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Artifactual sources of resting-state (RS) FMRI can originate from headmotion, physiology, and hardware. Of these sources, motion
has received considerable attention andwas found to induce corrupting effects by differentially biasing correlations between regions
depending on their distance. Numerous corrective approaches have relied on the identification and censoring of high-motion time
points and the use of the brain-wide average time series as a nuisance regressor to which the data are orthogonalized (Global Signal
Regression, GSReg). We replicate the previously reported head-motion bias on correlation coefficients and then show that while
motion can be the source of artifact in correlations, the distance-dependent bias is exacerbated byGSReg. Put differently, correlation
estimates obtained after GSReg are more susceptible to the presence of motion and by extension to the levels of censoring. More
generally, the effect of motion on correlation estimates depends on the preprocessing steps leading to the correlation estimate,
with certain approaches performing markedly worse than others. For this purpose, we consider various models for RS FMRI
preprocessing and show that the local white matter regressor (WMeLOCAL), a subset of ANATICOR, results in minimal sensitivity
to motion and reduces by extension the dependence of correlation results on censoring.

1. Introduction

Resting-State Functional Magnetic Resonance Imaging (RS
FMRI) has become a popularmethodology for studying brain
function with FMRI and holds promise for understanding
brain functions without a task or stimulus [1]. A commonly
used approach employs the cross correlation between time
series to estimate the strength of connection between a pair
of voxels or regions of interest after possible artifacts are
removed by linear regression (nuisance-removal regression)
from the original echo planar imaging (EPI) time series data.
Part of the appeal of RS FMRI is the relative ease with which
the data can be acquired.

However, drawing valid inferences can be fraught with
pitfalls, as illustrated in recent publications that have caused

a considerable stir in the functional neuroimaging field. For
example, Power et al. [2] showed that head movement differ-
ences between subjects might explain perceived differences
in the spatial patterns of brain connectivity and suggested
that these motion differences differentially bias short-range
versus long-range correlations. This inference was reached
by considering the change in interregional correlations after
high-motion points were eliminated from the estimation
of correlation. Removing high-motion samples differentially
affected correlations depending on interregional distance,
thus implicating motion as the source of this distance-
dependent bias. As a result, the authors conclude that
censoring is the recommended approach for reducing the
effects of motion. While we agree with the notion that
data censoring can be important, we find that the reported
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distance-dependent bias is not primarily induced by motion.
It is strongly exacerbated by the inclusion of the global signal
averaged overwhole brain (GS) and related regressors derived
by time series averaging over regions containing signals of
interest.

In this work, we replicate the bias reported in [2] using
the data the authors have very generously made public;
we demonstrate how the exclusion of particular tissue-
based regressors reduces the distance-dependent bias effect
considerably and how the use of a variant on ANATICOR
[3] almost entirely eliminates the effect, establishing that our
recommended approach is less sensitive to motion induced
artifacts. This result is yet another demonstration of why the
GS and comparable time series averaged over large brain
areas, a practice still widely used, should not be projected
out of the data in RS-FMRI [3–5]. Finally, we provide an
annotated flowchart that presents our recommended data
preprocessing pipeline.

2. Materials and Methods

2.1. MRI Data. Image data used in [2] are open to the public
at the FCON 1000 project website (http://fcon 1000.projects
.nitrc.org/). We used children group data (cohort 1; 𝑁 =

22) that exhibited larger motion effects than the other
two groups (adolescent and adult cohorts in the full data
set). The details of the cohort are described in [2] and
the website (http://fcon 1000.projects.nitrc.org/indi/retro/
Power2012.html).

2.2. Preprocessing Pipeline. Overview of the preprocessing
pipeline for this work is described in Figure 1. The rec-
ommended preprocessing steps for RS FMRI analysis are
described towards the end of this work (see Figure 7). We
deviate fromour recommended pipeline to accommodate the
particulars of the data at hand, as detailed in the text below
and in the flowchart in Figure 1.

2.2.1. Segmentation of T1-Weighted Images. T1-weighted
images of individual subjects were aligned to the first frame
of FMRI echo planar imaging (EPI) data of resting scans and
segmented into gray, white, and cerebrospinal fluid tissue
classes using AFNI’s “3dSeg” program [6].

