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This paper presents a computational study on a quasi-Galerkin projection-based method to deal with a class of systems of random
ordinary differential equations (r.o.d.e.’s) which is assumed to depend on a finite number of random variables (r.v.’s). This class of
systems of r.o.d.e.’s appears in different areas, particularly in epidemiology modelling. In contrast with the other available Galerkin-
based techniques, such as the generalized Polynomial Chaos, the proposed method expands the solution directly in terms of the
random inputs rather than auxiliary r.v.’s. Theoretically, Galerkin projection-based methods take advantage of orthogonality with
the aim of simplifying the involved computations when solving r.o.d.e.’s, which means to compute both the solution and its main
statistical functions such as the expectation and the standard deviation. This approach requires the previous determination of
an orthonormal basis which, in practice, could become computationally burden and, as a consequence, could ruin the method.
Motivated by this fact, we present a technique to deal with r.o.d.e.’s that avoids constructing an orthogonal basis and keeps
computationally competitive even assuming statistical dependence among the random input parameters. Through a wide range
of examples, including a classical epidemiologic model, we show the ability of the method to solve r.o.d.e.’s.

1. Introduction and Motivation

The nondeterministic nature of phenomena in areas such
as engineering, physics, chemistry, and epidemiology often
leads to mathematical continuous models formulated by
random ordinary differential equations (r.o.d.e.’s).The uncer-
tainty involving such phenomena appears through the input
model parameters (coefficients, source/forcing term, ini-
tial/boundary conditions) which then are considered as
random variables (r.v.’s) and stochastic processes (s.p.’s) rather
than constants and ordinary functions, respectively. The
complexity of such stochastic continuous models becomes
greater when random inputs are assumed to be statistically
dependent, a hypothesis that is met in practice.

Solving a r.o.d.e. consists of not only computing its solu-
tion, which is a s.p., but also its main statistical characteristics
such as the mean and standard deviation/variance functions.

To achieve these objectives, a high number of methods have
been proposed, although we underline that most of them rely
on the statistical independence of the random input parame-
ters. A good account of such methods can be found in [1].

Due to the fact that it shares common basics with the
method thatwewill presented later, herewe highlight a family
of powerful methods to deal with r.o.d.e.’s, usually referred
to as generalized Polynomial Chaos (gPC). These techniques
are based on the Galerkin projection method [2–6]. In this
context, all involved random magnitudes are assumed to
be elements of the set L2 = L2(Ω,F, 𝑃), where (Ω,F, 𝑃)

is a probability space. This means that its elements have
finite variance. The set L2 endowed with the inner product
⟨𝜁
1
, 𝜁
2
⟩ = E[𝜁

1
𝜁
2
], 𝜁
1

= 𝜁
1
(𝜔), 𝜁
2

= 𝜁
2
(𝜔) ∈ L2, where E[⋅]

denotes the expectation operator, is a Hilbert space [7]. gPC
method takes advantage of the following key property: finite
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set of orthogonal functions {Φ
𝑖
(𝜉)}
𝑃

𝑖=0
in L2, which depend on

a number of r.v.’s, 𝜉 = 𝜉(𝜔) = (𝜉
1

= 𝜉
1
(𝜔), 𝜉
2

= 𝜉
2
(𝜔), . . .),

𝜔 ∈ Ω, generates a finite-dimensional subspace of L2, S.
Then, given an element in L2, which can be a r.v., 𝜁, or a
s.p., 𝑦(𝑡), we can obtain an approximation of 𝜁 or 𝑦(𝑡) as the
projection of 𝜁, or 𝑦(𝑡) onto S; that is,

𝜁 ≈

𝑃

∑

𝑖=0

̂

𝜁
𝑖
Φ
𝑖
(𝜉) , 𝑦 (𝑡) ≈

𝑃

∑

𝑖=0

𝑦
𝑖
(𝑡) Φ
𝑖
(𝜉) , (1)

where the so-called Fourier coefficients ̂

𝜁
𝑖
and 𝑦

𝑖
(𝑡) are given

by

̂

𝜁
𝑖
= ⟨𝜁, Φ

𝑖
(𝜉)⟩ , 𝑦

𝑖
(𝑡) = ⟨𝑦 (𝑡) , Φ

𝑖
(𝜉)⟩ , 0 ≤ 𝑖 ≤ 𝑃,

(2)

respectively.
In the following, we summarize how gPC technique

works in dealing with r.o.d.e.’s. Let us consider the r.o.d.e as
follows:

D (𝑡, 𝜁; 𝑦) = 𝑓 (𝑡, 𝜁) , (3)

whereD denotes a differential operator, the vector 𝜁 = 𝜁(𝜔) =

(𝜁
1

= 𝜁
1
(𝜔), 𝜁
2

= 𝜁
2
(𝜔), . . . , 𝜁

𝑠
= 𝜁
𝑠
(𝜔)) represents the

random parameters, 𝑦 = 𝑦(𝑡) is the solution s.p. that is
to be determined, and 𝑓(𝑡, 𝜁(𝜔)) is a forcing term. In this
context, 𝑠 is usually referred to as the order of the chaos.
In order to avoid a cumbersome notation in the subsequent
presentation, we will assume that 𝑠 = 1; that is, there is
only a random parameter: 𝜁 = 𝜁(𝜔). In a first step, one
substitutes the approximated representations of 𝜁 and 𝑦(𝑡)

given by (1) in the r.o.d.e. (3). Second, one multiplies the
r.o.d.e. by every element of the expansion basis {Φ

