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By the way of Lyapunov-Krasovskii functional approach and some variational methods in the Sobolev space 𝑊1,𝑝
0
(Ω), a global

asymptotical stability criterion for p-Laplace partial differential equations with partial fuzzy parameters is derived under Dirichlet
boundary condition, which gives a positive answer to an open problem proposed in some related literatures. Different from many
previous related literatures, the nonlinear p-Laplace diffusion item plays its role in the new criterion though the nonlinear p-Laplace
presents great difficulties. Moreover, numerical examples illustrate that our new stability criterion can judge what the previous
criteria cannot do.

1. Introduction

Very recently, time-delay 𝑝-Laplace (𝑝 > 1) dynamical
equations have attracted rapidly growing interest, because the
nonlinear Laplace diffusion dynamical equations admitmany
physics and engineering background [1–6], such as Cohen-
Grossberg neural networks and recurrent neural networks.
In real world, diffusion phenomena cannot be unavoidable.
Particularly, 2-Laplace (𝑝 = 2) is called the linear Laplace,
and the diffusion phenomenon is always simulated by linear
Laplace diffusion for simplicity ([7–10] and their references
therein). However, diffusion behavior is so complicated that
the nonlinear reaction-diffusion models were considered in
many other recent literatures [1–6, 11–13]. Even the nonlinear
𝑝-Laplace diffusion (𝑝 > 1) is considered in simulating some
diffusion behaviors [1–6]. But the previous related literature
lost sight of the role of the nonlinear diffusion in their stability
criteria. As pointed out in [2], the problem how the𝑝-Laplace
diffusion item plays a role in stability criteria remains open
and challenging. And such a situation motivates our present

study. Besides, fuzzy logic theory has been shown to be an
appealing and efficient approach to dealing with the analy-
sis and synthesis problems for complex nonlinear systems.
Among various kinds of fuzzy methods, Takagi-Sugeno (T-
S) fuzzy models provide a successful method to describe
certain complex nonlinear systems using some local linear
subsystems [14–16]. Motivated by some ideas and methods
of [17–21], we obtain a global asymptotical stability criterion
for fuzzy T-S 𝑝-Laplace partial differential equations with
Dirichlet boundary value by the way of Lyapunov-Krasovskii
functional approach and some variational methods in the
Sobolev space 𝑊1,𝑝

0
(Ω). And in the obtained criterion, the

nonlinear 𝑝-Laplace diffusion item plays a positive role.

2. Model Description and Preliminaries

Let us consider a class of fuzzy Takagi-Sugeno (T-S) 𝑝-
Laplace partial differential equations described as follows.
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Fuzzy Rule 𝑗.
IF 𝜔
1
(𝑡) is 𝜇

𝑗1
and ⋅ ⋅ ⋅ 𝜔

𝑠
(𝑡) is 𝜇

𝑗𝑠
, THEN

𝜕V

𝜕𝑡
= ∇ ⋅ (Γ (𝑡, 𝑥, V) ∘ ∇

𝑝
V) − 𝐴 (V)

× {𝐵 (V) − [𝐶
𝑗
𝑓 (V) + 𝐷

𝑗
𝑔 (V (𝑡 − 𝜏 (𝑡) , 𝑥))]} ,

V (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,

V (𝑡, 𝑥) = 0 ∈ 𝑅𝑛, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω,

(1)

where Ω is an arbitrary open bounded subset in 𝑅
𝑛.

𝜔
𝑘
(𝑡) (𝑘 = 1, 2, . . . , 𝑠) is the premise variable, 𝜇

𝑗𝑘
(𝑗 =

1, 2, . . . , 𝑟; 𝑘 = 1, 2, . . . , 𝑠) is the fuzzy set that is char-
acterized by membership function. And 𝑟 is the number
of the IF-THEN rules; 𝑠 is the number of the premise
variables. Fuzzy partial differential system (1) admits its many
physics and engineering background, including the famous
Cohen-Grossberg neural networks [1–6]. Consider V(𝑡, 𝑥) =
(V
1
(𝑡, 𝑥), V

2
(𝑡, 𝑥), . . . , V

𝑛
(𝑡, 𝑥))

𝑇
∈ 𝑅
𝑛, where V

𝑖
(𝑡, 𝑥) is the

state variable of the 𝑖th neuron and the 𝑗th neuron at time
𝑡 and in space variable 𝑥. Matrix Γ(𝑡, 𝑥, V) = (Γ

𝑖𝑗
(𝑡, 𝑥, V))

𝑛×𝑚

with each Γ
𝑖𝑗
(𝑡, 𝑥, V) ⩾ 0, and Γ

𝑖𝑗
(𝑡, 𝑥, V) is diffusion operator.

