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Due to constant heat flux, the thermal distribution around an insulated barrier at the interface of substrate and functionally graded
material (FGM) which are essentially two-phase particulate composites is examined in such a way that the volume fractions of the
constituents vary continuously in the thickness direction. Using integral transformmethod, two-dimensional steady-state diffusion
equation with variable conductivity is turned into constant coefficient differential equation. Reducing that equation to a singular
integral equation with Cauchy type, the temperature distribution around the barrier is obtained by defining an unknown function,
which is called density function, as a series expansion of orthogonal polynomials. Results are shown for different thickness and
nonhomogeneity parameters of FGM.

1. Introduction

There are many engineering applications under severe ther-
mal loading that require high temperature resistant materials
in various forms of composites and bonded materials such
as power generation, transportation, aerospace, and thermal
barrier coatings. New developments in science and technol-
ogy rely on the developments of new materials. Composites
appear to provide the necessary flexibility in the design of
these newmaterials, which are essentials that every part of the
material in use exhibits uniform properties. In themid-1980s,
a new composite material, which was initially designed as a
kind of thermal barrier coating used in aerospace structural
applications and fusion reactors, was found by a group of
scientists in Japan. Because of the material’s structure, it is
named as functionally graded material (FGM). FGMs were
used in modern technologies as advanced structures where
the composition or themicrostructure is locally varied so that
a certain variation of the local material properties is achieved
[1]. FGMs are also developed for general use as structural
components in extremely high-temperature environments.
The concept is to make a composite material by varying the
microstructure from one material to another material with
a specific gradient. The transition between the two materials

can usually be approximated bymeans of a power series or an
exponential function [2–5].

The aircraft and aerospace industry and the computer
circuit industry are very interested in the possibility of
materials that can withstand very high thermal gradients.
This is normally achieved by using a ceramic layer connected
with a metallic layer. The composition profile which varies
from 0% ceramic at the interface to 100% ceramic near the
surface, in turn, is selected in such a way that the resulting
nonhomogeneous material exhibits the desired thermome-
chanical properties.The concept of FGMs could provide great
flexibility in material design by controlling both composition
profile and microstructure [6].

A number of reviews dealing with various aspects of
FGMs have been published in the past few decades. They
show thatmost of early research studies in FGMs had focused
more on thermal stress analysis and fracturemechanics. Frac-
ture mechanics of FGMs have been studied analytically by
Erdogan and coworkers [7–9]. Erdogan identified a number
of typical problem areas relating to the fracture of FGMs by
considering mainly the investigation of the nature of stress
singularity near the tip of a crack in a different geometry
[10]. Erdogan also investigated the nature of the crack-tip
stress field in a nonhomogeneous medium having a shear
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modulus with a discontinuous derivative. The problem was
considered for the simplest possible loading and geometry,
namely, the antiplane shear loading of two bonded half
spaces, in which the crack is perpendicular to the interface.
It was shown that the square-root singularity of the crack-tip
stress field is unaffected by the discontinuity in the derivative
of the shear modulus [11]. Related to the fracture problems in
composite materials, the solution of integral equations with
strongly singular kernels is examined by Kaya and Erdogan
[12, 13]. In an axisymmetric coordinate system, an embedded
axisymmetric crack in a nonhomogeneous infinite medium
was studied by Ozturk and Erdogan [14]. They showed the
effect of the material nonhomogeneity on the stress intensity
factors under constant Poisson’s ratio.

Due to the material mismatch at the interface of substrate
and coating, the thermal distributions and thermal stresses
on the crack or insulated barrier at the interface are examined
by researchers. A general analysis of one-dimensional steady-
state thermal stresses in a hollow thick cylinder made of
functionally graded material is developed by Jabbari et al.
[15]. The material properties were assumed to be nonlinear
with a power law distribution. The mechanical and thermal
stresses were obtained through the direct method of solution
of the Navier equation. The problem of general solution for
the mechanical and thermal stresses in a short length func-
tionally graded hollow cylinder due to the two-dimensional
axisymmetric steady-state loads was solved using the Bessel
functions by Jabbari et al. [16]. A standard method was
used to solve a nonhomogeneous system of partial differen-
tial Navier equations with nonconstants coefficients, using
Fourier series.