𝑖
(𝜉)}
𝑃

𝑖=0
,

and then, the ensemble average defined by the inner product
⟨𝜁
1
, 𝜁
2
⟩ = E[𝜁

1
𝜁
2
] is taken. This leads to

⟨D(𝑡,

𝑃

∑

𝑖=0

̂

𝜁
𝑖
Φ
𝑖
(𝜉) ;
𝑃

∑

𝑖=0

𝑦
𝑖
(𝑡) Φ
𝑖
(𝜉)) ,Φ

𝑗
(𝜉)⟩

= ⟨𝑓(𝑡,

𝑃

∑

𝑖=0

̂

𝜁
𝑖
Φ
𝑖
(𝜉)) ,Φ

𝑗
(𝜉)⟩ , 0 ≤ 𝑗 ≤ 𝑃,

(4)

that corresponds to a deterministic system of 𝑃 + 1 coupled
with differential equations whose unknowns are the node
functions 𝑦

𝑖
(𝑡). These unknowns can be computed by stan-

dard numerical techniques such as the Runge-Kutta scheme,
for instance. According to expression (1), it determines an
approximation of the solution s.p. 𝑦(𝑡). Approximations to
the expectation and variance functions of 𝑦(𝑡) are computed
as follows:

E [𝑦 (𝑡)] ≈ 𝑦
0
(𝑡) ,

Var [𝑦 (𝑡)] ≈

𝑃

∑

𝑖=1

(𝑦
𝑖
(𝑡))

2E [(Φ
𝑖
(𝜉))
2

] ,

(5)

respectively.
Now,we remark some aspects related to gPC that will help

to highlight better the differenceswith themethod thatwill be

presented in the next section. In dealing with r.o.d.e.’s which
depend on a number of random parameters, (𝜁

1
, 𝜁
2
, . . . , 𝜁

𝑠
),

in general, gPC method represents these parameters as well
as the solution s.p., 𝑦(𝑡), in terms of a family of r.v.’s, 𝜉 =

(𝜉
1
, 𝜉
2
, . . .) rather than directly in terms of the random inputs:

𝜁
𝑖
, 1 ≤ 𝑖 ≤ 𝑠. The selection of r.v.’s 𝜉

𝑗
as well as the orthogonal

basis {Φ
𝑘
(𝜉)} must be made according to the probability

distributions of the random inputs 𝜁
𝑖
. In [3], authors provide

a comprehensive criterion to set this choice in such a way
that an exponential convergence of the errormeasures for the
average and variance of the approximations of the solution
holds. In [3], the usefulness of this guideline is shown when
there is just one random input parameter, and it also belongs
to some of the standard distributions (Poisson, binomial,
gaussian, beta, exponential, etc.). In the usual case that two or
more r.v.’s appear as input parameters, none of optimal criteria
have been established, even assuming that the involved r.v.’s
have standard probabilistic distributions.

From a theoretical point of view, the orthogonality of
the basic functions {Φ

𝑖
(𝜉)}
𝑃

𝑖=0
used in the previous develop-

ment permits to cancel some involved computations (inner
products) when setting the deterministic system of o.d.e.’s
(4), although in practice, the total number of cancelations
depends strongly on the specific form of the r.o.d.e. (1). How-
ever, this theoretical advantage may not compensate the high
computational cost that usually entails the orthogonalization
process. Moreover, orthogonalization is a critical part of the
process, and the obtained result may return vectors with
loss of orthogonality what may ruin the computations of the
involved inner products and the building and resolution of
system (4), [8, pp.230–232] Golub. This leads us to present
a method, based on the Galerkin projection, that overcomes
this drawback. The study focuses on computational aspects.

The paper is organized as follows. In Section 2, we present
the Galerkin projection-based method that allows us to solve
a certain class of systems of r.o.d.e.’s whose uncertainty is con-
sidered through a finite number of dependent r.v.’s. Expres-
sions for the expectation and the variance of the solution s.p.
are also given. Section 3 is addressed to present the algorithm
of the method proposed in Section 2 as well as to discuss its
most relevant computational aspects. Section 4 begins with a
test example whose exact expressions for the mean and vari-
ance are available. Hence, the quality of the approximations
provided by the proposed method is better assessed. This
comparative study is completed by showing the competitive-
ness of our approach against the Monte-Carlo simulations.
The rest of the section is devoted to show a wide range of
examples, for both r.o.d.e.’s and systems of r.o.d.e.’s, where the
proposed method is satisfactorily applied. In all these exam-
ples, the randomness is also considered through different
joint probability distributions to illustrate better the power of
the proposed method. Conclusions are drawn in Section 5.

2. Method

Hereinafter, we will consider systems of r.o.d.e.’s of the form:

P (𝑡, 𝜁; y (𝑡) , ẏ (𝑡)) = 0, y (𝑡
0
, 𝜁) = y

0
, (6)
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where 𝑡 is the independent variable, 𝜁 = (𝜁
1
, . . . , 𝜁

𝑠
) denotes

the vector of random input parameters which can appear in
the coefficients and/or the forcing term of the r.o.d.e. as well
as the initial condition. Components 𝜁

𝑖
= 𝜁
𝑖
(𝜔), 1 ≤ 𝑖 ≤ 𝑠,

𝜔 ∈ Ω of 𝜁 are assumed to be elements of the Hilbert space
L2 = L2(Ω,F, 𝑃). 𝑓𝜁(𝜁) will denote the joint probability
density function (p.d.f.) of 𝜁. Also, 0 = (0, 0, . . . , 0)

⊤ is the
null vector of size 𝑞; y(𝑡) = (𝑦

1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑞
(𝑡))

⊤ and y
0
=

(𝑦
1
(𝑡
0
), 𝑦
2
(𝑡
0
), . . . , 𝑦

𝑞
(𝑡
0
))

⊤ are the vectors of unknown func-
tions and initial conditions, respectively. Here, ⊤ denotes the
transpose operator for vectors and matrices. P : R2𝑞+𝑠+1 →

R𝑞 is a map which is assumed to be a polynomial transforma-
tion of 𝜁

𝑖
, 1 ≤ 𝑖 ≤ 𝑠, and 𝑦

𝑗
(𝑡), 1 ≤ 𝑗 ≤ 𝑞. At this point, notice

that an important feature of our approach is that we do not
assume statistical independence among input parameters.

