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The error estimates obtained for solving Laplace’s boundary value problem on polygons by the block-grid method contain constants
that are difficult to calculate accurately. Therefore, the experimental analysis of the method could be essential. The real characteristics
of the block-grid method for solving Laplace’s equation on polygons with a slit are analysed by experimental investigations. The
numerical results obtained show that the order of convergence of the approximate solution is the same as in the case of a smooth
solution. To illustrate the singular behaviour around the singular point, the shape of the highly accurate approximate solution and
the figures of its partial derivatives up to second order are given in the “singular” part of the domain. Finally a highly accurate
formula is given to calculate the stress intensity factor, which is an important quantity in fracture mechanics.

1. Introduction

In the past few decades, in order to improve the accuracy
and resolve the convergence difficulties that appear in the
neighbourhood of singular points, many different methods
have been proposed for the numerical solution of plane
elliptic boundary value problems with singularities. Among
many approaches, a special emphasis has been placed on
the construction of combined methods, in which differential
properties of the solution in different parts of the domain are
used (see [1]).

In [2-6] a new combined difference-analytical method
called the block-grid method (BGM) is given for solving the
Laplace equation on polygons, when the boundary functions
on the sides causing the singular vertices are given as algebraic
polynomials of the arclength. This method is a combination of
the exponentially convergent block method (see [7, 8]) in the
“singular” part, and the finite difference method, which has a
simple structure on the “nonsingular” part of the polygon. A
kth order gluing operator S is constructed for gluing together
the grids and the blocks. The uniform estimate of the error of
the BGM is of order O(H*) (h is the mesh step) when the given
boundary function on the boundary of the “nonsingular” part
might be from the Hoélder classes CH, 0 < A < 1 (see [2-4]

for k = 6, [6] for k = 4, and [5] for k = 2). For the errors of p-
order derivatives (p = 1,2,...) the estimation O(hk / rffl/a")
is obtained in a finite neighborhood of the vertices, wherer; is
the distance from the current point to the vertex in question,
and a7 is the value of the interior angle at the considered
vertex. Moreover, BGM can give a simple and highly accurate
formula for the stress intensity factor which is an important

quantity from an engineering standpoint.

The experimental investigation of the block-grid method
is important and numerical results could be interesting to
support the theoretical results in [2-6]. The objective of this
paper is to analyze the real characteristics of the BGM for
solving the Laplace equation on polygons with a slit. For
this purpose a slit problem on a square domain whose exact
solution is known is considered. The computational algo-
rithm by the BGM with 5-point and 9-point schemes is given
and implemented. The obtained numerical results justify
the theoretical results given in [2-5]. Moreover, for the ap-
proximate solution Uy (by 9-point scheme with $°) and the
error function the graphs are given to demonstrate the
high accuracy of the block-grid method. The shapes of the
partial derivatives U} /dx, oU;/dy, 9°Uy/dx*, 9*Uy/dy?,
0°U; [0x0y are given to illustrate the singular behavior in the



“singular” part of the domain. Furthermore, a simple and
highly accurate formula is given to calculate the stress
intensity factor.

The experimental analyses of the different methods on slit
problems were given in many papers (see [9, 10]).

2. The Slit Problem and the Integral
Representation of the Solution

Let G be an open domain in the plane xOy, that is obtained
from the unit square G = {(x, ) : |x| < 1,|y| < 1} by making
a cut OA along the positive semiaxis Ox from the center (see
Figure1). Let y;, j = 1(1)7, be its sides, including the ends,
enumerated counterclockwise, y = y; U+ Uy, (¥ = ¥7)s
be the boundary of G, 27 is the interior angle formed by the
sides y; and y,. Denote by O = y, Ny, the vertex of this angle
and let 7, 0 be a polar system of coordinates with a pole in O,
where the angle 0 is taken counterclockwise from the side ;.
We consider the boundary value problem

Au=0 on G, @)

u=¢; ony, j=L12..7, (2)

where A = 9*/0x* +0°/dy* and ¢ ; is the value of the function

v(r,0) = V2r'?sin(1/2)6 on Vj-
In the neighborhood of O, we construct two fixed block-

sectors T" = T(r;) € G,i = 1,2, where 0 < r, < r, < 1,
T(p)={(r0):0<r<p,0<0<2r}cG.
Let
12 g
R, (r,0,1) = Z( 1)R(< ) o 1 ) (3)
where

1-1?