Jin and Noda [17] examined an internal crack problem
in nonhomogeneous half-plane under thermal loading using
the airy stress function method and Fourier transform.
They reduced the problem to a system of singular integral
equations and solved it by numerical methods. They used
superposition method by defining the problem in two cases.
One is the linear one-dimensional heat conduction prob-
lem under constant heat flux without crack, and the other
one is the two-dimensional heat conduction problem with
an insulated crack subject to constant heat flux which is
acted in the opposite direction. It was also considered the
problem of an axisymmetric penny-shaped crack embedded
in an isotropic graded coating bonded to a semi-infinite
homogeneous medium by Rekik et al. [18]. The coating’s
material gradient is parallel to the axisymmetric direction
and is orthogonal to the crack plane. They used Hankel
transform to convert the equations into coupled singular
integral equations along with the density function, and they
solved it numerically.

In this study, the Hankel integral transform method will
be used to solve the heat equation in axisymmetric coordinate
system. Problem will be examined as a one-dimensional and
a two-dimensional heat conduction problem that is a mixed
boundary value problem over the real line. Using mixed
boundary conditions a Fredholm integral equation will be
obtained with Cauchy type singularity and then it will be
solved by using some known numerical techniques [19, 20].
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Figure 1: Geometry of the heat conduction problem.

2. Definition of the Problem

The thermal distribution around a penny-shaped barrier at
the interface of graded composite coating and a substrate is
given by the following steady-state heat equation in axisym-
metric coordinate system:

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑘 (𝑧)

𝜕𝑇

𝜕𝑟
) +

𝜕

𝜕𝑧
(𝑘 (𝑧)

𝜕𝑇

𝜕𝑧
) = 0, (1)

and the conductivities of the substrate and the graded
composite coating are, respectively, given as

𝑘 (𝑧) = 𝑘
0
, 𝑧 ≤ 0,

𝑘 (𝑧) = 𝑘
0
𝑒
𝛿𝑧
, 𝑧 ≥ 0,

(2)

where 𝑘
0
is a constant and 𝛿 is the nonhomogeneity param-

eter related to the graded coating. Note that the conductivity
is continuous at the interface of substrate and the graded
composite coating. As shown in Figure 1, it is considered a
penny-shaped barrier with radius 𝑎, centered at the origin
of the axisymmetric coordinate system. It is assumed that a
uniformheat flux is applied over the stress free boundary, and
the barrier faces remain insulated.

The solution can be obtained using superpositionmethod
which is an addition of one- and two-dimensional heat
conduction problems, 𝑇

1
(𝑧) and 𝑇

2
(𝑟, 𝑧), respectively, as

shown in Figures 2(a) and 2(b). As in Figure 2(a), it will
be assumed that there will be no barrier and in flux causes
thermal distribution only 𝑧 direction. On the other hand, in
Figure 2(b), flux will be assumed in an opposite direction on
the barrier that causes thermal distribution in (𝑟, 𝑧) plane.

Rewriting (1) assuming that no changing in 𝑟 direction:

𝛿
𝑑𝑇
1

𝑑𝑧
+

𝑑
2
𝑇
1

𝑑𝑧
2

= 0, 0 ≤ 𝑧 ≤ ℎ;

𝑑
2
𝑇
1

𝑑𝑧
2

= 0, 𝑧 ≤ 0,

(3)
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Figure 2: (a) One-dimensional heat conduction without an insu-
lated barrier, (b) Two-dimensional heat conduction with an insu-
lated barrier.

along with suitable boundary conditions:

𝑘 (𝑧)
𝑑

𝑑𝑧
𝑇
1 (𝑧) → finite, 𝑧 → −∞,

𝑘 (𝑧)
𝑑

𝑑𝑧
𝑇
1
(𝑧) = −𝑄

0
, 𝑧 = ℎ,

𝑇
1
(0
+
) = 𝑇
1
(0
−
) ,

(4)

the solution of the one-dimensional heat conduction is
obtained straightforward as

𝑇
1
(𝑧) =

{{{

{{{

{

𝑄
0

𝑘
0
𝛿
𝑒
−𝛿𝑧

, 0 ≤ 𝑧 ≤ ℎ,

𝑄
0

𝑘
0
𝛿
, 𝑧 ≤ 0,

(5)

where the continuity can be seen as 𝑧 → 0. For two-
dimensional heat conduction problem, (1) can be simplified
for 0 < 𝑧 ≤ ℎ as