As in this paper, we are concerned with constructive
computational aspects, andwewill assume that conditions for
the existence and uniqueness of a solution stochastic process
to initial value problem (6) are satisfied.We point out that the
available results mainly consist of a natural generalization of
the classical Picard theorem based upon convergence in the
space L2 of successive approximations [1, page 118].

In L2, we consider the linear subspace spanned by the
canonical polynomials of degree to be equal to or less than
𝑚 of the 𝑠 random model parameters, 𝜁

𝑖
, 1 ≤ 𝑖 ≤ 𝑠; that is,

B
𝑠,𝑚

= {𝜁
𝑖
1
,...,𝑖
𝑠

} ,

𝜁
𝑖
1
,...,𝑖
𝑠

= (𝜁
1
)

𝑖
1

× ⋅ ⋅ ⋅ × (𝜁
𝑠
)

𝑖
𝑠

: 𝑖
1
+ ⋅ ⋅ ⋅ + 𝑖

𝑠
= 𝑘, 0 ≤ 𝑘 ≤ 𝑚.

(7)

The number of elements of the setB
𝑠,𝑚

is (𝑠 + 𝑚)!/𝑠!𝑚!.
Next, we approximate the unknown s.p. y = y(𝑡) of (6)

in terms of elements of B
𝑠,𝑚

(thus, directly in terms of the
random model parameters):

y (t) ≈

𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

y
𝑖
1
,...,𝑖
𝑠
(𝑡) 𝜁
𝑖
1
,...,𝑖
𝑠

. (8)

Therefore,

ẏ (𝑡) ≈

𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

ẏ
𝑖
1
,...,𝑖
𝑠
(𝑡) 𝜁
𝑖
1
,...,𝑖
𝑠

. (9)

We substitute both expressions in the r.o.d.e. (6):

P(𝑡, 𝜁;
𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

y
𝑖
1
,...,𝑖
𝑠
(𝑡) 𝜁
𝑖
1
,...,𝑖
𝑠

,

𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

ẏ
𝑖
1
,...,𝑖
𝑠
(𝑡) 𝜁
𝑖
1
,...,𝑖
𝑠

) = 0.

(10)

In order to compute the (𝑠 + 𝑚)!/𝑠!𝑚! unknown functions
y
𝑖
1
,...,𝑖
𝑠

(𝑡), we are going to establish a deterministic system
of o.d.e.’s. This is achieved by multiplying the previous
expressions by the elements 𝜁

𝑗
1
,...,𝑗
𝑠

of the set B
𝑠,𝑚

and then

taking the ensemble average defined by the 𝑠-dimensional
integral:

⟨𝑔 (𝜁) , ℎ (𝜁)⟩ = E [𝑔 (𝜁) ℎ (𝜁)]

= ∫

supp(𝜁)
𝑔 (𝜁) ℎ (𝜁) 𝑓𝜁 (𝜁) d𝜁,

(11)

where supp(𝜁) denotes the support of the vector random
model parameters: 𝜁. This leads to

⟨P(𝑡, 𝜁;
𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

y
𝑖
1
,...,𝑖
𝑠
(𝑡) 𝜁
𝑖
1
,...,𝑖
𝑠

,

𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

ẏ
𝑖
1
,...,𝑖
𝑠
(𝑡) 𝜁
𝑖
1
,...,𝑖
𝑠

) , 𝜁
𝑗
1
,...,𝑗
𝑠

⟩ = 0,

𝑗
1
+ ⋅ ⋅ ⋅ + 𝑗

𝑠
= 𝑘, 0 ≤ 𝑘 ≤ 𝑚.

(12)

As we are directly developing the involved random mag-
nitudes in terms of 𝜁

𝑖
, 1 ≤ 𝑖 ≤ 𝑠, in contrast with the

development presented in Section 1 (see expression (4)), now
we do not need to substitute the components of the vector
random model parameters 𝜁. Likewise, we can establish the
corresponding deterministic initial conditions following a
similar reasoning. First, we consider the truncated approxi-
mation of the initial condition:

y
0
≈

𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

y
𝑖
1
,...,𝑖
𝑠

(𝑡
0
) 𝜁
𝑖
1
,...,𝑖
𝑠

, (13)

and following an analogous reasoning, one gets

⟨y
0
, 𝜁
𝑗
1
,...,𝑗
𝑠

⟩ =

𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

y
𝑖
1
,...,𝑖
𝑠

(𝑡
0
) ⟨𝜁
𝑖
1
,...,𝑖
𝑠

, 𝜁
𝑗
1
,...,𝑗
𝑠

⟩ ,

𝑗
1
+ ⋅ ⋅ ⋅ + 𝑗

𝑠
= 𝑘, 0 ≤ 𝑘 ≤ 𝑚.