27 (1 -2rcos (60 —n) +1?)

R(r,0,n) = (4)

is the kernel of the Poisson integral for a unit circle.
Lemma 1. The solution u of the boundary value problem (1),

(2) can be represented on Tz \'V, in the form

2
u(r,0) = JO R, (r,0,n) u(ryn)dy, ®)

where V is the curvilinear part of the boundary of T*.

Proof. The proof follows from Theorem 3.1 in [8] by taking
into account that ¢, = ¢; = 0. O

3. The Block-Grid Method for the Slit Problem

The realization of the BGM for the solution of the problem
(1), (2) is as follows. Let T> = T(0.93) and ¢ be a polygonal
line abcde which lies on T2 with a positive distance from the
vertex O and from the curvilinear boundary V' = {(r,0) :
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FIGURE I: Covering the square domain with a slit by overlapping
rectangles and sector.

r =0.93,0 < 0 < 27} of T?. The set of points T* from O up
to t is denoted by G® which is called the “singular” part of G
and the set G* = G\ G® is the “nonsingular” part of G. In
addition to the sector T* in the neighborhood of the vertex O
of the polygon G we construct two more sectors T = T(0.85)
and T* = T(\/5). Let Gy = G\ (T*) and IT; ¢ G™° ¢ Gy,
I = 1(1)5, be fixed open rectangles (see Figure 1). Then the
domain G can be represented as G = (ULHZ) U (T%). Let
n; be the boundary of the rectangle IT; and t; = #;, N t. We
define a square grid on IT;, I = 1(1)5, with step h such that
the boundary 7, lies entirely on the grid lines. H? denotes the
set of grid nodes on IT}, qlh denotes the set of nodes on #; and

—h
I, = H? U nlh. We refer to the set of nodes on the closure

of 5 N Gy as 171}6, the set of nodes on ¢; as t;’ and the set of
remaining nodes on #; as nlhl. We also introduce the natural
number n > 4,and 69 = (g —1/2)27/n, 1 < g < n. On the arc
V, we choose the points (0.93,07), 1 < g < n, denote the set
of these points by V" and let G}Tl’n =V"u (Uf 1ﬁlh)

Letg = {goj} » where ¢; is the given function in (2). We

introduce a gluing operator Sk k =2,6([5] for k = 2 and [2-
4] for k = 6) at the points of the set V"'. We denote by ulfl (U;If )
the approximate solution of the problem (1), (2) obtained by
the 5-point scheme with S* for k = 2, and by the 9-point
scheme with S° for k = 6, on the “singular” (“nonsingular”)
part of G. The operator S* is defined at each point P € V" in
the following way: we consider the set of all rectangles {II;}
in the intersections of which the point P lies, and we choose
one of these rectangles I p) part of whose boundary situated
in G” is furthest away from P. The value $* (u}, ) at the point
P € V" is computed according to the values of the function
at the four vertices P, k = 1(1)4, of the closure of the cell,
containing the point P of the grid constructed on ﬁl(P) by
multilinear interpolation.
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The value of SG(uZ,q)) at the point P € V" is expressed

linearly in terms of the values of u at the points P, x =
1(1)31, of the grid constructed on IT;p) > P some part of
whose boundary located in G is the maximum distance away

from P, and in terms of the boundary values of ¢, 7 =

0,1,...,5atafixed number of points. Moreover, sk (uﬁ, 0) has
the representation

Z iy, fork=6,

Sk (ui{l’ 0) — 1<k<31 . (6)
z Ay, for k=2,
1<k<4
where ufm = ulf[(PK),
£.20, Y E=1,  A.20, Y A =1, @)
1<x<31 1<k<4

and for the exact solution u of the problem (1), (2), we have

u—38°(u,¢) = O(hé),
2 2 ®
u-5(u9) =O(h )
Remark 2. Let Vi' c V" be the set of such points P € V",
for which all points P, in the expression (6) are in U?zlﬁlh. If
some of the points P, in (6) emerge through the side y; when
u = ¢;, 1< j<7, wedenote the set of such points P by Vp,
Then, according to the construction of $® in [4] the expression
S®(u$, ) at each point P € V" = V' UV, can be expressed as
follows:

s¢ (uz, go)
Sous, PeVy,

5
s° <u2 - Z a, Rez7> )
7=0
5
+<ZaTRezT> , PeVy,
L \7=0 P

where
1.d°9;(s)

7! dst

, 1=0,1,...,5. (10)

s=sp

a,

sp corresponds to such point Q € y; for which the line PQ is
perpendicular to ;.