Γ(𝑡, 𝑥, V) ∘ ∇
𝑝
V = (Γ

𝑖𝑘
(𝑡, 𝑥, V)|∇V

𝑖
|
𝑝−2
(𝜕V
𝑖
/𝜕𝑥
𝑘
))
𝑛×𝑚

denotes
the Hadamard product of matrix Γ(𝑡, 𝑥, V) and ∇

𝑝
V (see [1–

6] for details). Matrix 𝐴(V) = diag(𝑎
1
(V
1
), 𝑎
2
(V
2
), . . . , 𝑎

𝑛
(V
𝑛
))

and vector 𝐵(V) = (𝑏
1
(V
1
), 𝑏
2
(V
2
), . . . , 𝑏

𝑛
(V
𝑛
))
𝑇, where 𝑎

𝑖
(V
𝑖
)

and 𝑏
𝑖
(V
𝑖
) represent an amplification function at time 𝑡

and an appropriately behaved function at time 𝑡. 𝐶
𝑗

=

(𝑐
(𝑗)

𝑖𝑘
)
𝑛×𝑛

and 𝐷
𝑗

= (𝑑
(𝑗)

𝑖𝑘
)
𝑛×𝑛

are connection matrices.
The time-varying delays are 𝜏(𝑡) ∈ [0, +∞). 𝑓(V) =

(𝑓
1
(V
1
), 𝑓
2
(V
2
), . . . , 𝑓

𝑛
(V
𝑛
))
𝑇 and 𝑔(V(𝑡 − 𝜏(𝑡))) = (𝑔

1
(V
1
(𝑡 −

𝜏(𝑡))), 𝑔
2
(V
2
(𝑡−𝜏(𝑡))), . . . , 𝑔

𝑛
(V
𝑛
(𝑡−𝜏(𝑡))))

𝑇 are the activation
functions of the neurons. And the second and third equations
of (1) represent the initial condition and the Dirichlet bound-
ary condition, respectively.

With the help of a standard fuzzy inference method, (1)
can be inferred as follows:

𝜕V

𝜕𝑡
= ∇ ⋅ (Γ (𝑡, 𝑥, V) ∘ ∇

𝑝
V)

− 𝐴 (V)
{

{

{

𝐵 (V) −
𝑟

∑

𝑗=1

ℎ
𝑗
(𝜔 (𝑡))

× [𝐶
𝑗
𝑓 (V) + 𝐷

𝑗
𝑔

× (V (𝑡 − 𝜏 (𝑡) , 𝑥)) ]
}

}

}

,

V (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,

V (𝑡, 𝑥) = 0 ∈ 𝑅𝑛, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω,

(2)

where 𝜔(𝑡) = [𝜔
1
(𝑡), 𝜔
2
(𝑡), . . . , 𝜔

𝑠
(𝑡)], ℎ

𝑗
(𝜔(𝑡)) = (𝑤

𝑗
(𝜔(𝑡)))/

(∑
𝑟

𝑘=1
𝑤
𝑘
(𝜔(𝑡))), 𝑤

𝑗
(𝜔(𝑡)) : 𝑅

𝑠
→ [0, 1] (𝑗 = 1, 2, . . . , 𝑟)

is the membership function of the system with respect to
the fuzzy rule 𝑗. ℎ

𝑗
can be regarded as the normalized

weight of each IF-THEN rule, satisfying ℎ
𝑗
(𝜔(𝑡)) ⩾ 0 and

∑
𝑟

𝑗=1
ℎ
𝑗
(𝜔(𝑡)) = 1.

For convenience’s sake, we need to introduce some
standard notations.

(i) Denote |𝐶| = (|𝑐
𝑖𝑗
|)
𝑛×𝑛

for any matrix 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

.

(ii) Denote |V(𝑡, 𝑥)| = (|V
1
(𝑡, 𝑥)|, |V

2
(𝑡, 𝑥)|, . . . , |V

𝑛
(𝑡, 𝑥)|)

𝑇

for any V(𝑡, 𝑥) = (V
1
(𝑡, 𝑥), V

2
(𝑡, 𝑥), . . . , V

𝑛
(𝑡, 𝑥))

𝑇.
(iii) 𝑢 ⩾ V if 𝑢

𝑖
⩾ V
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛, where 𝑢 =

(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇, V = (V

1
, V
2
, . . . , V

𝑛
)
𝑇
∈ 𝑅
𝑛.