(14)

Expressions (12)–(14) constitute a deterministic initial value
problem (i.v.p.), usually referred to as auxiliary system, whose
(𝑠 +𝑚)!/𝑠!𝑚! unknowns, y

𝑖
1
,...,𝑖
𝑠

(𝑡), 𝑖
1
+ ⋅ ⋅ ⋅ + 𝑖

𝑠
= 𝑘, 0 ≤ 𝑘 ≤ 𝑚,

can be computed using some of the numerous numerical
techniques available such as the Runge-Kutta scheme. In this
manner, an approximation to the solution s.p. y(𝑡) defined
by (8) is calculated. In addition, the approximations of the
expectation and the variance-covariance matrix of y(𝑡) are
given by

E [y (𝑡)] ≈

𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

y
𝑖
1
,...,𝑖
𝑠
(𝑡) ⟨𝜁
𝑖
1
,...,𝑖
𝑠

, 1⟩ , (15)

Σy(𝑡) ≈
𝑚

∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=0

y
𝑖
1
,...,𝑖
𝑠
(𝑡) (y
𝑖
1
,...,𝑖
𝑠
(𝑡))

T

× (⟨𝜁
𝑖
1
,...,𝑖
𝑠

, 𝜁
𝑖
1
,...,𝑖
𝑠

⟩ − (⟨𝜁
𝑖
1
,...,𝑖
𝑠

, 1⟩)

2

) ,

(16)

respectively. Notice that Σy(𝑡) is a square matrix of size 𝑞 × 𝑞

whose element (𝑗, 𝑗) of its diagonal represents the variance of
𝑦
𝑗
(𝑡), 1 ≤ 𝑗 ≤ 𝑞 of y(𝑡).
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Remark 1. For the sake of clarity in the presentation, we
have used the multi-index notation (𝑖

1
, . . . , 𝑖

𝑠
) to express the

polynomial basis 𝜁
𝑖
1
,...,𝑖
𝑠

, being as 𝜁
𝑖
1
,...,𝑖
𝑠

= (𝜁
1
)

𝑖
1
× ⋅ ⋅ ⋅ × (𝜁

𝑠
)

𝑖
𝑠

with 𝑖
1
+ ⋅ ⋅ ⋅ + 𝑖

𝑠
= 𝑘, 0 ≤ 𝑘 ≤ 𝑚. As a consequence, we

have represented the solution s.p. y(𝑡) in the form (8) rather
than (1), where {Φ

𝑖
(𝜉)}
𝑃

𝑗=0
, with 𝑃 = (𝑠 + 𝑚)!/𝑠!𝑚! − 1, is

the elements of the correspondent basis. However, notice that
both expressions are equivalent except for orthogonality. In
fact, writing 𝜁 instead of 𝜉 (since nowwe are directly using the
vector randommodels parameters to represent the solution),

this identification can be checked considering the following
simple tensor product:

Φ
𝑗
(𝜁) = (𝜁

1
)

𝑖
1

× ⋅ ⋅ ⋅ × (𝜁
𝑠
)

𝑖
𝑠

, (17)

for some mapping (𝑖
1
, . . . , 𝑖

𝑠
) → 𝑗 starting from (0, . . . , 0)

that corresponds to 𝑗 = 0. Specifically, one gets the following
identification:

𝑗 = 0 ≡ (0, 0, . . . , 0) 󳨀→ Φ
0
(𝜁) = (𝜁

1
)

0

× (𝜁
2
)

0

× ⋅ ⋅ ⋅ × (𝜁
2
)

0

= 1,

𝑗 = 1 ≡ (1, 0, . . . , 0) 󳨀→ Φ
1
(𝜁) = (𝜁

1
)

1

× (𝜁
1
)

0

× ⋅ ⋅ ⋅ × (𝜁
𝑠
)

0

= 𝜁
1
,

𝑗 = 2 ≡ (0, 1, . . . , 0) 󳨀→ Φ
2
(𝜁) = (𝜁

1
)

0

× (𝜁
2
)

1

× ⋅ ⋅ ⋅ × (𝜁
𝑠
)

0

= 𝜁
2
,

...
...

...
...

...
...

...
...

...
𝑗 = 𝑃 ≡ (0, 0, . . . , 𝑚) 󳨀→ Φ

𝑃
(𝜁) = (𝜁

1
)

0

× (𝜁
2
)

0

× ⋅ ⋅ ⋅ × (𝜁
𝑠
)

𝑚

= (𝜁
𝑠
)

𝑚

.

(18)

3. Algorithm

Based on the method previously developed, in this section,
we will give an algorithm to compute the expectation and the
standard deviation of the solution s.p. of a random i.v.p. of the
form (6) whose analytical expressions are given by (15)-(16),
respectively.

The inputs of the algorithm are as follows:

(i) the r.o.d.e.’s (model): P(𝑡, 𝜁; y(𝑡), ẏ(𝑡)) = 0, with
random initial condition: y(𝑡

0
, 𝜁) = y

0
;

(ii) the randommodel parameters (this includes both the
coefficients/forcing terms of the r.o.d.e. and the initial
conditions): 𝜁 = (𝜁

1
, . . . , 𝜁

𝑠
);

(iii) the joint probability density function (p.d.f.) of 𝜁:
𝑓𝜁(𝜁);

(iv) the truncation order 𝑚 of the polynomial expansion
of random model parameters (see expression (7)).

Now, we describe the algorithm.

(i) Step 1. Define the scalar product ⟨ , ⟩ given by (11).
(ii) Step 2. Build the basisB

𝑠,𝑚
of canonical polynomials

𝜁
𝑖
1
,...,𝑖
𝑠

of degree ≤ 𝑚 of the 𝑠 random model parame-
ters, as given in (7).

(iii) Step 3. Consider the truncated expansions to the
solution s.p., its derivative, and the random initial
condition given by (8), (9), and (13), respectively.

(iv) Step 4. Substitute the above expansions into the
model to obtain the random i.v.p. (10) and (13).

(v) Step 5. Obtain the auxiliary system in two phases:
first, multiplying each equation of the random i.v.p.
(10) and (13) by the polynomials of the basis built
in Step 2 and, second, taking the ensemble average
inferred by the inner product ⟨ , ⟩ constructed in
Step 1. In this manner, expressions (12) and (14) are
obtained, respectively.