𝜕
2

𝜕𝑟
2
𝑇
2
(𝑟, 𝑧) +

1

𝑟

𝜕

𝜕𝑟
𝑇
2
(𝑟, 𝑧) +

𝜕
2

𝜕𝑧
2
𝑇
2
(𝑟, 𝑧)

+ 𝛿
𝜕

𝜕𝑧
𝑇
2
(𝑟, 𝑧) = 0,

(6)

and for 𝑧 < 0,

𝜕
2

𝜕𝑟
2
𝑇
2
(𝑟, 𝑧) +

1

𝑟

𝜕

𝜕𝑟
𝑇
2
(𝑟, 𝑧) +

𝜕
2

𝜕𝑧
2
𝑇
2
(𝑟, 𝑧) = 0 (7)

with standard boundary conditions:

𝑘 (𝑧)
𝜕

𝜕𝑧
𝑇
2
(𝑟, 𝑧) → finite, 𝑧 → −∞,

𝑘 (𝑧)
𝜕

𝜕𝑧
𝑇
2
(𝑟, 𝑧) = 0, 𝑧 = ℎ, 0 ≤ 𝑟 < ∞,

𝜕

𝜕𝑧
𝑇
2
(𝑟, 0
+
) =

𝜕

𝜕𝑧
𝑇
2
(𝑟, 0
−
) , 𝑎 < 𝑟 < ∞,

(8)

and mixed boundary conditions:

𝑘 (𝑧)
𝜕

𝜕𝑧
𝑇
2 (𝑟, 𝑧) = 𝑄

0
, 𝑧 → 0, 0 ≤ 𝑟 < 𝑎, (9)

𝑇
2
(𝑟, 0
+
) = 𝑇
2
(𝑟, 0
−
) , 𝑎 < 𝑟 < ∞. (10)

Equation (6) will be solved using Hankel integral transform
such that 𝑇

2
(𝑟, 𝑧) denote the Hankel transform of zero order

and 𝜏(𝜌, 𝑧)denote inverseHankel transformof zero order [21]
shown as below, respectively,

𝑇
2
(𝑟, 𝑧) = ∫

∞

0

𝜏 (𝜌, 𝑧) 𝐽
0
(𝑟𝜌) 𝜌𝑑𝜌,

𝜏 (𝜌, 𝑧) = ∫

∞

0

𝑇
2
(𝑟, 𝑧) 𝐽

0
(𝑟𝜌) 𝑟𝑑𝑟.

(11)

Using Hankel transform, the solution of (6) along with
boundary conditions (8) can be obtained as

𝜏 (𝜌, 𝑧) =

{{{{{{{

{{{{{{{

{

𝐴(𝜌) 𝑒
−(𝑚
2
+𝑚
1
)𝑧
+ 𝐴 (𝜌)

𝑚
2
+ 𝑚
1

𝑚
2
− 𝑚
1

×𝑒
−2𝑚
2
ℎ+(𝑚

2
−𝑚
1
)𝑧
, 0 < 𝑧 ≤ ℎ,

𝐴 (𝜌)
1

𝜌
(𝑒
−2𝑚
2
ℎ
− 1) (𝑚

2
− 𝑚
1
)

×𝑒
𝜌𝑧
, −∞ < 𝑧 < 0,

(12)

where 𝑚
1

= 𝛿/2, 𝑚
2

= 𝜌√(𝛿/2𝜌)
2
+ 1 and observing that

𝑚
2
+ 𝑚
1
> 0 and𝑚

2
− 𝑚
1
> 0.

3. Evaluation of Integral Equation

The unknown value 𝐴(𝜌) can be obtained by defining a new
function, which is called density function [11], such as

𝜓 (𝑟) =
𝜕

𝜕𝑟
(𝑇
2
(𝑟, 0
+
) − 𝑇
2
(𝑟, 0
−
)) , (13)

where 𝜓(𝑟) satisfies the following conditions:

∫

𝑎

0

𝜓 (𝑟) 𝑑𝑟 = 0, 𝜓 (𝑟) = 0, at 𝑎 < 𝑟 < ∞,

𝜓 (𝑟) = −𝜓 (−𝑟) .

(14)

Substituting (12) into (13) along with the conditions given in
(14), the unknown function 𝐴(𝜌) can be obtained:

𝐴 (𝜌) =
1

𝐹 (𝜌)
∫

𝑎

0

𝜓 (𝑠) 𝐽1 (𝑠𝜌) 𝑠𝑑𝑠, (15)
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where

𝐹 (𝜌) = − 𝜌 − 𝜌(
𝑚
2
+ 𝑚
1

𝑚
2
− 𝑚
1

) 𝑒
−2𝑚
2
ℎ

+ (𝑒
−2𝑚
2
ℎ
− 1) (𝑚

2
− 𝑚
1
) .

