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By making use of some explicit relationships between the Apostol-Bernoulli, Apostol-Euler, Apostol-Genocchi, and Apostol-
Frobenius-Euler polynomials of higher order and the generalized Hurwitz-Lerch zeta function as well as a new expansion formula
for the generalized Hurwitz-Lerch zeta function obtained recently by Gaboury and Bayad , in this paper we present some series
representations for these polynomials at rational arguments. These results provide extensions of those obtained by Apostol (1951)

and by Srivastava (2000).

1. Introduction

The generalized Hurwitz zeta function {(s,a) is defined by
[1, page 88 et seq.]

- 1
{(s,a) = ZO—(n e 0

(Re(s) > L;a € C\ Z;;Z, =1{0,-1,-2,...}),

where

1 1

25—1(<5’2) @
yields the celebrated Riemann zeta function {(s). The Rie-
mann zeta function is continued meromorphically to the
whole complex s-plane except for a simple pole at s = 1 with
residue 1.

The Hurwitz-Lerch zeta function ®(z, s, a) is defined, as
in [1, page 121 et seq.], by

((s,1)=0(s) =

[ee] ZVl
O (z,8,a) = ) ———
(@53) n;)(n+a)s

(a € C\Z,;s € C when |z| < 1;Re(s) > 1 when [z] =1).
3)

Clearly, we have the following relations:
D (1,s,a) = (s,a), O (L,s1)=((s). (4)

The Hurwitz-Lerch zeta function has the well-known
integral representation

1 00 ts—l —at
CD(z,s,a)z—J ¢ dt
I'(s)Jo 1-2zet

(Re(a) > 0;Re(s) > 0 when |z| < 1(z#1); ®)

Re(s) > 1 when z=1).

Recently, Lin and Srivastava [2] investigated a more
general family of Hurwitz-Lerch zeta functions. Explicitly,

they introduced the function CD’(f)' (2,5, a) defined by

() Z"
o9 (z,5,0) = Y —°
wy nz:;‘) (Mg (a+n)

(heCia,yeC\Zy;p,0 €RY; ©
6
p <o when s,z € C;
p=o0, se€ Cwhen |z| < L;p=o0,

Re(s—p+7)>1 when |z] =1),



where (1), denotes the Pochhammer symbol defined, in
terms of the Gamma function, by

_T(A+x)
JAA+ D) (A+x-1), (keN;AeC)
|, (k=0;1 € C\{0}).
7)
It is easily seen that
d)fff) (z,s,a) = dD(OVO) (z,s,a) = D (z,5,a), (8)
CI)(1 Dz, 5a) = CD; (z,5,a) = i W), 2" - (9)

= nl (n+a)

The function GDZ(Z, s,a) is, in fact, a generalized Hurwith-
Lerch zeta function investigated by Goyal and Laddha [3,
page 100, (1.5)].

Let us recall some other important special cases of
the Hurwitz-Lerch zeta function ®(z,s,a). The Lerch zeta
function defined by

(£ e R;Re(s) > 1) (10)

is related to the Hurwitz-Lerch zeta function by the following
relation:

I, (&) = PRt (esz, s, 1) ) (11)
Also, we note, as a special case of the Hurwitz-Lerch zeta

functions, the Lipschitz-Lerch zeta function [1, page 122,
Equation (2.5)(11)]:

oo 2nmi&

pEas)=)

n=0

(n+ay ? (esz’ »a)

(12)
(aeC\Zy;Re(s) >0 when £ e R\ Z;
Re(s) > 1 when & € 7).

Setting z = exp(2mip/q) with p € Z and q € N and using the
next series identity

00 k-1 co
Yfm=Y % flkn+}), (13)
n=0 j=0n=0

we obtain the following summation formula for the Lipschitz-
Lerch zeta function ¢(&, g, s):

o(foe) e (s e (F0P)

(14)
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in terms of the Hurwitz zeta function {(s,a) defined by (1)
(see also [4, page 81, Equation (3.9)]).

Finally, we recall Lerch’s functional equation [5, page 29,
Equation (1.11)(7)]:

=iz *2n) 'T (1 -s)

i 1
X {exp (—lsm') ) (e_zma, 1-s, £>
2 271
1 .
(Za + —s) m]
2 (15)

61— logz>}
2mi

(Re (s) < 0;|arg (—log (z) mod 2mi)| < 73

D (z,s,a)

— exp

N <62ma 1-

aeC\Zz,),

which played a central role in obtaining expansion formulas.
The aim of this paper is to give some series representations
of the Apostol-Bernoulli, Apostol-Euler, Apostol-Genocchi,
and Apostol-Frobenius-Euler polynomials of higher order in
terms of the generalized Hurwitz zeta function (1).
It is worthy to mention that throughout this work, the
following convention is adopted for the binomial coeflicient:

1, n=k=1,
()= qnry oo
- n—1

( ), otherwise.

k-1

2. Expansion Formulas for d);(z,s,a) and
Fourier Series

Few years ago, in order to give extensions of the works of
Apostol [6] and Srivastava [4], Lin et al. [7] obtained an
expansion formula for the generalized Hurwitz-Lerch zeta
function GDZ (z,s,a) defined by (9) in terms of the Hurwitz-
Lerch zeta function (3) by making use of the generalized
Leibniz rule for fractional derivative [8, page 95, Equation
(4.3)]. They proved the following expansion formula for the
general Hurwitz-Lerch zeta function (D;(z, s,a):

1
q> (z,s,a) =iz F(l—s)zw

= T-j)

oy
-1 .
<Y (121)a-9,

k=0



Abstract and Applied Analysis
s—k—1 1 .
- (2m) [exp (—5 (s—k) m)

1
o 122)

x O (e—Zm'a’ 1- , :
27

- exp [(2(1 + % (s-— k)) m']

; 1
><(D<ezma,1—s+k,l—&,z>],
27

17)

with Re(y) > 0, s € C, |arg(-log(z) mod 27i)| < m,
a € C\ Z; and where Bfl“) = Bﬁ“)(O) are the generalized
Bernoulli numbers [9] given by the following generating

function:

4 ¢ Xz S (o) Zn o
)¢ =ZOBn (x)E (lz| <2m;1%:=1). (18)
P

From this expansion formula, many authors found sev-
eral interesting explicit formulas for the Apostol-Bernoulli,
Apostol-Euler, and Apostol-Genocchi polynomials at ratio-
nal arguments [10-12]. For instance, Garg et al. [10, page 814,
Equation (54)] obtained the following explicit formula for
the Apostol-Bernoulli polynomials Q%’f,“)(x; A) (which will be
defined in Section 3):

q
i(—l)ln!“<l—1><. P )
= . - =+1
(l—l)!jzz(:) J ! q+ I-j-1

i
xz<lfc_i>(1—l+n)k
k=0

() I-n—k-1
x B/ (2nq) "

.{i((l—l+n+k,£+r_l>

r=1 q

-exp[—(%(l—n—k)+2(£+rT_l)p)ni]

3
—Zc<1—1+n+k,5)
r=1 q
~exp[<l(l—n—k)+m>ni]}
2 q
(nleN;EeR;0<E<1;peZgeN).
(19)

More recently, Gaboury and Bayad [13] applied a new gen-
eralized Leibniz rule for the fractional derivatives obtained
by one of the authors [14] to obtain a new expansion for-
mula involving the generalized Hurwitz-Lerch zeta function
d); (z,s,a). Explicitly, they proved the following theorem.

Theorem 1. The following expansion holds for @; (z,s,a):
CDH (z,s,0a)

(1 -s)z *sinfrsin(B+u-w)n
T(WTI(1-w-a)sin(u+ B)msin(f-w)n

o0 m

50

y T(p-a-w-m) .,
T N Pmk
I (p—m)m!

x 2m) (1 - s);

(w-1 +m)k_j

[on(-57)

. 1
X @ <e‘2”’“, 1-s+], Og,z>
27mi

“exp (2059}

; 1
x® (ezma, l-s+j,1- og.z>]
2mi

(20)

(eC\Zyj;we C;Re(1-B) > 0;s€Cs
|arg (- log (z) mod 27i)| < m5a € C\ Z;).
More interestingly, setting

z =", a=§ (PeZqeN;EeR), (21)

replacing s by u — s, and then applying definition (12) and the
series identity (14), we obtain the following corollary.



Corollary 2. The following expansion holds true:

(D* (Esz,[l —s, B)
! q

_ iT(1-p+s)sinBrsin(f+p—w)n
T (1-w-(p/q))sin(u+p)m sin(B-w)m

oo m

<S35 ()()

T(u-plg-w-m)
I (y—m)m!

X Biﬁk(an)M =

x(I=p+s)(@=1+m);

.L_Zl{(l—y+s+j,f+;_l>
X exp [—in( ‘u—;—j+2(r—;+£)p>]

_Z(<1—y+s+j,%>

r=1

cospim(H20 . 2000) ]

€eC\Z,;weC;Re(l-p)>0;
I 0

seC0<é<LaeC\Z,).
(22)

Remark 3. Itis worthy to mention that (20) can be interpreted
as the Fourier series expansion of CD; (z,s,a) with respect
to the variable a. Moreover, if we set ¢ = 1 in (20), then,
for Re(s) < 0,0 < |z] < 1 and a € [0,1], we find an
expansion theorem due to Erdélyi et al. and Wirtinger [5, 15],
namely,

lerina

D(z,8,a)=2z T -5s) Z

T s (23)
nez (2min — log z)1

3. Generalized Hurwitz-Lerch Zeta Function at
Negative Integers

In this section, we recall the definitions of the Apostol-
Bernoulli, Apostol-Euler, Apostol-Genocchi, and Apostol-
Frobenius-Euler polynomials. Next, we give explicit rela-
tionships between these polynomials and the generalized
Hurwitz-Lerch zeta function evaluated at negative integers.