Consider for each k = 2, 6 the following system of linear
algebraic equations:

u];l = BkuZ on H?, 1)
1
ulfl = V2r'?sin 59 on 11;'1 Ny (12)
27
uf (r,0) = = Y uy (0.93,6%)
g9=1 (13)
xR, (r,0,67) on (r,0) e t],

up =S on V', 1<1<51<j<7, (14)

where
Bau(x,y)=(u(x+hy)+u(x,y+h)+u(x-hy)
+u(xy-h)/5
+(u(x+hy+h)
tulx—hy+h) +u(x—hy-h) (5)
+u(x+h,y-h))/20,
Byu(x,y)=(u(x+hy)+u(x,y+h)
+u(x-hy)+u(x,y—h))/4

Theorem 3. There is a natural number ny, such that for alln >
ny, and for each k = 2,6, the system (11)-(14) has a unique
solution.

Proof. The proof follows when k = 2 from [5], and when k =
6 from [3, 4]. ]

We consider the sector T* = T(0.89), and let uﬁ(0.93, 09),
1 < g < n, be the values of the solution of the system (11)-(14)
on V" (at the quadrature nodes). The function

Uk (r,0) = n Y Ry (r,0,07) ) (093,67),  (16)
n
gq=1

defined on T* is called an approximate solution of the

problem (1), (2) on the closed block T3.

Everywhere below we will denote constants which are
independent of i and of the cofactors on their right by ¢, ¢, ¢;
for simplicity.

Theorem 4. There exists a natural number n such that for
1 > max {no, [lnH”h_l] + 1} , (17)

where x > 0 is a fixed number, the following inequalities are
valid:

max '”Z - u| < ch, )
(U r,6) = u(r,0))| < cr'*H* on . )
P
axﬁ—qayq (U (r,0) = u(r, 9))‘

(20)
<qH P on T\ O,

forall p=1,2,.... Everywhere 0 < q < p, u is a solution of the

problem (1), (2).

Proof. The proof is carried out analogically to the proof of
Theorems 1and 2 in [3]. O



4. Computational Algorithm

Let II ={(x,y):a, < x < ay,b <y < b}, wherea, -
a, = 2Phy, b, — b, = 29hy, hy > 0 is a fixed number, and p
and g are integers. We introduce a square grid with the lines
X =a;+ih, y = b + jh,h = hy2™™, m > 0 is an integer,
i=0,1,...,22" j=0,1,....,297" Let I, = {(x, y) : x =
x;=a,+ih,0<i<2P" y =y, = b +jh,0 < j <27} and
I, =T}, UL, UL;, UL, be aset of nodes on I' (the boundary
of IT) where

Ip={(xy):x=a,+ih 1 <i<2P™, y=b}, (21
L,={(xy):x=a, y=b +jh 1<j<2T™}, (22)
Ly, ={(xy):x=a,+ih,1<i<2P™ y=b}, (23)

Iy,={(xy):x=a, y=b +jh 1<j<27™}. (24)
We consider for each k = 2, 6 the finite difference problem
uz = Bkuﬁ on II,
(25)
uﬁ =@ on th, j=12,3,4,

where ¢, is a given function on I'j, that vanishes at the end
points.