2.2.2. Despiking, Slice-Timing, and Head-Motion Correction.
Despiking was done with AFNI’s “3dDespike” program for
Figures 2 and 4(e), as the first step of the preprocessing
pipeline. Each voxel’s time series 𝑓(𝑡) is 𝐿1 fit to a Fourier
series of order 𝐿, defaulting to 1/30 of the number of time
points:

𝑓 (𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡
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Figure 1: Overall preprocessing pipeline for this work (see text for
detail of each step).

where 𝑇 is the duration of time series, the parameters 𝑎, 𝑏, 𝑐,
𝑑, and 𝑒 are chosen to minimize the sum over 𝑡 of |V(𝑡)−𝑓(𝑡)|
(𝐿1 regression), and V(𝑡) is the EPI time series of each voxel.
The value of 𝐿 used herein is 𝑁/30, where 𝑁 is the number
of time points. The median absolute deviation (MAD) of the
residuals is used to obtain a standard deviation estimate𝜎 that
is robust to outliers:

𝜎 = √
𝜋

2
(MAD) . (2)

For each voxel value, define 𝑠 as follows:

𝑠 (𝑡) =
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, (3)

and values with 𝑠 greater than the threshold value of 𝑠 for a
spike (𝑐
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) are replaced with a value that yields a modified 𝑠:
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2
is the upper range of the allowed deviation from𝑓(𝑡).
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2
). By default parameters

𝑐
1
and 𝑐
2
are set to 2.5 and 4, respectively, although program

“3dDespike” allows users to modify them. With the default
parameters, despiking consists of transforming spike values
from the range of [2.5 𝜎, ∞) to [2.5 𝜎, 4 𝜎). The purpose of
this transformation is to make the output data be continuous
in the input data: small changes in the input (e.g., a value
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going from slightly under a threshold to slightly over) will not
produce large changes in the despiked output. Slice-timing
correction was performed, and motion correction was done
by rigid body registration of EPI images to a base image [7].
Alignment of EPI data to the T1 was accomplished via an
affine transformation, as was the spatial normalization of
the T1 to the MNI avg152 T1 template, in MNI stereotaxic
coordinates. All 3 transformations were applied at once to the
EPI data to prevent multiple resampling steps.

Despiking was skipped in [2]. In practice, however,
we find that despiking appears to improve the results of
volume registration over time as illustrated in Figure 2
(also see supplementary video S1 available on line at
http://dx.doi.org/10.1155/2013/935154). With despiking, mo-
tion parameters are less variable and the alignment quality
is superior when visually examined.

2.2.3. Nuisance-Removal Regression. Five types of nuisance
regressionmodels were compared in this study. All regressors
were extracted frommotion-corrected EPI data before spatial
smoothing with an isotropic Gaussian smoothing kernel
(full-width-at-half-maximum; FWHM = 6mm). Extraction
of tissue-based regressors prior to any spatial smoothing is
essential, to avoid mixing data from different tissue types;
this point, while obvious, is often not made in Methods
sections of papers. Regressors in the first model, GS +
MO, included the 6 motion estimates, the tissue-based
averages (global signal, GS; white matter signal, WM; large
ventricle signal, LV), and the first time difference of each
of the aforementioned regressors. In addition, nth-order
Legendre polynomials were used to model slow baseline
fluctuations. n is automatically determined by the number of
EPI time points in the AFNI program afni proc.py and was
set to 4 for the time series analyzed here (http://afni.nimh
.nih.gov/pub/dist/doc/program help/afni proc.py.html)

𝑌
𝑖
= 𝑋GS𝐵

𝑖

GS + 𝑋WM𝐵
𝑖

WM + 𝑋LV𝐵
𝑖

LV + 𝑋MO𝐵
𝑖

MO + 𝑋DT𝐵
𝑖

DT

+ residual (model GS +MO) ,
(5)

where 𝑌𝑖 is the EPI time series at a voxel 𝑖, 𝑋GS is a global
signal (GS) calculated by averaging the time-series over all
brain mask voxels, 𝑋WM is the average signal of all white
matter voxels, 𝑋LV are the averaged time series of lateral
ventricles (LV) masks, 𝑋MO is the group of six regressors for
motion correction parameters (three translation and three
rotation), and𝑋DT is the group of 𝑛 detrending polynomials.
The residual is the “cleaned” time series after subtracting the
𝐿
2 best-fit regressionmodel of the nuisance variables from the

original voxel time series. The second model, GS, excluded
the 6 motion estimate regressors and their first difference
terms as follows:
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The third model, MO, included motion estimates with their
first difference terms but omitted any tissue-derived regres-
sors and their first difference terms as follows:

𝑌
𝑖
= 𝑋MO𝐵

𝑖

MO + 𝑋DT𝐵
𝑖

DT + residual (model MO) .
(7)