In addition, we also introduce the following standard
notations similarly as [2, (iii)–(X)]:

𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛

> 0 (< 0) , 𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛

⩾ 0 (⩽ 0) ,

𝑄
1
⩾ 𝑄
2
(𝑄
1
⩽ 𝑄
2
) ,

𝑄
1
> 𝑄
2
(𝑄
1
< 𝑄
2
) , and the identity matrix 𝐼.

(3)

Throughout this paper, we assume the following.

(H1) There exist positive definite matrices 𝐴 = diag(𝑎
1
,

𝑎
2
, . . . , 𝑎

𝑛
) and 𝐴 = diag(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) such that

0 < 𝑎
𝑖
⩽ 𝑎
𝑖
(𝑟) ⩽ 𝑎

𝑖
, 𝑟 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛. (4)

(H2) There exists a positive definite matrix 𝐵 =

diag(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) such that 𝑏

𝑖
(0) = 0 and

𝑏
𝑖
(𝑟)

𝑟𝑝−1
⩾ 𝑏
𝑖
, 0 ̸= 𝑟 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛. (5)

(H3) There exist positive definite matrices 𝐹 = diag(𝐹
1
,

𝐹
2
, . . . , 𝐹

𝑛
) and 𝐺 = diag(𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑛
) such that

𝑓𝑖 (𝑟)
 ⩽ 𝐹𝑖|𝑟|

𝑝−1
,

𝑔𝑖 (𝑟)
 ⩽ 𝐺𝑖|𝑟|

𝑝−1
, 𝑟 ∈ 𝑅,

𝑖 = 1, 2, . . . , 𝑛.

(6)

From (H1)–(H3), we know that 𝑓(0) = 𝑔(0) = 0 ∈ 𝑅
𝑛,

and V = 0 is an equilibrium of (2).

Lemma 1. For any 𝑎, 𝑏 ∈ (0, +∞), One has

𝑎
𝑝−1
𝑏 ⩽

𝑝 − 1

𝑝
𝑎
𝑝
+
𝑏
𝑝

𝑝
. (7)

3. Main Result

Before giving the main result of this paper, we have to
present the following Lemma via some variational methods
in the Sobolev space 𝑊1,𝑝

0
(Ω), which is the completion of

𝐶
∞

0
(Ω) with respect to the norm ‖𝜂‖ = (∫

Ω
|∇𝜂(𝑥)|

𝑝
𝑑𝑥)
1/𝑝.

Denote by 𝜆
1
the first eigenvalue of −Δ

𝑝
in Sobolev space

𝑊
1,𝑝

0
(Ω), where 𝜆

1
= min{∫

Ω
|∇𝜂(𝑥)|

𝑝
𝑑𝑥 : 𝜂(𝑥) ∈ 𝑊

1,𝑝

0
(Ω),

∫
Ω
|𝜂(𝑥)|

𝑝
𝑑𝑥 = 1} (see [22–24] for details).
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Lemma 2. Let 𝑄 = diag(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
) be a positive definite

matrix, and let V be a solution of the fuzzy system (2). Then
One has

∫
Ω

V𝑇𝑄(∇ ⋅ (Γ (𝑡, 𝑥, V) ∘ ∇
𝑝
V)) 𝑑𝑥 ⩽ −𝜆

1
𝑞Γ‖V‖𝑝

𝑝
, (8)

where Γ = min
𝑖,𝑘
(inf
𝑡,𝑥,VΓ𝑖𝑘(𝑡, 𝑥, V)), ‖V‖

𝑝

𝑝
= ∑
𝑛

𝑖=1
∫
Ω
|V
𝑖
|
𝑝
𝑑𝑥,

and 𝑞 is a positive scalar, satisfying 𝑄 > 𝑞𝐼.

Proof. Since V is a solution of system (2), it follows by Gauss
formula and the Dirichlet boundary condition that

∫
Ω

V𝑇𝑄(∇ ⋅ (Γ (𝑡, 𝑥, V) ∘ ∇
𝑝
V)) 𝑑𝑥

= ∫
Ω

V𝑇𝑄(
𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(Γ
1𝑘

∇V1


𝑝−2 𝜕V1
𝜕𝑥
𝑘

) , . . . ,

𝑚

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(Γ
𝑛𝑘

∇V𝑛


𝑝−2 𝜕V𝑛
𝜕𝑥
𝑘

))

𝑇

𝑑𝑥

= −

𝑚

∑

𝑘=1

𝑛

∑

𝑗=1

∫
Ω

𝑞
𝑗
Γ
𝑗𝑘


∇V
𝑗



𝑝−2

(

𝜕V
𝑗

𝜕𝑥
𝑘

)

2

𝑑𝑥

⩽ −𝜆
1
𝑞Γ‖V‖𝑝

𝑝
.