(16)

Using the boundary condition (9) in transformed domain as
𝑧 → 0

−, it can be obtained as

∫

∞

0

(𝑒
−2𝑚
2
ℎ
− 1) (𝑚

2
− 𝑚
1
) 𝐴 (𝜌) 𝐽

0
(𝑟𝜌) 𝜌𝑑𝜌 =

𝑄
0

𝑘
0

, (17)

and substituting the value of 𝐴(𝜌) into (17), the integral
equation to be solved for unknown 𝜓(𝑠) can be obtained as

∫

𝑎

0

(∫

∞

0

(𝑒
−2𝑚
2
ℎ
− 1) 𝜂 (𝜌) 𝐽

0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝜌 𝑑𝜌)𝜓 (𝑠) 𝑠𝑑𝑠

=
𝑄
0

𝑘
0

,

(18)

where

𝜂 (𝜌) =
𝑚
2
− 𝑚
1

𝐹 (𝜌)
. (19)

Defining new normalized variables and parameters such as

𝑠

=

𝑠

𝑎
, 𝑟


=

𝑟

𝑎
, 𝜌


= 𝑎𝜌, ℎ


=

ℎ

𝑎
,

𝛿

= 𝑎𝛿, 𝜓 (𝑠) = 𝜓 (𝑎𝑠


) = 𝜓 (𝑠


) ,

(20)

the integral equation in (18) can be expressed in the form of

∫

1

0

𝜓 (𝑠) 𝑠𝑑𝑠 ∫

∞

0

𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝜌𝑑𝜌

+ ∫

1

0

𝜓 (𝑠) 𝑠𝑑𝑠 ∫

∞

0

2𝑒
−2𝑚
2
ℎ
𝜂 (𝜌) 𝐽

0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝜌𝑑𝜌

− ∫

1

0

𝜓 (𝑠) 𝑠𝑑𝑠 ∫

∞

0

(2𝜂 (𝜌) + 1) 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝜌𝑑𝜌

= 𝑞
0
,

(21)

where 𝑞
0
= 2𝑄
0
/𝑘
0
and the prime sign is removed for the sake

of simplicity.The first double integral in (21) can be expressed
in terms of the first and second kinds of elliptic integrals, 𝐾
and 𝐸, respectively. As 𝑘 → 1, the second kind of elliptic
integral 𝐸(𝑘) has a finite value while the first kind of elliptic
integral𝐾(𝑘) has a logarithmic singularity such as

𝐾 (𝑘) = log( 4

√1 − 𝑘
2
) , 𝐸 (𝑘) = 1. (22)

Defining a new function 𝑀(𝑠, 𝑟), given in the appendix,
and using some algebraic manipulations, a Cauchy type

singularity can obtained by using the properties of 𝜓(𝑠) in
(14). Hence, the first integral of (21) becomes

∫

1

0

𝜓 (𝑠) 𝑠𝑑𝑠 ∫

∞

0

𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝜌𝑑𝜌

=
1

𝜋
∫

1

−1

𝜓 (𝑠)

𝑠 − 𝑟
𝑑𝑠

+
1

𝜋
∫

1

0

(
𝑀(𝑠, 𝑟) − 1

𝑠 − 𝑟
+

𝑀 (𝑠, 𝑟) − 1

𝑠 + 𝑟
)𝜓 (𝑠) 𝑑𝑠.

(23)

The second double integral in (21) has an exponential inte-
grand with negative exponent so that as 𝜌 → ∞, the
integrand asymptotically approaches to zero. The asymptotic
expansion of the integrand can be expressed as

𝑒
−2ℎ𝜌

𝜌(−1 +
ℎ𝛿
2
− 𝛿

2
2
𝜌

−
ℎ
2
𝛿
4
− 2ℎ𝛿

3

2
5
𝜌
2

+
(1/3) ℎ

3
𝛿
6
− ℎ
2
𝛿
5
− 2ℎ𝛿

4
+ 2𝛿
3

2
7
𝜌
3

−
(1/3) ℎ

4
𝛿
8
+ (4/3) ℎ

3
𝛿
7
− 8ℎ
2
𝛿
6
− 40ℎ𝛿

5

2
11
𝜌
4

+ 𝑂 (𝜌
−5
)) .