The solution of the problem (25) can be found using the

superposition principle ulﬁ = ulfh + u’;h + u];h + ulzh as the sum
of solution of four problems of the type

k
uj, = By, on I,

k _ P
4

The solution of the problem (26), when j = 1 has the
representation

on Iy, (26)

on rh \ th, ] = 1,2, 3,4

“]fh (x,y)
: Zpi_ld sinh (ﬁ: (1-y/ (b~ bl))) sin nmx
B = " sinh/)’ﬁ a, —al’
2Pt _q
h
d,=2"°"" Z ¢, (a, + rh) sin M,
=1 44
(27)
where
2(b,-b
[35 = —( 2 1)sinh_1 sin —nﬂh R (28)
h 2(a, —a)
for the 5-point approximation [11],
6 _ 2 (bz B bl)
ﬁn - h
X sinh”! sinnmh/2 (a, — a,) )

\/1 - 2sin* (nh/2 (a, — a,)) /3
(29)
for the 9-point approximation [12].
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FIGURE 2: The errors with respect to number of quadrature nodes
n, in the “singular” part and in the “nonsingular” part by the BGM
when 5-point scheme is used with §* for k™' = 32, 64.
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F1GURE 3: The errors with respect to number of quadrature nodes
n, in the “singular” part and in the “nonsingular” part by the BGM
when 9-point scheme is used with S® for h! = 32, 64.

The Discrete Fast Fourier Transform is used for the
realization of the finite sums in (27). The solution of the
problem (26), for j = 2, 3,4 can be represented analogously.

Now we describe the algorithm of implementing the
BGM for the slit problem.

Step 1. Suppose that we have zero approximation ul];(o) to the
exact solution “ﬁ of (11)-(14).
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(a) (b)
FIGURE 4: The highly accurate approximate solution UE(M) and the exact solution u in the “singular” part for h™' = 64, n = 140.
TaBLE 1: The errors by BGM when 5-point scheme is used with s? interpolation.
(hil, n) ||5h||(GNS) llen ||(GS) ||5£1) "(Gs) ||5£,2) ”(Gs) iter
(16, 85) 6.138 x107° 23127 x107° 6.432x107° 4464 x 107 12
(16, 100) 5.264 % 107 1.393x 107° 5.126 x 10°° 3.244%x107* 12
(16, 120) 5.599 x 107 1.150 x 10™° 5.385x 107" 3.430 x 107* 12
(32, 85) 1317 x107° 4.676 x 1076 1.129 x 107° 2272x107° 13
(32,100) 1.488 x 107° 1.889 x 107° 2.056 x 107° 1.523 x 107 13
(32,120) 1.491 x 107° 1.956 x 107¢ 2.053x107° 1.740 x 107* 13
(32,130) 1.508 x 107° 5.172x 107° 1.728 x 107° 4.659 % 107° 13
(32,140) 1.571 x 107° 3.319x10°° 2.407 x 107° 2.155%x 107* 13
(64,130) 3.720 x 107° 7.391 x 1077 2.306 x 107° 1.941 x 107° 14
(64, 140) 3.583 % 107° 7.071 x 1077 3.852x 10°° 3364 x 107 14
Step 2. Finding ufl(l) by the for;nula (13) on £]' we solve the u'fz(m) = Bkufl(’”) on IT},
system (11), (12) on each grid TI; by using the representation K(m) h
o . . = = <l< = -

of finite difference solution described before Step 1. Y ¢ onfyk=261sls5m=12

(30)

Step 3. Using (6) we calculate the values uﬁ(l)(0.93, 09) at the
quadrature nodes for each 87 = (q - 1/2)2n/n, 1 < q < nby
the formula (14).

Step 4. Repeating Steps 2 and 3 we have the sequence

ufl(l) ullj(z), ..., of Schwarz’s iterations defined as follows:

u’,;(m) (r,0) = 2 Z R, (r,6,67)
n
gq=1

x (r,0)ul™ " (0.93,67) ont],

k(m) _ ok, k(m-1) n
u,  =Su, on V',

As a stopping criteria of the Schwarz’s iterations (30), we
. . k k(m-1
use thfe inequality max%)l:m)___’smh(m) - “h(m )| < e for the
prescribed accuracy of € > 0.