The fourth model was based on the model MO but included
a localized and erodedWM regressor to form a local estimate
of nuisance parameters while avoiding gray matter signals in
the regions of interest as follows:
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(8)

where 𝑋𝑖WMeLOCAL
is a regressor of local WM signal for each

voxel i, which can be calculated by averaging signals in
eroded WM with a local sphere mask (𝑟 = 45mm) by the
AFNI program 3dLocalStat. The fifth model Depike + MO +
WMeLOCAL is based on themodelMO+ WMeLOCAL, but EPI
data Y 𝑖 was despiked at the first stage of processing. These
final two models are reduced variants of ANATICOR [3],
lacking regressors of independently acquired physiological
signals (not available in [2]) and the eroded large ventricles
(LVe) regressors, as well as the despiking step for the fourth
model (MO +WMeLOCAL).

2.2.4. Censoring and Bandpass Filtering. We based the crite-
rion for censoring on the Euclidian norm of the first time
differences of motion estimates ‖d‖

2
. This criterion has been

part of the AFNI processing stream (afni proc.py) and while
not identical to the frame-wise displacement (FD) in [2], it
serves the same function of eliminating data at time points
when significant rapidmotion is detected. At a ‖d‖

2
threshold

of 0.25mm, we censored on average 17.6% of the time series
(1.8% and 45.0% at minimum and maximum, resp.).

Though contrary to our recommendation in the Discus-
sion section, we filtered the data with a bandpass filtering ker-
nel (0.009 < 𝑓 < 0.08Hz) after nuisance regression to avoid
the degrees-of-freedom (DOFs) limitation for high movers
because the EPI data had less samples than regression model
parameters. This filtering was done via linear regression of
sine/cosine basis functions, to avoid artifacts that would
otherwise arise from the censoring process (e.g., assuming
constant time steps or including censored data points).

2.2.5. Spatial Smoothing, and Orders of Preprocessing Steps.
Figure 3 illustrates the effects of different processing steps
on the spectral content of the time series. The preprocessing
pipeline used in [2], shown to the left of Figure 3 as pipeline 1,
included spatial smoothing (FWHM = 6mm) and bandpass
filtering (0.009–0.08Hz) before regression. The first row
shows the periodogram of slice-timing and head-motion
corrected FMRI data, which were used as the common inputs
to both pipelines 1 and 2. The other rows of each column
are the periodograms of FMRI data as they are sequentially
processed by subcomponents of the pipelines from top to
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Figure 2: Improved motion correction by adding despiking step. The 6 motion estimates are from time frames in the corresponding video
file (Supplementary Material S1). The upper and lower rows show the rotation and translation estimates, respectively, and the left and right
columns show the motion estimates from the volume registration of FMRI data processed by pipelines starting without and with despiking,
respectively. Registration without despiking resulted in visible residual motion between the 60th and 65th time frames.This suggests that the
more elevated motion estimates obtained without despiking are less accurate than those with despiking.The subject used is sub0015004, who
had the largest head movements in the children group.

bottom. Gray, black, blue, and red lines are spectral densities
of GS, gray matter (GM), cerebrospinal fluid (CSF), and
WM masks, respectively, which were averaged across the
subjects. Not surprisingly, spatial smoothing can be done at
any of these stages, as long as the tissue-based regressors are
derived before spatial smoothing. The regression of nuisance
parameters can also be carried out either before or after the
bandpass filtering stage as long as the nuisance regressors are
subject to the same bandpass filter. Otherwise, the regression
step would reintroduce frequency components outside of the
bandpass range as shown in the bottom row of column 1 [8].

2.3. Correlation Analysis for Seed Pairs. For each individual
subject, the time series of 264 seed locations in standard
brain space (MNI 152) were obtained from censored and
uncensored data to produce two sets of 34,716 (264 ×

263/2) Pearson correlation coefficients [2]. The uncensored
correlation coefficients were subtracted from the motion-
censored correlation coefficients. The correlation differences
are plotted as a function of the Euclidean distance between

the pairs of seed locations in Figure 4, and the nonlinear
dependence on distance is referred to as the distance-
dependent correlation bias. Note that for all models, we
censored the same fraction of time points. We also examined
the benefits of replacing Pearson correlation with Spearman’s
rank correlation, which is more robust to the presence of
outliers in the time series that may be induced by motion.