(vi) Step 6. Solve numerically the auxiliary system set in
Step 5.

(vii) Step 7. Compute the expectation and the standard
deviation (or equivalently, the variance) of the solu-
tion s.p. y(𝑡) taking into account expressions in (15)
and (16).

3.1. Computational Aspects and Implementation. Under the
computational point of view, Step 5 of the above algorithm
is the most demanding (the building of the auxiliary system)
because we have to evaluate many inner products that may
involve unbounded integrals with transcendent functions.
During this step, using the linearity of the inner product, we
can obtain the equations of the auxiliary system in function
of the simplest inner products of the form

⟨𝜁
𝑖
1
,...,𝑖
𝑠

, 𝜁
𝑗
1
,...,𝑗
𝑠

⟩ = ⟨𝜁
𝑖
1
+𝑗
1
,...,𝑖
𝑠
+𝑗
𝑠

, 1⟩ , (19)

the less difficult to be computed, but not straightforward.
This fact has led us to consider directly the canonical
basis defined in (7) in opposition to other possibilities, for
instance, an orthonormal basis, theoretically more appropri-
ate. Eventually, any expansionwill disappear when expanding
expressions. Moreover and, specifically for the case of the
orthonormal basis, we should say that their calculation uses
QR decomposition, stable in certain implementations but
computationally expensive [8], more if we realise that we
deal with inner products that may be defined by unbounded
integrals of transcendent functions.

The algorithm has been implemented usingMathematica
[9], and it is available at http://gpcdep.imm.upv.es. We have
used symbolic manipulation features of this computational
software program to optimise the algorithm performance.
Therefore, even though the natural implementation order
seems to be the one shown in the presented algorithm, we
have decided to implement a symbolic version of Steps 1, 3,
4 and 5 as the first step, where all the inner products have



Abstract and Applied Analysis 5

Table 1: Computational saving related to the involved inner prod-
ucts ⟨, ⟩ in the examples presented in Section 4.

Example No. theoretical
⟨, ⟩

No. computed
⟨, ⟩

% of computational
saving

2 468 62 86.75%
3 177 34 80.79%
4 2484 255 89.73%
5 9905 827 91.65%
6 1615 260 83.90%
7 249 51 79.51%
8 5745 68 98.82%

been decomposed into auxiliary inner products as in (19), and
these new inner products have not been carried out (they have
beenmanipulated symbolically). Doing this, we have realised
that a lot of the inner products are repeated. In fact, regarding
Examples 2–8 of Section 4 only around 2%–20% of them are
different, what implied an important computational saving
in the most critical step. The more independence in the r.v.’s,
the more saving, because the inner products corresponding
to independent r.v.’s can be computed separately. Table 1
collects the percentages of computational saving related to the
involved inner products in the examples shown in Section 4.

Once the auxiliary system has been stated symbolically,
we define the inner product and try to use the simplification
commands provided by Mathematica to obtain the inner
product (19) in a form that can be computed faster. It is used
to be easy when the inner product is defined in a bounded
domain. In unbounded domains, simplification is often no
possible, and the computation of the inner products turns
difficult to be carried out when the degree of the polynomial
increases.

Then, we compute the nonrepeated inner products of the
form (19) appearing into the auxiliary system.We must point
out that this is the most demanding step.

Next, we substitute the obtained inner products into the
auxiliary system, which is then solved numerically using
NDSolve command. Finally, the expectation and the standard
deviation are computed.

4. Examples

In this section we will present a variety of examples where
the method previously developed is applied. With the aim
of illustrating better the ability of the method to deal with a
certain number of dependent r.v.’s, in Examples 1–6 we will
consider the following pattern model:

̇𝑦 (𝑡) + 𝜁
2
(𝑦 (𝑡))

2

+ 𝜁
3
𝑦 (𝑡) + 𝜁

4
= 0, 𝑦 (0) = 𝜁

1
, (20)

which is a Riccati-type r.o.d.e. that includes as a particular
case the linear model when 𝜁

2
= 0. In these examples, we

will increase the number of parameters 𝜁
𝑖
, 1 ≤ 𝑖 ≤ 4, that are

assumed to be r.v.’s. The introduction of different joint proba-
bility distributions to the involved r.v.’s will also be considered.

The two first ones are test examples since their exact
solutions are available. Then, the quality of the approxima-
tions provided by our approach can be better assessed. In the
former, we will compare the approximations provided by our
approach with the ones corresponding toMonte-Carlo simu-
lations.Monte-Carlo technique can be considered as themost
commonly approach used to deal with r.o.d.e.’s. In the second
test example, we will detail all the involved computations to
clarify the previous notation and methodology.

In Example 7, we illustrate the technique using another
r.o.d.e. Finally, we complete the study examples showing the
ability of the proposed technique to deal with a classical SIRS-
epidemiological model.

TheMathematica source code, its explanation and appli-
cation to solve Examples 1–7 can be found at http://gpcdep
.imm.upv.es.