Step 5. Let uZ(M)(O.%,Bq), 01 = (q-1/2)2n/n,1 < g < n,
in (14) be the values at the quadrature nodes on V" for the
final iteration m = M. Using these values we can calculate
the value of the solution at any point in the singular part by
the explicit formula

2 n
U™ (r,0) = 77[ Y R, (r,6,67) ur™ (0.93,67).  (31)
q=1
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TABLE 2: The errors by BGM when 9-point scheme is used with S° interpolation.
(h™',n) llerll sy llesllesy lle” sy llet? sy iter.
(16, 100) 2.741 x 107° 4.895%x1071° 6.778 x 10710 2293 x 107° 23
(16, 145) 2.789 x107° 3.786 x 1071° 5.108 x 107° 1.859 x 107° 23
(32,100) 4.706 x 107! 7.158 x 10712 2.593 x 107" 4.691 x 107 24
(32,125) 4.805%x 107" 2.694 x 10712 6.623 x 10712 4358 x 107! 24
(32,130) 4.838 x 107" 1.831 x 10712 7.257 x 10712 5.186 x 107! 24
(32, 145) 4.745 x 107" 3.903 x 1071 8.808 x 10712 5379 x 107! 24
(64, 125) 7.856 x 1071 2220x 107 1.296 x 10712 3.364 x 1071 25
(64, 130) 7.545x 107" 4.097 x 107 5376 x 107" 4.157 x 107" 25
(64, 145) 7.503 x 107" 4.396 x 107 1.614x 107 1.312x 10712 25

6, 6, -
TABLE 4: The order of convergence chp and Rng when h =27¢,

Q*I«S‘ 0 .
-0.5 _g5 x

FIGURE 5: The error IUZ’(M) — u| in the “singular” part for W' = 64,
n = 140.

2, 2, _
TaBLE 3: The order of convergence R Ggs, and R ng when h =27°.

_ 2, 2,
(2 Q; ”) mG]%S ERGSQ
(27, 85) 4.659 4.9459
(27, 85)

(27%,100) 3.5376 7.3742
(27°,100)

(27, 120) 3.7551 5.8793
(275, 120)

(27°,130) 4.0756 6.9976
(27°,130)

(27, 140) 4.3845 4.6938
(27%,140)

5. Numerical Results

The computational algorithm in Section 4 is applied and the
implementation of the block-grid method is carried out using
double precision. Let g, = U,lf(M)—u, 8}(11) = rl/z((aU;f(M)/ax)—

(Qu/ox)), &? = r*I*((2°UL™ [0x*) - (0°u/0x)) be the errors

in the “singular” part and ¢, = u}h‘(M)

“nonsingular” part of the domain G.

— u be the error in the

27%,n) R% RS
(27*,100) 58.253 68.386
(27°,100)

(27%,145) 58.788 97.005
(27°,145)

(275,125) 61.164 65.711
(275,125)

(27°,130) 64.140 74.926
(27%,130)

(27°,145) 63.241 88.92
(275,145)

In Table 1 the errors are given by the BGM when 5-point
scheme with S* interpolation is used, and the iterations are
terminated by using e = 5x 107°. Table 2 represents the errors
by the BGM when 9-point scheme is used with $° and the
stopping criteria for the Schwarz’s iterations is taken as € =
5% 107

The order of convergence in the “nonsingular” part, and
the order of convergence in the “singular” part of G are

k(M)

ERk’g | maxgs |u2,g - u|
GNs T k(M) >
maxgns |u27(0+1) - u|
oD (32)
maxgs 'U S — u|
mk;Q _ 27¢
G k(M) >
maxgs 'Uz_(gﬂ) - u|

respectively, where ¢ is a positive integer, M is the final
iteration number (Section4), k = 2,6. Taking h = 279,
0 = 4,5,6, Tables 3 and 4 represent the order of convergence
of the BGM in the “nonsingular” part and the “singular” part
of the domain G for k = 2 and k = 6, respectively.

The obtained numerical results in Tables 3 and 4 show
that the order of convergence of the approximate solution is
O(K?) for the 5-point scheme with $? interpolation (k = 2)
and it is O(h®) for the 9-point scheme with s¢ interpolation
(k = 6) in the “nonsingular” part. In both tables, the order of
convergence in the “singular” part is higher than the order of
convergence in the “nonsingular” part of the domain, which
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FIGURE 6: The first partial derivatives aU:(M> /0x and anfM)/ay in the “singular” part for k™' = 64, n = 140.