(24)

Since there is no singularity and any discontinuity over the
interval, and due to the asymptotic expansion as 𝜌 → ∞,
the infinite integral can be approximated over the interval
[0, 𝐵]. Depending on parameters ℎ and 𝛿, the value of 𝐵

can be chosen large enough to obtain small enough value of
the integral (less than 10

−25) over [𝐵,∞). Hence, the second
double integral in (21) may be expressed as

∫

1

0

𝜓 (𝑠) 𝑠𝑑𝑠 ∫

∞

0

2𝑒
−2𝑚
2
ℎ
𝜂 (𝜌) 𝐽

0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝜌𝑑𝜌

= ∫

1

0

𝜓 (𝑠) 𝑠𝑑𝑠∫

𝐵(ℎ,𝛿)

0

2𝑒
−2𝑚
2
ℎ
𝜂 (𝜌) 𝐽

0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝜌𝑑𝜌.

(25)

Finally, the last integral in (21) can be evaluated by using a
series

𝐺
𝐴
(𝜌) = −

𝛿

2
2
+

𝛿
3

2
6

1

𝜌
2
−

𝛿
5

2
9

1

𝜌
4
+

5𝛿
7

2
14

1

𝜌
6

− ⋅ ⋅ ⋅ +
429𝛿
15

2
30

1

𝜌
14

− 𝑂 (𝜌
−16

) ,

(26)

an asymptotic expansion of the integrand 𝐺(𝜌) = 𝜌(2𝜂(𝜌) +

1) as 𝜌 → ∞. Let us define a value 𝐶 that depends on
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parameters ℎ and 𝛿 and superposes the infinite integral as
follows:

∫

∞

0

𝐺 (𝜌) 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌

= ∫

𝐶(ℎ,𝛿)

0

𝐺 (𝜌) 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌

× ∫

∞

𝐶(ℎ,𝛿)

𝐺
𝐴
(𝜌) 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌

+ ∫

∞

𝐶(ℎ,𝛿)

[𝐺 (𝜌) − 𝐺
𝐴
(𝜌)] 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌.

(27)

For a particular value of𝐶,𝐺(𝐶)−𝐺
𝐴
(𝐶) ≈ 0 can be obtained;

then the last infinite integral can be expressed as

∫

∞

0

𝐺 (𝜌) 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌

= ∫

𝐶(ℎ,𝛿)

0

𝐺 (𝜌) 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌

+ ∫

∞

𝐶(ℎ,𝛿)

𝐺
𝐴
(𝜌) 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌.

(28)

Since the function 𝐺(𝜌) is a smooth function over the
interval [0, 𝐶], it can be evaluated numerically usingGaussian
quadrature along with Chebyshev orthogonal polynomials.
On the other hand, the evaluation of the integral over the
interval [𝐶,∞) can be evaluated separately for each term in
𝐺
𝐴
(𝜌) like

∫

∞

𝐶(ℎ,𝛿)

𝐺
𝐴
(𝜌) 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌

= −
𝛿

2
2
∫

∞

𝐶(ℎ,𝛿)

𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌

+ ∫

∞

𝐶(ℎ,𝛿)

(
𝛿
3

64

1

𝜌
2
−

𝛿
5

512

1

𝜌
4
+

5𝛿
7

16384

1

𝜌
6
− ⋅ ⋅ ⋅ )

× 𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌,

(29)

where

𝐻
0 (𝑟, 𝑠) = ∫

∞

𝐶(ℎ,𝛿)

𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌

=

{{{{{{{

{{{{{{{

{

1

𝑠
− ∫

𝐶(ℎ,𝛿)

0

𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌, 𝑠 > 𝑟,

1

2𝑠
− ∫

𝐶(ℎ,𝛿)

0

𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌, 𝑠 = 𝑟,

−∫

𝐶(ℎ,𝛿)

0

𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌) 𝑑𝜌, 𝑠 < 𝑟,

(30)

and the other integrals in (29) can be evaluated iteratively for
𝑘 = 1, 2, 3, . . . as follows:

𝐻
𝑘 (𝑟, 𝑠) = ∫

∞

𝐶(ℎ,𝛿)

𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌)

𝜌
𝑘

𝑑𝜌

=
𝐽
0
(𝑟𝐶) 𝐽

1
(𝑠𝐶)

