more, the rates of convergence are
calculated by the formula log(𝐸

𝑖
/𝐸
𝑖+1

)/ log(ℎ
𝑖
/ℎ
𝑖+1

), where 𝐸
𝑖

and 𝐸
𝑖+1

are the relative errors corresponding to the meshes
of sizes ℎ

𝑖
and ℎ
𝑖+1

, respectively.
From this experiment, we can learn the following several

points. (1) For penalty method, the result of this method is
well in which parameter “𝑟” can be 2, 3, and 4 and we can use
UMFPACK or default solver in the process of calculation. (2)
Results got from the penalty, regular, multiscale enrichment,
and local Gauss integration methods by using conforming
and nonconforming elements are presented in Tables 1–5,
respectively. Here, we choose 𝜀 = 1.0𝑒 − 6, 𝛼 = 1.0𝑒 − 4,
𝑟 = 3, Re = 10000, and 𝛽 = 160, 𝛽

1
= 160, 𝛽

2
= 100,
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Table 3: Results got from the multiscale enrichment method with ] = 1.0𝑒 − 4, 𝛼 = 1.0𝑒 − 4, and 𝑟 = 3.

1/ℎ CPU-time ‖𝑢 − 𝑢
ℎ
‖
1
/‖𝑢‖
1

‖𝑝 − 𝑝
ℎ
‖
0
/‖𝑝‖
0

𝑢
𝐻
1 -rate 𝑝

𝐿
2 -rate

12 2.496 0.8924 1.1544 — —
24 12.746 0.6523 0.2823 0.4520 2.0319
36 37.175 0.4853 0.2094 0.7293 0.7370
48 83.648 0.3737 0.1713 0.9091 0.6977
60 161.32 0.2996 0.1445 0.9900 0.7624

Table 4: Results got from the local Gauss integration method with ] = 1.0𝑒 − 4, 𝛼 = 1.0𝑒 − 4, and 𝑟 = 3.

1/ℎ CPU-time ‖𝑢 − 𝑢
ℎ
‖
1
/‖𝑢‖
1

‖𝑝 − 𝑝
ℎ
‖
0
/‖𝑝‖
0

𝑢
𝐻
1 -rate 𝑝

𝐿
2 -rate

12 0.406 2.2348𝐸 − 1 8.9420𝐸 − 3 — —
24 4.578 1.1458𝐸 − 1 2.8981𝐸 − 3 1.0353 1.6255
36 8.5 7.4890𝐸 − 2 1.8494𝐸 − 3 1.0488 1.1078
48 16.328 5.5377𝐸 − 2 1.3620𝐸 − 3 1.0493 1.0635
60 27.39 4.3894𝐸 − 2 1.0468𝐸 − 3 1.0414 1.1797

Table 5: Results got from the local Gauss integration method with the nonconforming element with ] = 1.0𝑒 − 4, 𝛼 = 1.0𝑒 − 4, and 𝑟 = 3.

1/ℎ CPU-time ‖𝑢 − 𝑢
ℎ
‖
1
/‖𝑢‖
1

‖𝑝 − 𝑝
ℎ
‖
0
/‖𝑝‖
0

𝑢
𝐻
1 -rate 𝑝

𝐿
2 -rate

12 0.297 3.6007 5.8335𝐸 − 2 — —
24 2.500 1.8851 1.6524𝐸 − 2 0.9336 1.8198
36 5.735 1.2682 7.5810𝐸 − 3 0.9776 1.9217
48 11.469 0.9543 4.3219𝐸 − 3 0.9887 1.9534
60 21.719 0.7646 2.7858𝐸 − 3 0.9932 1.9681

because they can deal with the considered problem well. (3)
For regular method, it works well only we choose Crout
solver; however, for other methods, several solvers can be
used and their difference is not big. What is more, the value
of “𝑟” has little influence on the results within a certain range;
in this paper, we give the results of 𝑟 = 3 presented in tables.
FromTables 1–5, we can see that thesemethods workwell and
keep the convergence rates just like the theoretical analysis
except for the multiscale enrichment method. Meanwhile, it
can be seen that the penalty method requires the least CPU-
time, which validates the analysis in Section 3. As expected,
we have an interesting observation that the error of the
nonconforming local Gauss integration method is better
than that of the conforming version, which is not surprising
since the degree of freedom of the nonconforming method
is nearly three times than that of the conforming one on
uniform mesh. Hence, it is natural that the nonconforming
local Gauss integration method is more accurate and costs
more CPU-time. The penalty method should use less time
than the regular method and local Gauss integration method
theoretically but in fact not; maybe this is caused by the
different solver.

Besides, from the convergence results on this example, we
can see that regular and multiscale enrichment methods are
not better than other methods. And the nonconforming local
Gauss integration method shows the best numerical stability.

4.2. Numerical Test 2. In this test, we test a popular bench-
mark problem, the lid-driven flow. Let the computation be
carried out in the region Ω = {(𝑥, 𝑦) | 0 < 𝑥, 𝑦 < 1}.
We assume the normal component of the velocity to be zero
on 𝜕Ω and the tangential component to be zero except along
𝑦 = 1, where it is set to one.

In this example, we simulate the referred physics phe-
nomena. In Figures 1, 2, 3, 4, and 5, we present the velocity
streamlines and pressure level lines for 𝜀 = 10𝑒 − 6, 𝛼 = 100,
ℎ = 1/30, and 𝑟 = 4 based on these five methods. From
Figures 1(b)–5(b), only Gauss methods can obtain resolved
pressure. For the velocity, from Figures 1(a)–5(a), we can see
that Gauss methods can capture this model better than the
other methods.