Example 1. Let us consider the linear r.o.d.e. as follows:

̇𝑦 (𝑡) + 𝜁
3
𝑦 (𝑡) = 0, 𝑦 (0) = 𝜁

1
, (21)

where the input random vector 𝜁 = (𝜁
1
, 𝜁
3
) is assumed to have

a bivariate gaussian distribution; that is, 𝜁 : N(𝜇
𝜁
;Σ𝜁), where

𝜇
𝜁
= (

0

1

) , Σ𝜁 = (

3 −1

−1 2

) . (22)

Denoting by 𝑓𝜁(𝜁1, 𝜁3) the joint p.d.f. of vector 𝜁 = (𝜁
1
, 𝜁
3
)

and taking into account that the exact solution s.p. of (21) is
𝑦(𝑡) = 𝜁

1
𝑒

−𝜁
3
𝑡, it is easy to check that its (exact) expectation

and variance are given by

E [𝑦 (𝑡)] = ∫

∞

−∞

∫

∞

−∞

𝜁
1
𝑒

−𝜁
3
𝑡
𝑓𝜁 (𝜁1, 𝜁3) d𝜁1d𝜁3

= 𝑒

(−1+𝑡)𝑡
𝑡,

(23)

Var [𝑦 (𝑡)] = ∫

∞

−∞

∫

∞

−∞

(𝜁
1
𝑒

−𝜁
3
𝑡
− 𝑒

(−1+𝑡)𝑡
𝑡)

2

× 𝑓𝜁 (𝜁1, 𝜁3) d𝜁1d𝜁3

= 𝑒

2(−1+𝑡)𝑡
(−𝑡

2
+ 𝑒

2𝑡
2

(3 + 4𝑡

2
)) ,

(24)

respectively.
In order to illustrate the competitiveness of the proposed

method against Monte-Carlo simulations, in Figures 1 and 2
we show their relative errorswith respect to the exact expecta-
tion and standard deviation on the interval [0, 7], respectively.
To highlight better the differences, a logarithmic scale has
been used in the vertical axis in both plots. In accordance
with the notation introduced in the previous section, the
approximations to both statisticalmoments have been carried
out having the following: 𝑞 = 1, 𝑠 = 2, and 𝑚 = 10 (i.e.,
polynomials of degree equal to or less than 10 have been
used), whereas the Monte-Carlo approximations have been
performed using 10

5 simulations. These plots show that the
proposed method provides very good approximations which
improve the ones generated by Monte-Carlo technique.
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Figure 1: Relative errors of the approximations to the expectation
of the solution s.p. 𝑦(𝑡) on the interval [0, 7] in Example 1 by the
proposedmethod andMonte-Carlo simulations. To highlight better
the differences, a logarithmic scale has been used in the vertical axis.

Example 2. Let us consider the r.o.d.e. as follows:

̇𝑦 (𝑡) + 𝜁
2
(𝑦 (𝑡))

2

= 0, 𝑦 (0) = 𝜁
1
, (25)

where 𝜁
1
, 𝜁
2
are dependent r.v.’s whose joint p.d.f. is given by

𝑓
𝜁
1
,𝜁
2

(𝜁
1
, 𝜁
2
) = {

24𝜁
1
𝜁
2

if 𝜁
1
, 𝜁
2
≥ 0, 𝜁
1
+ 𝜁
2
≤ 1,

0 otherwise.
(26)

In Figure 3, we show the approximations of the expectation
(solid line) and plus/minus the standard deviation (dashed
lines) of the solution s.p. 𝑦(𝑡) on the interval [0, 10]. Both
approximations have been computed using polynomials of
degree equal to or less than 3.Then according to the previous
notation: 𝑞 = 1, 𝑠 = 2, 𝑚 = 3, the total number of polynomi-
als in the canonical basis is (2 + 3)!/(2!3!) = 10, and these are

B
2,3

= ⟨𝜁
𝑖
1
,𝑖
2

⟩ ,

𝜁
𝑖
1
,𝑖
2

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1 if (𝑖
1
, 𝑖
2
) = (0, 0) ,

𝜁
1

if (𝑖
1
, 𝑖
2
) = (1, 0) ,

𝜁
2

if (𝑖
1
, 𝑖
2
) = (0, 1) ,

(𝜁
1
)

2 if (𝑖
1
, 𝑖
2
) = (2, 0) ,

𝜁
1
𝜁
2

if (𝑖
1
, 𝑖
2
) = (1, 1) ,

(𝜁
2
)

2 if (𝑖
1
, 𝑖
2
) = (0, 2) ,

(𝜁
1
)

3 if (𝑖
1
, 𝑖
2
) = (3, 0) ,

(𝜁
1
)

2

𝜁
2

if (𝑖
1
, 𝑖
2
) = (2, 1) ,

𝜁
1
(𝜁
2
)

2 if (𝑖
1
, 𝑖
2
) = (1, 2) ,

(𝜁
2
)

3 if (𝑖
1
, 𝑖
2
) = (0, 3) .

(27)

The quality of the approximations to the expectation and
the standard deviation can be assessed in this example since
the corresponding exact expressions are available. Figures
4(a) and 4(b) show the absolute errors for the approximations
to the expectation and the standard deviation of the solution
s.p. 𝑦(𝑡) on the interval [0, 10], respectively. Both plots show
that the approximations provided by themethod presented in
Section 2 are reliable.

1 2 3 4 5 6 7

Our method
Monte-Carlo

0.1

10
−4

10
−7

10
−10

Figure 2: Relative errors of the approximations to the standard
deviation of the solution s.p. 𝑦(𝑡) on the interval [0, 7] in Example 1
by the proposedmethod andMonte-Carlo simulations. To highlight
better the differences, a logarithmic scale has been used in the
vertical axis.

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

Mean
Mean + standard deviation
Mean − standard deviation

t

Figure 3: Approximations of the expectation (solid line) and
plus/minus standard deviation (dashed lines) to the solution s.p.𝑦(𝑡)
on the interval [0, 10] in Example 2.