𝑘𝐶
𝑘−1

+
𝑠

𝑘
𝐿
𝑘−1

(𝑟, 𝑠) +
𝑟

𝑘
𝑁
𝑘−1

(𝑟, 𝑠) ,

(31)

where

𝐿
𝑘
(𝑟, 𝑠) = ∫

∞

𝐶(ℎ,𝛿)

𝐽
0
(𝑟𝜌) 𝐽

0
(𝑠𝜌)

𝜌
𝑘

𝑑𝜌

=
𝐽
0
(𝑟𝐶) 𝐽

0
(𝑠𝐶)

(𝑘 − 1) 𝐶
𝑘−1

−
𝑟𝐻
𝑘−1 (𝑠, 𝑟)

𝑘 − 1
−

𝑠𝐻
𝑘−1 (𝑟, 𝑠)

1 − 𝑘
,

(32)

𝑁
𝑘
(𝑟, 𝑠) = ∫

∞

𝐶(ℎ,𝛿)

𝐽
1
(𝑟𝜌) 𝐽

1
(𝑠𝜌)

𝜌
𝑘

𝑑𝜌

=
𝐽
1
(𝑟𝐶) 𝐽

1
(𝑠𝐶)

(𝑘 + 1) 𝐶
𝑘−1

+
𝑟𝐻
𝑘−1 (𝑟, 𝑠)

𝑘 + 1
+

𝑠𝐻
𝑘−1 (𝑠, 𝑟)

𝑘 + 1
.

(33)

The initial values of the integral𝐻
1
(𝑟, 𝑠), 𝐿

2
(𝑟, 𝑠), and𝑁

3
(𝑟, 𝑠)

are shown in the appendix.

4. Numerical Evaluation of Integral Equation

The integral equation in (21) can be solved using Gaussian
quadrature method. Using the condition given in (14), the
unknown function 𝜓(𝑠) can be defined in terms of the trun-
cated 𝑁th term series expansion of Chebyshev orthogonal
polynomials of the first kind, 𝑇

𝑛
(𝑠), as

𝜓 (𝑠) =

𝑁

∑

𝑛=1

𝐴
2𝑛−1

𝑇
2𝑛−1

(𝑠)

√1 − 𝑠
2
, −1 < 𝑠 < 1, (34)

where 𝐴
2𝑛−1

are coefficients. Substituting the series expan-
sion of the unknown function 𝜓(𝑠) into the first integral in
(23), it can be found that

1

𝜋
∫

1

−1

𝜓 (𝑠)

𝑠 − 𝑟
𝑑𝑠 =

𝑁

∑

𝑛=1

𝐴
2𝑛−1

1

𝜋
∫

1

−1

𝑇
2𝑛−1 (𝑠)

(𝑠 − 𝑟)√1 − 𝑠
2
𝑑𝑠

=

𝑁

∑

𝑛=1

𝐴
2𝑛−1

𝑈
2𝑛−2 (𝑟) ,

(35)
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where 𝑈
2𝑛−2

(𝑟) is the Chebyshev polynomials of the second
kind, and eliminating the logarithmic singularities, shown in
appendix, the second integral in (23) can be written as

1

𝜋
∫

1

0

(
𝑀(𝑠, 𝑟) − 1

𝑠 − 𝑟
+

𝑀 (𝑠, 𝑟) − 1

𝑠 + 𝑟
)𝜓 (𝑠) 𝑑𝑠

=

𝑁

∑

𝑛=1

𝐴
2𝑛−1

1

𝜋

× ∫

1

0

(
𝑀(𝑟, 𝑠) − 1

𝑠 − 𝑟
+
𝑀 (𝑟, 𝑠) − 1

𝑠 + 𝑟
+

1

2𝑟
log



𝑠 − 𝑟

𝑠 + 𝑟


)

×
𝑇
2𝑛−1

(𝑠)

√1 − 𝑠
2
𝑑𝑠.