Abstract and Applied Analysis

Definition 4. The generalized Apostol-Bernoulli polynomials
B (x;1) are defined, for \,x € C, by the following
generating function [16, 17]:

(}L ) =Y FO N L Jerlog (] <2
et — = n!

(xeC, it A+L;aeNif A=1).
(24)

Definition 5. The generalized Apostol-Euler polynomials
%;“)(x; A) are defined, for A, and x € C, by the following
generating function [18]:

2 Vo @, i
()Let+1>e _,,Z;’,gn (X,A)n!, |t +logA| < m,

(25)
(@eC A% —1).

Definition 6. The generalized Apostol-Genocchi polynomials

?;“)(x; A) are defined, for A,x € C, by the following
generating function [17, 19]:

2t « u 00 @ n
=) ;A —,  |t+log(A ,
<Aet+l> ¢ r;) n (x )n' | * Og( )|<ﬂ 26)

(xeC, if A+ —L;aeNif A=-1).

Definition 7. The generalized Apostol-Frobenius-Euler poly-
nomials # ;“)(x; A | u) are defined, for A, &, u and x € C with
u#0, 1 and A #u, by the following generating function [20]:

1—1/l “xt_oo%(oc) A tn
(Aet—u>e _r;) n (Al n’

t+log<&>
u

Setting A = 1 and « = 1 in each of these definitions gives,
respectively, the Bernoulli, Euler, Genocchi and Frobenius-
Euler polynomials which polynomials have been largely
investigated in the literature.

Recently, Bayad and Chikhi [21] established the fol-
lowing relationship between the Apostol-Euler polynomials
%Sl“)(x; A) and the generalized Hurwitz-Lerch zeta function
) (z,s,a).

(27)

<T7T.

Theorem 8. Let A be a complex number such that |A| < 1 and
A# —1. Let o and x be two complex numbers such that Re(e) >
0 and Re(x) > 0; then for all nonnegative integer n, one has

& (x;1) = 2°07 (<A, -1, x) . (28)

From this last theorem, we can find the relation-
ships between the generalized Hurwitz-Lerch zeta function
®)(z,s,a) and the polynomials defined by (24), (26), and
(27). By simple manipulations of their generating functions,



Abstract and Applied Analysis

we can rewrite each polynomials in function of the Apostol-
Euler polynomials. For instance, we have

(Alet_——uu )aext - < uz_ul )“( (—A/uz)et 11 >aext (29)

and thus,

(o)
FD () | ) = ( -

u)%(“)< u"). (30)

In a similar way, we can deduce the two next rela-
tionships between the Apostol-Bernoulli polynomials and
the Apostol-Euler polynomials and between the Apostol-
Genocchi polynomials and the Apostol-Euler polynomials.
Indeed, we have

%S)(x;k)=l!<7>< )%@l( ) (eNpA#1),

g (x2) = ( >%(l)l(x L (eN,).
(31)

Now, with the help of Theorem 8, we obtain the follow-
ing relations between each type of polynomials and the
generalized Hurwitz-Lerch zeta function at negative inte-
gers:

B () = I (’f) (1)@ (A,1-n,x)

(32)

(M < LA£LIeN,),

20 (x; 1) = 2'I (’l’) @] (-A,1-n,x)
(33)

(|/\| <LA+ -1Lle NO),

%fj‘)(xmu):(”'l) @Z(é,—n,x)
u u
(34)
A
<u;é0 1; ’ <1 A#u)

4. Explicit Representations for Several
Polynomials at Rational Arguments

This section is devoted to the presentation of the new
series representations for each type of polynomials defined
in Section 3. These representations are obtained by suitably
combining the new expansion formula (20) and identities
(28) and (32)-(34).

Theorem 9. The following explicit representation holds for the
Apostol-Bernoulli polynomials at rational argument:

9‘35,1) (1_7; ezmz)
q

i(-1)'n!
rHr(l-w-

)
25X()0)

(- (plg) - m)
I'(l-m)m!