(9)

Remark 3. Lemma 2 actually generalizes the conclusion of
[7, Lemma 2.1] and [25, Lemma 2.4] from Hilbert space
𝐻
1

0
(Ω) to Banach space 𝑊1,𝑝

0
(Ω). Particularly in the case of

Ω = (0, 𝑇) ⊂ 𝑅
1 or 𝑊1,𝑝

0
(0, 𝑇), the first eigenvalue 𝜆

1
=

((2/𝑇) ∫
(𝑝−1)

1/𝑝

0
(𝑑𝑡/(1 − (𝑡

𝑝
/(𝑝 − 1)))

1/𝑝

))
𝑝 (see, e.g., [22]).

Theorem 4. Suppose that 𝑝 = 𝑚
1
/𝑚
2
> 1, where 𝑚

1
is an

even number while 𝑚
2
is an odd number. If, in addition, there

exist a positive definitematrix𝑄 = diag(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
) and two

positive scalars 𝑞, 𝑞 such that the following inequalities hold:

[𝜆
1
Γ + 𝜆min (𝐴𝐵)] 𝑞

> [

[

𝑛 (𝜆max𝐴) (𝜆max𝐹)

×

𝑟

∑

𝑗=1


𝑐
𝑗


+ (

𝑛

𝑝
+
𝑛 (𝑝 − 1)

(1 − 𝜏) 𝑝
)

× (𝜆max𝐴) (𝜆max𝐺)
𝑟

∑

𝑗=1


𝑑
𝑗


]

]

𝑞,

(10)

𝑞
𝑖
> 𝑞, 𝑖 ∈N, (11)

𝑞
𝑖
< 𝑞, 𝑖 ∈N, (12)

then the null solution of (2) is globally asymptotically stable,
where N = {1, 2, . . . , 𝑛}, 𝜏(𝑡) ⩽ 𝜏 < 1, |𝑐

𝑗
| = max

𝑖,𝑘
|𝑐
(𝑗)

𝑖𝑘
| for

thematrix𝐶
𝑗
= (𝑐
(𝑗)

𝑖𝑘
)
𝑛×𝑛

, and |𝑑
𝑗
| = max

𝑖,𝑘
|𝑑
(𝑗)

𝑖𝑘
| for thematrix

𝐷
𝑗
= (𝑑
(𝑗)

𝑖𝑘
)
𝑛×𝑛

.

Proof. Define the Lyapunov-Krasovskii functional as follows:

𝑉 (𝑡) = 𝑉
1
(𝑡) +

1

1 − 𝜏
𝑉
2
(𝑡) , (13)

where

𝑉
1
(𝑡) = ∫

Ω

V𝑇𝑄V 𝑑𝑥,

𝑉
2
(𝑡) = 2𝑛𝑞 (𝜆max𝐴) (𝜆max𝐺)

𝑝 − 1

𝑝

×

𝑟

∑

𝑗=1

𝑛

∑

𝑘=1


𝑑
𝑗


∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

V𝑘 (𝑠, 𝑥)


𝑝

𝑑𝑠 𝑑𝑥.

(14)

Evaluating the time derivation of 𝑉
1
(𝑡) along the trajec-

tory of the fuzzy system (2), we can get by Lemma 2

𝑉


1
(𝑡) ⩽ −2𝜆

1
𝑞Γ‖V‖𝑝

𝑝

− 2∫
Ω

V𝑇𝑄𝐴 (V) 𝐵 (V) 𝑑𝑥

+ 2

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜔 (𝑡)) ∫

Ω

V𝑇𝑄[𝐴 (V) 𝐶
𝑗
𝑓 (V)

+ 𝐴 (V) 𝐷
𝑗
𝑔 (V
𝜏
)] 𝑑𝑥

⩽ −2𝜆
1
𝑞Γ‖V‖𝑝

𝑝
− 2∫
Ω

V𝑇𝑄𝐴 (V) 𝐵 (V) 𝑑𝑥

+ 2

𝑟

∑

𝑗=1

∫
Ω


V𝑇

𝑄 [𝐴


𝐶
𝑗



𝑓 (V)
 + 𝐴


𝐷
𝑗



𝑔 (V𝜏)
] 𝑑𝑥,

(15)

where we denote V
𝜏
= V(𝑡 − 𝜏(𝑡), 𝑥) for convenience.

Then we can get by (H1), (H2) and the restrictive condi-
tions on the parameter 𝑝

∫
Ω

V𝑇𝑄𝐴 (V) 𝐵 (V) 𝑑𝑥

⩾ 𝑞∫
Ω


V𝑇

𝐴𝐵(

V1


𝑝−1

,
V2


𝑝−1

, . . . ,
V𝑛


𝑝−1

)
𝑇

𝑑𝑥

⩾ 𝑞𝜆min (𝐴𝐵) ‖V‖
𝑝

𝑝
.