(36)

Finally, substituting the truncated series representation of
𝜓(𝑠) into (25) and (29) system of algebraic equation can be
obtained the to be solved for 𝐴

2𝑛−1
,

𝑁

∑

𝑛=1

𝐴
2𝑛−1

(𝑈
2𝑛−2

(𝑟
𝑖
) +

1

2𝑟
𝑖

𝑇
2𝑛−1

(𝑟
𝑖
)

2𝑛 − 1
+ 𝑍
1
(𝑟
𝑖
)

+𝑍
2
(𝑟
𝑖
) − 𝑍
3
(𝑟
𝑖
) ) = 𝑞

0
,

(37)

where 𝑟
𝑖
, 𝑖 = 1, 2, 3, . . ., are collocation points and

𝑍
1
(𝑟
𝑖
) =

1

𝜋
∫

1

0

(
𝑀(𝑟
𝑖
, 𝑠) − 1

𝑠 − 𝑟
𝑖

+
𝑀(𝑟
𝑖
, 𝑠) − 1

𝑠 + 𝑟
𝑖

+
1

2𝑟
𝑖

log


𝑠 − 𝑟
𝑖

𝑠 + 𝑟
𝑖



)
𝑇
2𝑛−1

(𝑠)

√1 − 𝑠
2
𝑑𝑠,

𝑍
2
(𝑟
𝑖
) = ∫

1

0

(∫

𝐵(ℎ,𝛿)

0

2𝑒
−2𝑚
2
ℎ
𝜂 (𝜌) 𝐽

0
(𝑟
𝑖
𝜌) 𝐽
1
(𝑠𝜌) 𝜌𝑑𝜌)

×
𝑠𝑇
2𝑛−1

(𝑠)

√1 − 𝑠
2
𝑑𝑠,

𝑍
3
(𝑟
𝑖
) = ∫

1

0

(∫

𝐶(ℎ,𝛿)

0

𝐺 (𝜌) 𝐽
0
(𝑟
𝑖
𝜌) 𝐽
1
(𝑠𝜌) 𝑑𝜌

+∫

∞

𝐶(ℎ,𝛿)

𝐺
𝐴
(𝜌) 𝐽
0
(𝑟
𝑖
𝜌) 𝐽
1
(𝑠𝜌) 𝑑𝜌)

×
𝑠𝑇
2𝑛−1

(𝑠)

√1 − 𝑠
2
𝑑𝑠.

(38)

5. Results

Because of the nature of the problem it is necessary to increase
the density of the collocation points near the ends 𝑟 = ±1.
Thus, these points may be selected as follows:

𝑇
𝑛
(𝑟
𝑖
) = 0, 𝑟

𝑖
= cos((2𝑖 − 1) 𝜋

2𝑁
) , 𝑖 = 1, 2, . . . , 𝑁.

(39)

Then, we get a (𝑁 × 𝑁) system of equations whose solution
gives the coefficients 𝐴

2𝑛+1
. With known coefficient values,

the temperature distribution around the insulated barrier
may be obtained by integrating (13) such as

𝑇
2
(𝑟, 0
+
) − 𝑇
2
(𝑟, 0
−
)

=

𝑁

∑

𝑛=1

𝐴
2𝑛−1

∫

𝑟/𝑎

−1

𝑎𝑇
2𝑛−1

(𝑠)

√1 − 𝑠
2

𝑑𝑠.

(40)

Defining new variable like

𝑠 = cos 𝜃, 𝜋 ≤ 𝜃 ≤ arccos( 𝑟

𝑎
) , (41)

the integral in (40) can be evaluated using the relation

𝑈
𝑛 (𝑡) =

sin {(𝑛 + 1) arccos 𝑡}
sin (arccos 𝑡)

, (42)

and the difference in temperature distribution on the plane of
the insulated barrier can be obtained as

𝑇
∗
(𝑟) =

𝑇
2
(𝑟, 0
+
) − 𝑇
2
(𝑟, 0
−
)

𝑎

= −√1 − (
𝑟

𝑎
)

2 𝑁

∑

𝑛=1

𝐴
2𝑛−1

𝑈
2𝑛−2 (𝑟/𝑎)

2𝑛 − 1
.

(43)

Appendix

The function𝑀(𝑠, 𝑟) in (23) can be defined [14] as

𝑀(𝑠, 𝑟) =

{{{

{{{

{

𝑟

𝑠
𝐸(

𝑠

𝑟
) +

𝑠
2
− 𝑟
2

𝑟𝑠
𝐾(

𝑠

𝑟
) , 𝑠 < 𝑟,

𝐸 (
𝑟

𝑠
) , 𝑠 > 𝑟,

(A.1)

in terms of the complete elliptic integrals of the first and
second kinds, respectively,

𝐾 (𝑘) = ∫

𝜋/2

0

𝑑𝜃

√1 − 𝑘
2sin2𝜃

,

𝐸 (𝑘) = ∫

𝜋/2

0

√1 − 𝑘
2sin2𝜃𝑑𝜃.