. &
Y axjg —-05_05 x 2
FIGURE 7: The second partial derivative aZU,f(M) /0x? in the “singu-

lar” part for h™' = 64, n = 140.

justifies the estimation (19) in Theorem 4. The errors with
respect to the number of quadrature nodes 7 in the “singular”
part and in the “nonsingular” part by BGM for k = 2, and
k = 6 are given in Figures 2 and 3, respectively. These figures
demonstrate that the error in the “singular” part is less than
the error in the “nonsingular” part for sufficiently large # as it
follows from the estimation (19) in Theorem 4. The graphical
results in Figures 4-9 are obtained by the BGM when 9-point
scheme is used with S® interpolation for h™* = 64, n = 140.
In Figure 4, the highly accurate approximate solution UE(ND
and the exact solution u is illustrated. Figure 5 represents the
decrease of the error function IUE(M) — ul in the “singular”
part of the domain as r approaches to zero, which agrees with

200 5 - -

Par, 0
ax,
“ 05 o5 x axis

FIGURE 8: The second partial derivative BZUE(M)/B)/2 in the “singu-
lar” part for W' =64, n = 140.

the estimation (19) in Theorem 4. Moreover, on the “singular”
part, up to second order derivatives of the solution at grid
points are approximated effectively by a simple differentiation
of the function (31). The shapes of the first partial derivatives
aU:(M) /ox, BUZ(M) /0y are demonstrated in Figure 6 and
the shapes (asz,(M) /axz)(aZU,f(M) /ayz), (E)ZUZ(M) /0x0y) are
given in Figures 7, 8, and 9, respectively, to show the singular
behaviour of the solution around the singular point.

5.1. Stress Intensity Factor. In engineering problems a very
important constant is the so-called stress intensity factor o.
This constant gives a measure of “the amount of torsion the
beam can endure before fracture occurs” [10, 13]. On the basis
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FIGURE 9: The mixed partial derivative 0> UZ(M) /0x0y in the “singu-
lar” part for Wl =64, n = 140.

TaBLE 5: The error of the stress intensity factor for fixed n = 140.

! lo, — o] log — ol

16 3.4791x10°° 3.7655 x 107'°
32 3.0364 x 107° 1.9451 x 1072
64 1.4899 x 107® 5.9952 x 107%°

of (31) we give a simple and highly accurate formula for the
stress intensity factor o denoting by oy for k = 2, 6:

k(M)
Uh

I (r,m)
0, = l1m
k r—0 r1/2

(33)
00 (0,93, 0) sin O
u, " (0.93,60) sin >

2
 1:/(0.93) q;

where 07 = (q—1/2)2r/nand M is the final iteration number.
The exact value of the stress intensity factor o is V2. For fixed
number of quadrature nodes n = 140, the second column in
Table 5 represents the error of the stress intensity factor when
5-point scheme is used with $* and the last column represents
this error when 9-point scheme is used with S°.

6. Conclusion

For the solution of the Laplace equation on polygons with
a slit, the real characteristics of the block-grid method is
investigated. The given polygon is decomposed into five over-
lapping rectangles and one sector. In the sector, we approxi-
mate the special integral representation of the solution, which
takes into account the behaviour of the exact solution near the
end point of the slit. On the rectangles, to approximate
Laplace’s equation on square grids either 5-point scheme is
used which is simpler by means of sparsity, or 9-point scheme
is used, which gives a highly accurate approximation. In
correspondence with the finite difference scheme used, a
gluing together of the subsystems is carried out effectively by a
sufficiently simple linear interpolation S*, or a highly accurate
interpolation S°. By choosing the step size h = 27%,27°,27,
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the obtained numerical results show that the order of con-
vergence of the approximate solution is O(h*) for the 5-point
scheme with $? and it is O(h®) for the 9-point scheme with s°
in the “nonsingular” part. The results also show that the order
of convergence in the “singular” part is higher than the order
of convergence in the “nonsingular” part of the domain. This
conclusion justifies the theoretical results obtained in [2-5].
Moreover, the shapes up to the second-order derivatives of
the highly accurate solution obtained by the BGM are shown
to display the singular behaviour at the end point of the slit.
Finally the stress intensity factor is approximated by the given
highly accurate formula.
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