4.3. Numerical Test 3. In this example, we choose the exact
solution for the velocity and pressure in the unit square as
follows:

𝑝 (𝑥, 𝑦) = 10 (2𝑥 − 1) (2𝑦 − 1) ,

𝑢
1
(𝑥, 𝑦) = 10𝑥

2

(𝑥 − 1)
2

𝑦 (𝑦 − 1) (2𝑦 − 1) ,

𝑢
2
(𝑥, 𝑦) = −10𝑥 (𝑥 − 1) (2𝑥 − 1) 𝑦

2

(𝑦 − 1)
2

,

(42)

and the right-hand side is determined just as Test 1. In this
example, parameters we choose are ] = 1.0𝑒 − 4, 𝛼 = 1.0𝑒 − 4,
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Figure 1: Velocity streamlines (a) and pressure level lines (b) for the penalty method with 𝜀 = 1.0𝑒 − 6, 𝛼 = 100, and 𝑟 = 4, respectively.
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Figure 2: Velocity streamlines (a) and pressure level lines (b) for the regular method with 𝜀 = 1.0𝑒 − 6, 𝛼 = 100, and 𝑟 = 4, respectively.
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Figure 3: Velocity streamlines (a) and pressure level lines (b) for the multiscale enrichment method with 𝜀 = 1.0𝑒 − 6, 𝛼 = 100, and 𝑟 = 4,
respectively.
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Figure 4: Velocity streamlines (a) and pressure level lines (b) for the local Gauss integration method with 𝜀 = 1.0𝑒 − 6, 𝛼 = 100, and 𝑟 = 4,
respectively.
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Figure 5: Velocity streamlines (a) and pressure level lines (b) for the local Gauss integration method with the nonconforming element with
𝜀 = 1.0𝑒 − 6, 𝛼 = 100, and 𝑟 = 4, respectively.

Table 6: Numerical results for the penalty method with ] = 1.0𝑒 − 4, 𝛼 = 1.0𝑒 − 4, and 𝑟 = 3.

1/ℎ CPU-time ‖𝑢 − 𝑢
ℎ
‖
1
/‖𝑢‖
1

‖𝑝 − 𝑝
ℎ
‖
0
/‖𝑝‖
0

𝑢
𝐻
1 -rate 𝑝

𝐿
2 -rate

12 0.219 2.8476𝐸 − 1 1.8917𝐸 − 1 — —
24 1.625 1.4126𝐸 − 1 9.8071𝐸 − 2 1.0114 0.9478
36 5.719 9.3881𝐸 − 2 6.6229𝐸 − 2 1.0077 0.9682
48 15.64 7.0298𝐸 − 2 5.0001𝐸 − 2 1.0056 0.9771
60 32.281 5.6183𝐸 − 2 4.0161𝐸 − 2 1.0044 0.9820

and 𝑟 = 3. For the penalty and local Gauss integration
methods, CPU-time, the 𝐿2-error of the pressure, 𝐻1-error
of the velocity, and the experimental rates of convergence
for these methods with different values of ℎ are tabulated in
Tables 6 and 7. What is more, the numerical solutions are
given in Figure 6. From this test, we can get conclusion that
is similar to Test 1. However, the result got from multiscale
method is not better.

5. Conclusions
Wehave used several stabilizedmixed finite elementmethods
in solving the steady incompressible flow problem with
damping based on the lowest equal-order pairs in this paper.
We give some conclusions by comparing numerically as
follows.

All of those methods’ stability and efficiency depends
on their parameter values. In terms of the penalty method,



Journal of Applied Mathematics 9

ISO value
−9.19744
−8.20964
−7.22183
−6.23403
−5.24623
−4.25843
−3.27062
−2.28282
−1.29502
−0.307216
0.680586
1.66839
2.65619
3.64399
4.6318
5.6196
6.6074
7.5952
8.58301
9.57081

Vec. value
0
0.0441595
0.088319
0.132478
0.176638
0.220797
0.264957
0.309116
0.353276
0.397435
0.441595
0.485754
0.529914
0.574073
0.618233
0.662392
0.706552
0.750711
0.794871
0.83903

0.0138889Mesh size h =

(a)
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−9.32308
−8.35042
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Figure 6: Numerical solutions for the penalty method (a) and pressure level lines for the local Gauss integrationmethod (b) with 𝜀 = 1.0𝑒−4,
𝛼 = 1.0𝑒 − 4, and 𝑟 = 4, respectively.

Table 7: Results got from the local Gauss integration method with ] = 1.0𝑒 − 4, 𝛼 = 1.0𝑒 − 4, and 𝑟 = 3.

1/ℎ CPU-time ‖𝑢 − 𝑢
ℎ
‖
1
/‖𝑢‖
1

‖𝑝 − 𝑝
ℎ
‖
0
/‖𝑝‖
0

𝑢
𝐻
1 -rate 𝑝

𝐿
2 -rate

12 0.219 1.78153𝐸 − 1 2.01165𝐸 − 2 — —
24 3.109 7.64659𝐸 − 1 4.97672𝐸 − 3 1.22023 2.01511
36 5.437 4.78738𝐸 − 1 2.20800𝐸 − 3 1.15491 2.00432
48 9.578 3.40798𝐸 − 1 1.24253𝐸 − 3 1.18138 1.99853
60 16.062 2.58872𝐸 − 1 7.96681𝐸 − 4 1.23219 1.99177
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the smaller its parameter value, the more stable the method.
However, it can not be too small, otherwise, the condition
number of the system matrix arising from this method will
become too large to be solve. For the regular and multiscale
enrichment methods whose performance heavily depends
on the choice of the stabilization parameters, however, it is
difficult to choose fine parameters in fact. What is more, a
poor choice of these stabilization parameters can also lead
to serious deterioration in the convergence rates. The local
Gauss integration method is free of stabilization parameters
and shows numerically the best performance among the
methods considered for the given problem.
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