(A.2)
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For 𝑘 ≥ 2, the values of the integrals in (31), (32), and (33),
respectively, can be obtained by solving the initial value of
each integral for 𝑘 = 1 such that

𝐻
1 (𝑟, 𝑠) = ∫

∞

𝐶(ℎ,𝛿)

𝐽
0
(𝑟𝜌) 𝐽

1
(𝑠𝜌)

𝜌
𝑑𝜌

=
1

𝜋
∫

𝜋

0

𝑠 − 𝑟 cos𝜙
𝑅

(1 + 𝐽
1
(𝑅𝐶 (ℎ, 𝛿))

−∫

𝑅𝐶(ℎ,𝛿)

0

𝐽
0
(V) 𝑑V)𝑑𝜙,

𝐿
1
(𝑟, 𝑠) = ∫

∞

𝐶(ℎ,𝛿)

𝐽
0
(𝑟𝜌) 𝐽

0
(𝑠𝜌)

𝜌
𝑑𝜌

=
1

𝜋
∫

𝜋

0

(−𝛾 − log(𝑅𝐶 (ℎ, 𝛿)

2
)

+∫

𝑅𝐶(ℎ,𝛿)

0

1 − 𝐽
0 (𝑢)

𝑢
𝑑𝑢)𝑑𝜙,

𝑁
1
(𝑟, 𝑠) = ∫

∞

𝐶(ℎ,𝛿)

𝐽
1
(𝑟𝜌) 𝐽

1
(𝑠𝜌)

𝜌
𝑑𝜌

=
𝑟𝑠

𝜋
∫

𝜋

0

sin2𝜙
𝑅

(∫

∞

𝐶(ℎ,𝛿)

𝐽
1
(𝑅𝜌) 𝑑𝜌)𝑑𝜙,

(A.3)

where 𝑅2 = 𝑟
2
+ 𝑠
2
− 2𝑟𝑠 cos𝜙.

Due to the logarithmic singularity as 𝑠 → 𝑟 in (23),
the ratio ((𝑀(𝑠, 𝑟) − 1)/(𝑠 − 𝑟)) → (0/0) has undetermined
limiting case. Using (22) along with L’Hospital’s rule, we have

lim
𝑠→ 𝑟

𝑀(𝑠, 𝑟) − 1

𝑠 − 𝑟
= −

1

2𝑟
log |𝑠 − 𝑟| +

1

𝑟
(log√8𝑟 − 1) .

(A.4)

Now, by adding and subtracting the leading part of the
logarithmic function,

1

𝜋
∫

1

0

(
𝑀(𝑟, 𝑠) − 1

𝑠 − 𝑟
+

𝑀 (𝑟, 𝑠) − 1

𝑠 + 𝑟
+

1

2𝑟
log |𝑠 − 𝑟|) 𝜓 (𝑠) 𝑑𝑠

−
1

2𝜋𝑟
∫

1

0

(log |𝑠 − 𝑟|) 𝜓 (𝑠) 𝑑𝑠,

(A.5)

and using the symmetry property of 𝜓(𝑠) like

−∫

1

0

(log |𝑠 − 𝑟|) 𝜓 (𝑠) 𝑑𝑠 = − ∫

1

−1

(log |𝑠 − 𝑟|) 𝜓 (𝑠) 𝑑𝑠

− ∫

1

0

(log |𝑠 + 𝑟|) 𝜓 (𝑠) 𝑑𝑠,

(A.6)

we have

1

𝜋
∫

1

0

(
𝑀(𝑟, 𝑠) − 1

𝑠 − 𝑟
+

𝑀 (𝑟, 𝑠) − 1

𝑠 + 𝑟
+

1

2𝑟
log



𝑠 − 𝑟

𝑠 + 𝑟


) 𝜓 (𝑠) 𝑑𝑠

−
1

𝜋
∫

1

−1

1

2𝑟
(log |𝑠 − 𝑟|) 𝜓 (𝑠) 𝑑𝑠,

(A.7)

where

1

𝜋
∫

1

−1

log |𝑠 − 𝑟|
𝑇
2𝑛−1

(𝑠)

√1 − 𝑠
2
𝑑𝑠 = −

𝑇
2𝑛−1

(𝑟)

2𝑛 − 1
, (A.8)

using the series expansion of unknown function 𝜓(𝑠) in (34).
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