B(m k(2ﬂq)l o

><(l—l+n)]-(w—1+m)k_j
il CE+r—1
.[;(<l—l+n+], p > (35)
g in(1270 20710
2 q

—ZC(l—l+n+j,%>

r=1

cofn( 2 20502

(l,ne N;w e C;Re(1-B) > 0;€ € R,

0<E<1;£e@\Zg>.
q

Proof. Setting yu = I, s = nwith n,I € N in the expansion
formula (22) and with the help of the representation of
Apostol-Bernoulli polynomials in terms of the generalized
Hurwitz-Lerch zeta function (32), the result follows. O

Theorem 10. The following explicit representation holds for the
Apostol-Euler polynomials at rational argument:

%Sx) (E’ eZnif)
q

il (1 +n)2%sin Brsin(f+a—w)m

T()T(1-w-(p/q))sin(a+ p)msin(p -
i -1\ T (a-(p/q) —w-m)
EEY()- (i)
x Bi:l’i)k(an)fnflfj(l +n)j(w—1+m)_;

.[i{(1+n+j,—2£+2r_l>

r=1 2q

xexp[—iﬂ( —nz—j+ (27+2§_1)p>]

w) 7

||M8




S (e s 222

r=1 2q

ESNS S

((xeC\Zg;wEC;Re(l—ﬁ) > 0;

€eR,OSESI,E¢%;£e@\Zg>.
q

(36)

Proof. Replacing z by —e”™ (¢ € R), aby (p/q) (p € Z;q €
N), pby a (a € C), sby —n (n € N) in (20) and using the
identity (28) yield the result. O

Theorem 11. The following explicit representation holds for the
Apostol-Genocchi polynomials at rational argument:

?Ll) <£’ esz)
q

i2'n!

T (1-w-(p/q))

S ENR)(e))

m=0k=0j=0

) I'(I-(p/a) _W—m)B(m)
m—k
I'(-m)m!

(Zﬂq)l_n_l_j

><(1—l+n)j(w— 1 +m)k_j

28 +2r—1
.[;(<1—1+n+1,—2q ) (37)

xexp[—irr( Z—n—j+(zr+2§—1)p>]
2 q

—Z((l—l+n+j,w>

r=1 Zq

XeXP[iﬂ( l—z—j+ (2r—2§—1)p>H

(l,neN;weC;Re(l—ﬁ)>O;

EeRO0<E<], E#%;BEQ\Z(})
q
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Proof. Substituting z by 75 (E € R),a by (p/q) (p €
Z;q € N) and s by p — s(u € C) in (20) gives

(D* (_6271'1'5)‘“ -, E))
# q

_ iT(l-p+s)sinBrsin(B+u-w)m
F()T(1-w-(p/q))sin(p+p)msin (- w)m

S8 (o)) e

m=0k=0j=0

x B™  (2mq) (1 -+ s)j(@=1+m)_;

()

r=1 2q

cexp [-im (1370 Ce 2= 0p)
2 q

(38)

_Z(<1_#_S+J-,w>

r=1 2q

co[in(E20 =2 0pY ]

Putting u = I(I € N), s = n(n € N;n > ) and with the help of
the identity (33), the result follows. O

Theorem12. The following explicit representation holds for the
Apostol-Frobenius-Euler polynomials at rational argument:

%gx) ( 4 i | ezme)
q

i(l - e—zme)“n! sin Brrsin (f+a —w) 7

F(@)T(1-w-(p/q))sin(a+p)rsin(f-w)n
@ &L (mo1) (k) (e (pla) - m)
X;,;)Z,'<k—1><j> [(a—m)m!
m=0k=0 j

X Bmk(Zﬂq)fnflfj(l +n)j(@—1+m)_;

.[Z((lﬂﬁj’M)

r=1 q

e in( 2 2L €02
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_Z(<1+n+], —€- 6)>
n-j

Xemjkﬂ<__g-;kzu—<z—0»p>]]'

((,0eR,0<E<1,0<0<1,

0<K—®<1£¢&§e@\2;

a€C\Zj;weCRe(1-p)>0).
(39)

Proof. The result follows by setting z = ¢?¢ 9 (£,0 € R),
a=(plg (peZsgqeN),u=a(xecC),s=-nmncecN)

in (20) and using the identity (34) with A = ™ and u =
2i0) 0

It is worthy to note that setting / = 1 in (35) gives

%n (2;62ni5>
q

[ =)

xexp[—irr( %n+w>]

(40)

DG

o [in( 2+ 20292)] ]
2 q
(neN;nZlEelR,0<E<1;§ EQ\Z(j),

a result given by Srivastava [4, page 84, Equation (4.6)].

Moreover, if we replace a by 1 in (36), we recover
a result obtained by Luo [11, page 345, Equation (4.3)],
namely,

X exp [—iﬂ( —nz— 1+ 2r + 22_ DP)]

7
- 2r—2§—1>
— l+n——2 =
;C( +n 2
><exp[in<—11+1+(2r—2£—1)p>”
2 q
1 p .
(EER,OSESl,f#E;pGZ;qGN; 5 GQ\ZO>.
(41)
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