(16)

It follows by (H3) and Lemma 1 that

∫
Ω


V𝑇

𝑄𝐴


𝐶
𝑗



𝑓 (V)
 𝑑𝑥

⩽ ∫
Ω


V𝑇𝑄


𝐴

𝐶
𝑗


𝐹(
V1


𝑝−1

,
V2


𝑝−1

, . . . ,
V𝑛


𝑝−1

)
𝑇

𝑑𝑥

= 𝑞

𝑛

∑

𝑘=1

𝑛

∑

𝑖=1

∫
Ω

V𝑖
 𝑎𝑖


𝑐
(𝑗)

𝑖𝑘


𝐹
𝑘

V𝑘


𝑝−1

𝑑𝑥
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⩽ 𝑞

𝑛

∑

𝑘=1

𝑛

∑

𝑖=1

∫
Ω

𝑎
𝑖


𝑐
(𝑗)

𝑖𝑘


𝐹
𝑘
(
𝑝 − 1

𝑝

V𝑘


𝑝

+

V𝑖


𝑝

𝑝
)𝑑𝑥

= 𝑞
𝑝 − 1

𝑝

𝑛

∑

𝑘=1

𝑛

∑

𝑖=1

∫
Ω

𝑎
𝑖


𝑐
(𝑗)

𝑖𝑘


𝐹
𝑘

V𝑘


𝑝

𝑑𝑥

+ 𝑞
1

𝑝

𝑛

∑

𝑘=1

𝑛

∑

𝑖=1

∫
Ω

𝑎
𝑖


𝑐
(𝑗)

𝑖𝑘


𝐹
𝑘

V𝑖


𝑝

𝑑𝑥

⩽ 𝑞

𝑐
𝑗


(𝜆max𝐴) (𝜆max𝐹)

× (
𝑝 − 1

𝑝

𝑛

∑

𝑘=1

𝑛

∑

𝑖=1

∫
Ω

V𝑘


𝑝

𝑑𝑥 +
1

𝑝

𝑛

∑

𝑘=1

𝑛

∑

𝑖=1

∫
Ω

V𝑖


𝑝

𝑑𝑥)

= 𝑛𝑞

𝑐
𝑗


(𝜆max𝐴) (𝜆max𝐹)

× (
𝑝 − 1

𝑝

𝑛

∑

𝑘=1

∫
Ω

V𝑘


𝑝

𝑑𝑥 +
1

𝑝

𝑛

∑

𝑖=1

∫
Ω

V𝑖


𝑝

𝑑𝑥)

= 𝑛𝑞

𝑐
𝑗


(𝜆max𝐴) (𝜆max𝐹) ‖V‖

𝑝

𝑝
.

(17)

Similarly,

∫
Ω


V𝑇

𝑄𝐴


𝐷
𝑗



𝑔 (V𝜏)
 𝑑𝑥

⩽ 𝑞

𝑛

∑

𝑘=1

𝑛

∑

𝑖=1

∫
Ω

𝑎
𝑖


𝑑
(𝑗)

𝑖𝑘


𝐺
𝑘

× (
𝑝 − 1

𝑝

V𝑘 (𝑡 − 𝜏 (𝑡) , 𝑥)


𝑝

+

V𝑖 (𝑡, 𝑥)


𝑝

𝑝
)𝑑𝑥

⩽ 𝑛𝑞

𝑑
𝑗


(𝜆max𝐴) (𝜆max𝐺)

× (
𝑝 − 1

𝑝

𝑛

∑

𝑘=1

∫
Ω

V𝑘 (𝑡 − 𝜏 (𝑡) , 𝑥)


𝑝

𝑑𝑥 +
1

𝑝
‖V‖𝑝
𝑝
) .

(18)

Combining (15)–(18) results in

𝑉


1
(𝑡) ⩽ −2(𝜆

1
Γ𝑞 + 𝑞𝜆min (𝐴𝐵) − 𝑛𝑞 (𝜆max𝐴) (𝜆max𝐹)

×

𝑟

∑

𝑗=1


𝑐
𝑗


−
1

𝑝
𝑛𝑞 (𝜆max𝐴) (𝜆max𝐺)

𝑟

∑

𝑗=1


𝑑
𝑗


)

× ‖V‖𝑝
𝑝
+ 2𝑛𝑞 (𝜆max𝐴) (𝜆max𝐺)

𝑝 − 1

𝑝

×

𝑟

∑

𝑗=1

𝑛

∑

𝑘=1


𝑑
𝑗


∫
Ω

V𝑘 (𝑡 − 𝜏 (𝑡) , 𝑥)


𝑝

𝑑𝑥.