2.4. Fits of Nuisance Regressors. We examined the spatial
distribution of variance captured by the nuisance regressors
[4] and correlations between them. To this end, we computed
(i) the marginal explained variance (𝑅2 value) maps of the
global signal (GS) and six head-motion estimates (MO) at
each voxel in the brain (see Figure 5), and (ii) the cross-
correlation matrix of the regressors to identify shared vari-
ance (see Figure 6). For these types of tests, the regressors
were obtained from the time series that were despiked, slice-
timing corrected, and volume registered.
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Figure 3: Group averaged power spectrum densities (PSD) of resting-state FMRI time series within brain tissues for each step in two different
preprocessing orders.The improper processing order (pipeline 1) can reintroduce noise frequency components (signals of no interest) in lower
frequency bands (𝑓 < 0.009Hz, the green-tinted area) and higher frequency bands (see the text for more details).

3. Results

3.1. Distance-Dependent Correlation Bias after Different Pre-
processing Steps. The distance-dependent correlation biases
present after different preprocessing steps are shown in
Figure 4, with results for the more standard Pearson cor-
relation coefficient shown in the upper row. The distance-
dependent bias with the GS + MO model (Figure 4(a))
mimic those obtained in [2]. The distance-dependent bias
is captured by the curvilinear blue trace showing the aver-
age change in correlation after censoring. What this result
indicates is that the correlation estimate can change con-
siderably in the presence of motion and in a manner that
depends on the interregional distance. In other words, GS +
MO is sensitive to motion and by extension the censoring
threshold, since eliminating points of high motion change
the correlation values considerably. The desired trend for an
estimate in these figures would be a flat line, preferably with
zero mean and zero variance as a function of distance. With
model GS, where motion estimates with their first difference
terms were excluded, the bending of the mean curve was
more pronounced than in Figure 4(a) (see Figure 4(b)). With
model MO, which included motion estimates and their first
differences but excluded tissue-based regressors, the bias was
negative throughout and was more constant across interre-
gional distances (Figure 4(c)). Figures 4(b) and 4(c) indicate
that while the addition of GS makes the correlation estimate

more sensitive to motion, the use of MO alone is not enough
to yield a robust estimate of correlations. Most notably,
however, whenWMeLOCAL was added as a nuisance regressor
tomodelMO (Figure 4(d)), the change in correlation became
considerably less variable with distance and closer to zero.
The addition of despiking further reduced the bias fluctuation
as shown in Figure 4(e) where the nonlinear dependence
of bias on distance was mostly eliminated; the mean bias
was near zero and the variance of correlation change with
censoring was the smallest of all five models tested. Thus of
all models tested, Despike +MO+WMeLOCAL resulted in the
correlation estimates withminimal sensitivity to the presence
of motion.

The lower row of Figure 4 shows results when Spearman’s
rank was used to compute the correlations. The trends are
largely similar to those in Figure 4, with a small reduction
in the scatter of correlation change for (a), (b), (c), and (d)
panels where no despiking was performed. Not surprisingly,
the use of Spearman’s rank had little effect when despiking
was included in the processing stages (e).

3.2. GS + MO Regressor Fits

3.2.1. Explained Variances of Nuisance Regressors. The
marginal explained variances (𝑅2 values) of each regressor
are presented in Figure 5. For the regressionmodel GS +MO,
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Figure 4:The column (a) shows that censoring high-motion frames from RS-FMRI data decreases short-distance correlations and augments
long-distance correlations. The Pearson and Spearman correlation differences are plotted as a function of the Euclidean 3D distance between
brain locations in the upper and lower rows, respectively. The results for each seed pair averaged over 22 subjects are plotted as red dots. Blue
circles are the grand mean of averaged correlation differences for equal numbers of brain location pairs in twelve segments (2,882 pairs per
circle), to highlight the trend. In the preprocessing steps, 6motion estimates with their first difference terms (MO) and tissue-based regressors
with their first difference terms (GS; global, eroded whitematter, and lateral ventricle signals) were regressed out. Columns (b) and (c) present
the distance-dependent correlation biases of nuisance regressionmodels GS andMO, respectively. Column (d) shows results when a localized
and eroded WM signal is added in the regression model of (c). Column (e) shows the model of Column (d) with the addition of despiking.
The censored time points of FMRI images were determined at ‖d‖

2
> 0.25mm in (a), and the same time points were used in the censoring

process of all models.

the regressors (GS and MO) fit most brain regions and
locations at the outer edge of the brain with high 𝑅2 values
(𝑅2 > 0.3) (see the column GS + MO in Figure 5). When we
measured 𝑅2 values for each regressor, a different pattern in
the spatial locations fit by each regressor could be identified:

(i) GS tended to fit GM, the sinuses, and mid-sagittal
locations (yellow to red color overlays in the column GS in
Figure 5; 𝑅2 > 0.7), and (ii) MO captured variance more
uniformly than GS throughout the brain, and the highest 𝑅2
values were observed along the boundary between cortex and
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Figure 5: Marginal explained variances (𝑅2 values) of the regressors in nuisance removal regression models GS + MO. The labels GS and
MO correspond to global signal and motion regressors, respectively.

nonbrain areas (see the column MO in Figure 5). The areas
with the high 𝑅2 values of GS and MO seldom overlapped
each other.

3.2.2. Cross-Correlation Matrix between Regressors. The
cross-correlation matrix between regressors is shown in
Figure 6. GS and its first-difference term (GS) only have
high correlations with one partial component (dP; the
displacement along the anterior-to-posterior direction) of
MO and its first difference term (MO), respectively.

4. Discussion

4.1. Correlation Bias Observed by Motion Censoring. It was
reported in [2] that the presence of motion introduces a
distance-dependent distortion of correlations, whereby cor-
relations between neighboring voxels were biased differently
than correlation between voxels that are more distant. The
authors also proposed a version (dubbed “scrubbing”) of
motion censoring as a method to mitigate the bias of motion
on correlation estimates. The evidence that the distance-
dependent bias was introduced by subject motion was
summarized in graphs that show the change in correlation
magnitude between a set of brain location pairs (regions-of-
interest; ROIs) as time points affected by excessive motion
were excluded from the correlation estimation.The censoring
process reduced the distance-dependent bias.While we agree
that censoring is a valid approach, we highlight the fact that
the distance-dependent bias does not appear to be driven by
themere presence ofmotion, and that the particular choice of
preprocessing stream considerably exacerbates this distance-
dependent bias. To illustrate this effect, we began by repro-
ducing the effects of data censoring on short- versus long-
distance correlations. For Figure 4(a), preprocessing included
regression of head motion parameters, tissue-based time
series including the GS, and their first-order time differences.
In a reproduction of the results in [2], we found that censoring
differentially affects correlations between ROIs that are close
together compared to those that are further apart. This bend
in the distribution was considered in [2] as evidence that
motion was behind this bias, since lessening the effects
of motion through censoring in turn differentially affected
correlation values between ROIs depending on their distance.
However, this is not entirely the case. In Figure 4(b), we
recomputed the correlation differences but without including

the 6 motion estimates and their first differences, thereby
amplifying the effect of censoring on the correlations. The
scatter plot of the correlation difference increased in variance
but the distance-dependent bias remained. The nonlinear
trends in these scatter plots can be considered as a measure
of the sensitivity of particular correlation estimates tomotion.
The ideal trend for a correlation estimate would be a flattened
cloud with small constant variance and a constant bias of
0. In Figure 4(c), we brought back the motion estimates
with their first differences but omitted any tissue-derived
regressors and their first differences, most notable of which
is the GS. With this model, the effect of censoring on
the correlations became considerably less dependent on the
inter-ROI distance. The correlation changes were also more
uniformly negative, implying that sharp head motion tends
to increase correlations prior to censoring (see also Gotts et
al. [9]). Taking together the results of Figures 4(a)–4(c), we
can conclude that the addition of GS to themodel exacerbates
the distance-dependence of the correlation estimates on
motion, with results that are more dependent on the level of
motion censoring. For Figure 4(d), we repeated the analysis
in Figure 4(c) with the additional inclusion of a local eroded
white matter signal, a regressor that intends to measure local
manifestations of artifacts (e.g., hardware artifacts resulting
from faulty head coil channels, [3]) while avoiding regions
with the (gray matter) signals of interest. Not only was the
dependence on the inter-ROI distance much reduced, but
also the mean and range of the correlation bias were closer
to zero. Addition of a despiking step at the very beginning
of the preprocessing pipeline (Figure 4(e); see also Satterth-
waite et al. [10]) further improved these trends, resulting in
correlation estimates that varied little with the censoring of
high-movement data points.Thedespiking procedure is often
used to dampen the effects of extreme signal deviations on
motion correction and variance estimates, and it is essentially
a mild form of censoring. While it is expected that despiked
data will always result in smaller changes in correlation after
censoring, the two operations are not interchangeable as
despiking is performed independently for each voxel. In other
terms, not all reduced spikes get flagged as high-motion
points. In conclusion, with a preprocessing model including
despiking as an initial processing step and WMeLOCAL, the
correlation estimate was least sensitive to motion artifacts
and, by extension, to censoring threshold levels. We empha-
size that the fraction of time points censored was the same
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Figure 6: Cross-correlation matrix between the regressors. The
correlation coefficients were averaged over all subjects (𝑁 = 22).
MO represents the six regressors containing rigid-body motion
parameter estimates (three translations and three rotations). GS is
the average RS-FMRI time series over all voxels in the brain mask.
WMe and LVe refer to the RS-FMRI time series averaged within
eroded white matter and eroded lateral ventricles, respectively.
Prime marks () indicate the first differences of the regressors. The
regressors were obtained from the time series that were despiked,
slice-timing corrected, and then volume registered, and spatial
smoothing was not applied to avoid mixing signal across different
brain-tissue masks.