Example 3. Let us consider the following r.o.d.e. based
on (20) where now uncertainty appears through the two
coefficients 𝜁

2
and 𝜁
3
:

̇𝑦 (𝑡) + 𝜁
2
(𝑦 (𝑡))

2

+ 𝜁
3
𝑦 (𝑡) = 0, 𝑦 (0) = 5. (28)

We assume that the random vector 𝜁 = (𝜁
2
, 𝜁
3
) has a bivariate

Gaussian distribution; that is, 𝜁 : N(𝜇
𝜁
;Σ𝜁), where

𝜇
𝜁
= (

1

2

) , Σ𝜁 = (

1

25

−

1

150

−

1

150

1

75

) . (29)

Figure 5 shows the approximations of the expectation (solid
line) and plus/minus the standard deviation (dashed lines)
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Figure 4: Absolute errors of the approximation to the expectation (a) and standard deviation (b) of the solution s.p. 𝑦(𝑡) on the interval
[0, 10] in Example 2. (a) Expectations. (b) Standard deviation.
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Figure 5: Approximations of the expectation (solid line) and
plus/minus standard deviation (dashed lines) to the solution s.p.𝑦(𝑡)
on the interval [0, 1] in Example 3.

of the solution s.p. 𝑦(𝑡) on the interval [0, 1]. In this
example, both approximations have been computed using
(2 + 2)!/(2!2!) = 6 polynomials of degree equal to or less
than 2. Notice that according to the previous notation one has
𝑞 = 1, 𝑠 = 2, and𝑚 = 2.

Example 4. Now, we analyse the r.o.d.e. (20) where ran-
domness is considered through three random parameters.
Specifically, let the random i.v.p. be as follows:

̇𝑦 (𝑡) + 𝜁
2
(𝑦 (𝑡))

2

+ 𝜁
3
𝑦 (𝑡) + 𝜁

4
= 0, 𝑦 (0) = 3. (30)

We will assume that 𝜁 = (𝜁
2
, 𝜁
3
, 𝜁
4
) is a random vector whose

joint p.d.f. is given by

𝑓𝜁 (𝜁2, 𝜁3, 𝜁4)

= {

(𝜁
2
)

2

+ (𝜁
3
)

2

+ (𝜁
4
)

2 if 0 < 𝜁
2
, 𝜁
3
, 𝜁
4
< 1,

0 otherwise.

(31)

Using the method presented in Section 2 with
(3 + 3)!/(3!3!) = 35 random polynomials of degree equal to
or less than 3, that is, 𝑚 = 3 and 𝑠 = 3, we have obtained
approximations to the expectation and plus/minus the
standard deviation of the solution s.p. 𝑦(𝑡) on the interval
[0, 3]. Notice that in this example 𝑞 = 1. Results are depicted
in Figure 6.

Example 5. In this example, we deal with r.o.d.e. (20) assum-
ing that uncertainty appears through all the parameters 𝜁

𝑖
, 1 ≤

𝑖 ≤ 4. We will assume that the random vectors 𝜁1 = (𝜁
4
, 𝜁
1
)

and 𝜁2 = (𝜁
2
, 𝜁
3
) have multivariate Gaussian distributions;

that is, 𝜁i ∼ N(𝜇
𝜁
𝑖

;Σ𝜁i), 𝑖 = 1, 2, where

𝜇
𝜁
1

= (

1

2

) , Σ𝜁1 =

1

50

(

2 −

1

3

−

1

3

2

3

) ;

𝜇
𝜁
2

= (

1

2

) , Σ𝜁2 =

1

45

(

2 −

1

3

−

1

3

2

3

) .

(32)

Figure 7 shows the approximations of the expectation (solid
line) and plus/minus the standard deviation (dashed lines)
of the solution s.p. 𝑦(𝑡) on the interval [0, 2]. In this
example, both approximations have been computed using
(4 + 2)!/(4!2!) = 15 polynomials of degree equal to or less
than 2. Notice that according to the previous notation one has
𝑞 = 1, 𝑠 = 4, and𝑚 = 2.

Example 6. In this example, we deal with r.o.d.e. (20)
assuming that uncertainty appears through all the
parameters 𝜁

𝑖
, 1 ≤ 𝑖 ≤ 4. We will assume that the random
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Figure 6: Approximations of the expectation (solid line) and
plus/minus standard deviation (dashed lines) to the solution s.p.𝑦(𝑡)
on the interval [0, 3] in Example 4.
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Figure 7: Approximations of the expectation (solid line) and
plus/minus standard deviation (dashed lines) to the solution s.p.𝑦(𝑡)
on the interval [0, 2] in Example 5.

vector 𝜁 = (𝜁
1
, 𝜁
2
, 𝜁
3
, 𝜁
4
) has a multivariate Gaussian

distribution; that is, 𝜁 : N(𝜇
𝜁
;Σ𝜁), where

𝜇
𝜁
= (

0

−1

5

3

) , Σ𝜁 =
1

115

(

6 1 2 3

1 4 4 −1

2 4 10 2

3 −1 2 10

) . (33)

Figure 8 shows the approximations of the expectation (solid
line) and plus/minus the standard deviation (dashed lines)
of the solution s.p. 𝑦(𝑡) on the interval [0, 5]. In this
example, both approximations have been computed using
(4 + 2)!/(4! 2!) = 15 polynomials of degree equal to or less
than 2. Notice that according to the previous notation one has
𝑞 = 1, 𝑠 = 4, and𝑚 = 2.
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Figure 8: Approximations of the expectation (solid line) and
plus/minus standard deviation (dashed lines) to the solution s.p.𝑦(𝑡)
on the interval [0, 5] in Example 6.