(19)

On the other hand,

𝑉


2
(𝑡) = 2𝑛𝑞 (𝜆max𝐴) (𝜆max𝐺)

𝑝 − 1

𝑝
‖V‖𝑝
𝑝

𝑟

∑

𝑗=1


𝑑
𝑗



− (1 − 𝜏

(𝑡)) 2𝑛𝑞 (𝜆max𝐴) (𝜆max𝐺)

𝑝 − 1

𝑝

×

𝑟

∑

𝑗=1

𝑛

∑

𝑘=1


𝑑
𝑗


∫
Ω

V𝑘 (𝑡 − 𝜏 (𝑡) , 𝑥)


𝑝

𝑑𝑥

⩽ 2𝑛𝑞

𝑑
𝑗


(𝜆max𝐴) (𝜆max𝐺)

𝑝 − 1

𝑝
‖V‖𝑝
𝑝

𝑟

∑

𝑗=1


𝑑
𝑗



− (1 − 𝜏) 2𝑛𝑞 (𝜆max𝐴) (𝜆max𝐺)
𝑝 − 1

𝑝

×

𝑟

∑

𝑗=1

𝑛

∑

𝑘=1


𝑑
𝑗


∫
Ω

V𝑘 (𝑡 − 𝜏 (𝑡) , 𝑥)


𝑝

𝑑𝑥.

(20)

So we conclude from (10) that

𝑉

(𝑡) ⩽ −2(𝜆

1
𝑞Γ + 𝑞𝜆min (𝐴𝐵) − 𝑛𝑞 (𝜆max𝐴) (𝜆max𝐹)

×

𝑟

∑

𝑗=1


𝑐
𝑗


−
1

𝑝
𝑛𝑞 (𝜆max𝐴) (𝜆max𝐺)

𝑟

∑

𝑗=1


𝑑
𝑗



−
1

1 − 𝜏
𝑛𝑞 (𝜆max𝐴) (𝜆max𝐺)

𝑝 − 1

𝑝

𝑟

∑

𝑗=1


𝑑
𝑗


)

× ‖V‖𝑝
𝑝
⩽ 0.

(21)

It follows by the standard Lyapunov functional theory that the
null solution of the fuzzy system (2) is globally asymptotically
stable.

Remark 5. In many previous related literatures (see, e.g., [1–
6]), the nonlinear 𝑝-Laplace (𝑝 > 2) diffusion terms were
omitted in the deductions, which results in that their stability
criteria do not contain the diffusion terms. In otherwords, the
diffusion terms do not affect their results. In addition, when
𝑝 = 2, 2-Laplace is the linear Laplace, and there are many
papers (see, e.g., [25–29]) in which the Laplace diffusion item
plays its role in their stability criteria, for the linear Laplace
PDEs can be considered in the special Hilbert space 𝐻1(Ω)
that can be orthogonally decomposed into the direct sum of
infinitelymany eigenfunction spaces. However, the nonlinear
𝑝-Laplace (𝑝 > 1, 𝑝 ̸= 2) brings great difficulties, for the
nonlinear 𝑝-Laplace PDEs should be considered in the frame
of Sobolev space 𝑊1,𝑝(Ω) that is only a reflexive Banach
space. Indeed, owing to the great difficulties, the authors only
provide in [4] the stability criterion in which the nonlinear
𝑝-Laplace items play roles in the case of 1 < 𝑝 < 2. However,
in this paper, the nonlinear 𝑝-Laplace diffusion terms play
a positive role in our Theorem 4 for the case of 𝑝 > 2 or
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𝑝 > 1, which also gives a positive answer to the open problem
proposed in [2] to some extent. Besides, we will provide a
numerical example where our Theorem 4 works whereas [2,
Corollary 15] do not (see, Example 2).

Remark 6. Particularly when 𝑝 = 2, Theorem 4 provides
a global asymptotical stability criterion for the familiar
reaction-diffusion fuzzy CGNNs with infinite delay. Even in
this particular case, the result is also good thanks to the
infinite allowable upper bounds of time delays.

4. Numerical Example

Example 1. Consider the 𝑝-Laplace fuzzy T-S dynamic equa-
tions as follows.

Fuzzy Rule 1.
IF 𝜔
1
(𝑡) is 1/𝑒−2𝜔1(𝑡), THEN

𝜕V

𝜕𝑡
= ∇ ⋅ (Γ (𝑡, 𝑥, V) ∘ ∇

𝑝
V)

− 𝐴 (V) {𝐵 (V) − [𝐶
1
𝑓 (V) + 𝐷

1
𝑔 (V (𝑡 − 𝜏 (𝑡) , 𝑥))]} ,

V (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,

V (𝑡, 𝑥) = 0 ∈ 𝑅2, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω.

(22)

Fuzzy Rule 2.
IF 𝜔
2
(𝑡) is 1 − (1/𝑒−2𝜔1(𝑡)), THEN

𝜕V

𝜕𝑡
= ∇ ⋅ (Γ (𝑡, 𝑥, V) ∘ ∇

𝑝
V) − 𝐴 (V)

× {𝐵 (V) − [𝐶
2
𝑓 (V) + 𝐷

2
𝑔 (V (𝑡 − 𝜏 (𝑡) , 𝑥))]} ,

V (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,

V (𝑡, 𝑥) = 0 ∈ 𝑅2, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω,

(23)

where V(𝑡, 𝑥) = (V
1
(𝑡, 𝑥), V

2
(𝑡, 𝑥))

𝑇, Ω = (0, 𝜋), 𝑝 = 4/3, and
then the first eigenvalue 𝜆

1
= ((2/𝜋) ∫

(𝑝−1)
1/𝑝

0
(𝑑𝑡/(1−(𝑡

𝑝
/(𝑝−

1)))
1/𝑝
))
𝑝
= 0.7915 (see Remark 3).The initial value function

is presented as follows:

𝜙 (𝑠, 𝑥) = (
0.25 (1 − cos (5𝜋𝑥2)) sin398 (𝑥2 − 0.25) 𝑒−100𝑠

0.2cos2 (4𝜋𝑥2) sin508 (𝑥2 − 0.55) 𝑒−100𝑠
) .

(24)

Let 𝜏(𝑡) = 𝑡/3, and then 𝜏(𝑡) ⩽ 1/3 = 𝜏 < 1. Besides,
𝐴(V) = diag(0.7 + 0.2sin2(V

1
), 0.6 + 0.28sin2(V

2
)), 𝐵(V) =

(2V1/3
1
, 1.9V1/3
2
)
𝑇, and 𝑓(V) = 𝑔(V) = (0.1V1/3

1
, 0.2V1/3
2
)
𝑇, and

correspondingly we assume

𝐴 = (
0.7 0

0 0.6
) , 𝐴 = (

0.9 0

0 0.88
) ,

𝐵 = (
2 0

0 1.9
) , 𝐹 = (

0.1 0

0 0.2
) = 𝐺.

(25)

In addition, 𝑟 = 2, and

𝐶
1
= (

−0.2 0.3

0.28 0.3
) = 𝐷

1
, 𝐶

2
= (

0.29 0.18

0.2 −0.1
) = 𝐷

2
,

Γ (𝑡, 𝑥, V) = (
0.008 0.007

0.006 0.006
) .

(26)

Hence, Γ = 0.006, |𝑐
1
| = |𝑑

1
| = 0.3, |𝑐

2
| = |𝑑

2
| = 0.29,

𝜆min(𝐴𝐵) = 1.1400, 𝜆max𝐴 = 0.9, and 𝜆max𝐹 = 𝜆max𝐺 =

0.2. Then we can use MATLAB LMI toolbox to solve the
inequalities (10)–(12), and obtain 𝑡min = −0.5569 < 0 which
implies feasible. Further, extracting the datum shows 𝑞 =

19.7994, 𝑞 = 31.1620, 𝑞
𝑖
= 24.3210, 𝑖 = 1, 2. Thereby, we

can conclude from Theorem 4 that the null solution for this
fuzzy dynamic equation is globally asymptotically stable (see
Figures 1 and 2).

Example 2. To compare ourTheorem 4with [2, Corollary 15],
wemay consider the following 𝑝-Laplace dynamic equations.

𝜕V

𝜕𝑡
= ∇ ⋅ (Γ (𝑡, 𝑥, V) ∘ ∇

3
V)

− 𝐴 (V) {𝐵 (V) − [𝐶𝑓 (V) + 𝐷𝑔 (V (𝑡 − 30, 𝑥))]} ,

V (𝜃, 𝑥) = 𝜙 (𝜃, 𝑥) , (𝜃, 𝑥) ∈ (−∞, 0] × Ω,

V (𝑡, 𝑥) = 0 ∈ 𝑅2, (𝑡, 𝑥) ∈ 𝑅 × 𝜕Ω,

(27)

where V(𝑡, 𝑥) = (V
1
(𝑡, 𝑥), V

2
(𝑡, 𝑥))

𝑇, Ω = (0, 𝜋/2), 𝑝 = 3,
and then the first eigenvalue 𝜆

1
= 7.3104 (see Remark 5). Let

𝜏(𝑡) ≡ 30, and then 𝜏(𝑡) ≡ 0 < 1. In addition, 𝑟 = 1 is the
number of the IF-THEN. Assume

𝐴 = (
0.7 0

0 0.6
) , 𝐴 = (

0.9 0

0 0.88
) ,

𝐵 = (
0.2 0

0 0.1
) , 𝐹 = (

0.1 0

0 0.2
) = 𝐺,

𝐶 = (
−0.2 0.3

0.3 0.3
) = 𝐷, Γ (𝑡, 𝑥, V) = (

0.08 0.07

0.06 0.06
) .