Example 7. In this example we will study the following
nonlinear r.o.d.e.:

𝜁
1

̇𝑦 (𝑡) (𝑦 (𝑡))

2

+ 𝜁
2
𝑦 (𝑡) = 0, 𝑦 (0) = 2, (34)

where 𝜁 = (𝜁
1
, 𝜁
2
) is assumed to be a bivariate Gaussian

distribution; that is, 𝜁 ∼ N(𝜇
𝜁
;Σ𝜁), where

𝜇
𝜁
= (

1

2

) , Σ𝜁 =
1

3

(

6 −1

−1 2

) . (35)

Figure 9 shows the approximations of the expectation (solid
line) and plus/minus the standard deviation (dashed lines)
of the solution s.p. 𝑦(𝑡) on the interval [0, 2]. In this
example, both approximations have been computed using
(2 + 2)!/(2!2!) = 6 polynomials of degree equal to or less than
2. Notice that according to the previous notation one has
𝑞 = 1, 𝑠 = 2, and𝑚 = 2.

Example 8. In this example, we consider the SIRS (Suscep-
tible-Infectious-Recovered-Susceptible) model for the trans-
mission of dynamics of the Respiratory Syncitial Virus (RSV)
proposed by Weber et al. in [10]. This model is based on the
following nonautonomous system of differential equations:

̇
𝑆 (𝑡) = 𝜇 − 𝜇𝑆 (𝑡) − 𝛽 (𝑡) 𝑆 (𝑡) 𝐼 (𝑡) + 𝛾𝑅 (𝑡) ,

̇
𝐼 (𝑡) = 𝛽 (𝑡) 𝑆 (𝑡) 𝐼 (𝑡) − ]𝐼 (𝑡) − 𝜇𝐼 (𝑡) ,

̇
𝑅 (𝑡) = ]𝐼 (𝑡) − 𝜇𝑅 (𝑡) − 𝛾𝑅 (𝑡) ,

𝑆 (𝑡
0
) = 𝑆
0
,

𝐼 (𝑡
0
) = 𝐼
0
,

𝑅 (𝑡
0
) = 𝑅
0
,

(36)

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) are the population of susceptible,
infectious, and recovered, respectively, 𝜇 is the birth rate and
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Figure 9: Approximations of the expectation (solid line) and
plus/minus standard deviation (dashed lines) to the solution s.p.𝑦(𝑡)
on the interval [0, 2] in Example 7.

it is supposed to be equal to the mortality rate, 𝛾 is the rate
of loss of immunity, ] is the rate of loss of infectiousness,
𝛽(𝑡) = 𝑏

0
(1 + 𝑏

1
cos(2𝜋𝑡 + 𝜙)) is the infection transmission

rate, with 𝑏
0
being the average of transmission, 𝑏

1
is the

amplitude of the seasonal fluctuation, and 𝜙 is the seasonal
phase.

In [10], the authors study the spread of RSV in Finland,
obtaining the following parameter values: 𝜇 = 0.013; 𝛾 =

360/200 = 1.8; ] = 36; 𝑏
0
= 44; 𝑏

1
= 0.36; 𝜙 = 0.6. We will

assume that the random vectors 𝜁1 = (𝛾, ]) and 𝜁2 = (𝑏
0
, 𝑏
1
)

have bivariate Gaussian distributions; that is, 𝜁i : N(𝜇
𝜁
𝑖

;Σ𝜁i),
𝑖 = 1, 2, where

𝜇
𝜁
1

= (

360

200

36

) , Σ𝜁1 = (

4

605

−

4

165

−

4

605

4

5

) ;

𝜇
𝜁
2

= (

44

0.36

) , Σ𝜁2 = (

4

5

1

100

1

100

1

2000

) .

(37)

Notice that in this way, all the above r.v.’s have as average the
deterministic values given in [10].

Now, we assume that 1% of total population is infectious,
so initial conditions are given by 𝑆

0
= 0.99, 𝐼

0
= 0.01, and

𝑅
0
= 0.
In Figures 10, 11, and 12 we have plotted the approx-

imations of the expectation (solid line) and plus/minus
the standard deviation (dashed lines) of the susceptible
(𝑆(𝑡)), infected (𝐼(𝑡)), and recovered (𝑅(𝑡)), respectively, on
the time-interval [0, 15]. These approximations have been
computed using (4 + 2)!/(4!2!) = 15 polynomials of degree
equal to or less than 2. Notice that according to the previous
notation one has 𝑞 = 3, 𝑠 = 4, and𝑚 = 2.
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Figure 10: Approximations of the expectation (solid line) and
plus/minus standard deviation (dashed lines) to susceptible (𝑆(𝑡))
on the interval [0, 15] in Example 8.
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Figure 11: Approximations of the expectation (solid line) and
plus/minus standard deviation (dashed lines) to infected (𝐼(𝑡)) on
the interval [0, 15] in Example 8.

5. Conclusions

In this paper, we have presented a method to deal with
dependent randomness into a class of continuous models
(systems of random ordinary differential equations) focusing
on computational aspects and its applicability to a wide range
of examples. The method shares similarities with generalized
polynomial chaos (gPC) in its basics since it is based on a
variation of Galerkin projection techniques. However, the
first main difference with respect to gPC approach is that
it represents both the random model inputs as well as the
solution stochastic process directly in terms of the random
model parameters; therefore, accurate approximations of the
expectation and standard deviation of the solution are pro-
vided. Second, themethod avoids constructing an orthogonal
basis to set such representations. In this manner, one of the
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Figure 12: Approximations of the expectation (solid line) and
plus/minus standard deviation (dashed lines) to recovered (𝑅(𝑡)) on
the interval [0, 15] in Example 8.

computational bottlenecks to gPC, which is the construction
of the so-called auxiliary system (see expressions (12)–(14))
from the orthogonal basis, is avoided. Finally, we have
shown through a wide variety of examples the ability of the
method to deal successfully with random continuous models
whose uncertainty is given by statistical dependent random
variables, which is the most complex situation.
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