(28)

Below we shall employ [2, Corollary 15] and our
Theorem 4 to judge the stability of System (27), respectively.

In [2, Corollary 15], letting 𝜆 = 0.001, we use MATLAB
LMI toolbox to solve the LMI conditions [2, (37)] and obtain
𝑡min = 7.1357 × 10

−13
> 0, which implies that these LMI

constraints are not strictly feasible. Again, let 𝜆 = 1 and 𝜆 =
10 in [2, Corollary 15], respectively. And then 𝑡min = 2.1479 ×

10
−20

> 0 and 𝑡min = 2.1026 × 10
−16

> 0, respectively.
Hence, we cannot judge the stability of System (27) from
[2, Corollary 15]. However, the LMIs of [2, Corollary 15] are
only the sufficient condition for the stability, not necessary
for stability. Indeed, we use MATLAB LMI toolbox to solve
(10)–(12) in Theorem 4 and obtain 𝑡min = −0.0794 < 0,
which implies being feasible. Further, extracting the datum
results in that 𝑞 = 0.9803, 𝑞 = 1.8381, and 𝑞

𝑖
= 1.3671,
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Table 1: Comparisons between [2, Corollary 15] andTheorem 4.

[2, Corollary 15]
𝜆 = 0.001

𝜆 = 1 𝜆 = 10 Theorem 4

𝑡min >0 >0 >0 <0
Feasibility Unfeasible Unfeasible Unfeasible Feasible
Stability Unknown Unknown Unknown Global asymptotical stability

for 𝑖 = 1, 2. Thereby, we can conclude from Theorem 4 that
the null solution for this fuzzy dynamic equation is globally
asymptotically stable.

There are some interesting comparisons between [2,
Corollary 15] and ourTheorem 4 (see Table 1).

Remark 7. Since we consider the role of the nonlinear 𝑝-
Laplace diffusion item in the stability criterion, Example 2
illustrates that our Theorem 4 can judge what [2, Corollary
15] cannot do.

Conclusions

In this paper, the global asymptotical stability criterion of
the nonlinear 𝑝-Laplace fuzzy T-S dynamical equations with
infinite delay was derived by the way of Lyapunov-Krasovskii
functional approach and some variational methods in the
Sobolev space 𝑊1,𝑝

0
(Ω). The 𝑝-Laplace diffusion item plays

its role in our stability criterion while the stability criteria
obtained in many previous literatures did not contain the
diffusion terms. In fact, when 𝑝 = 2, 2-Laplace is the linear

Laplace, and there are many papers (see, e.g., [25–29]) in
which the Laplace diffusion itemplays its role in their stability
criteria, for the linear Laplace PDEs can be considered in
the special Hilbert space 𝐻1(Ω) that can be orthogonally
decomposed into the direct sum of infinitely many eigen-
function spaces. However, the nonlinear 𝑝-Laplace (𝑝 > 1,
𝑝 ̸= 2) brings great difficulties, for the nonlinear 𝑝-Laplace
PDEs should be considered in the frame of Sobolev space
𝑊
1,𝑝
(Ω) that is only a reflexive Banach space. Indeed, owing

to the great difficulties, the authors only provide in [4] the
stability criterion in which the nonlinear 𝑝-Laplace items
play roles in the case of 1 < 𝑝 < 2. Now in this paper,
we present the stability criterion in which the nonlinear 𝑝-
Laplace items play roles in the case of 𝑝 > 2 or 𝑝 >

1. Moreover, numerical example shows the effectiveness
of the proposed methods. Since the non-linear 𝑝-Laplace
dynamical equations have many physics and engineering
background, including the famous Cohen-Grossberg neural
networks, a further profound study is very interesting in
mathematical theories, methods, and even practice. Up to
now, we do not know how the 𝑝-Laplace (𝑝 > 1) diffusion
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Figure 2: The state variable V
2
(𝑡, 𝑥).

item plays a role in 𝑝-stability criteria. This problem remains
open and challenging.
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