for all the models tested. Even when despiking was adopted
in panel (e), we censored the same fraction of time points as
in panel (a), (b), and (c). Therefore the fact that censoring
had minimal effect on the correlation estimates suggests that
the Despike +WMeLOCAL approach is more robust to motion
contamination than all the other models and is consequently
least sensitive to censoring threshold levels. These results
suggest that ANATICOR, the physiological noise augmented
form of Despike +WMeLOCAL, is not only useful for reducing
local hardware artifacts, but also local manifestation of
motion. While the basis of the benefit of WMeLOCAL in
reducing themotion bias is not entirely clear, one possibility is
that it provides some adaptation to small local changes in the
𝐵
𝑧
magnetic field resulting frommovement, which will affect

the EPI time series. Lastly, we found that using Spearman
rank instead of Pearson correlation was of little advantage
for despiked time series but was of mild advantage for other
conditions.

4.2. Suggested Preprocessing Pipeline. Figure 7 shows the
pipeline we recommend for RS-FMRI analysis. Despiking
FMRI data at the subject level is recommended to reduce the
contribution of sudden spike signals to correlation estimates.
Anecdotally, we also found it to improve the accuracy at the
volume registration step (see the video in the Supplementary
Material and Figure 2). Physiological denoising is carried

Despiking

Physiological noise
correction

Slice-timing correction

Nuisance regression

Motion censoring

Alignment with anatomy

Bandpass filtering

Motion correction

Correlation map

Spatial normalization

Spatial smoothing

Extracting tissue-based 
regressors

If nuisance regressors are 
obtained before bandpassing 
and are to be projected out of 
the data after it is bandpassed, 

they must be bandpassed by the 
same filter before the protection.

With too much censoring, one may 
end up with more regressors than 

data samples, and the preferred GLM 
approach fails. Bandpass filtering 
censored or catenated time series 

without taking into account temporal 
discontinuities is not recommended 

Spikes are identified based on
intensity deviation from a smooth
L
1 fit to a voxel’s time series relative

to the time series variance.

Figure 7: Annotated processing flowchart for RS-FMRI analyses.
If nuisance regressors are obtained before bandpassing and are to
be projected out of the data after it is bandpassed, they must be
bandpassed by the same filter before the projection. With too much
censoring, one may end up with more regressors than data samples,
and the preferred regression approach fails. Bandpass filtering cen-
sored or concatenated time series without taking into account tem-
poral discontinuities is not recommended.TheWMeLOCAL regressor
is recommended, particularly for subject cohorts expected to exhibit
high levels of head motion; it has the additional benefit of removing
hardware artifacts that are hard to detect visually in the time courses
of imaged volumes [3]. Slice-based physiological noise models [11]
are projected from the data immediately after the despiking step
because they are a function of slice acquisition time. A sample
pipeline generating command is shown in example 5C at http://
.nimh.nih.gov/pub/dist/doc/program help/afni proc.py.html.

out early in the processing pipeline because RETROICOR
[11] nuisance models depend on the acquisition time of
each slice relative to the cardiac and respiratory cycles.
These nuisance regressors are projected from the time series
immediately after the despiking step. Bandpass filtering
should be applied to both data and regressors of no interest.
Otherwise, frequency components in cut-off bands will
be introduced back through the regressors of no interest.
It is best to perform censoring, nuisance regression, and
bandpass filtering simultaneously in one regressionmodel. By
simultaneously doing these three subprocesses in one general
linear model, there is no conflict between bandpassing and
censoring.Thoughnot carried out in this work for lack of data
(physiological measures were not taken in [2]), physiological
denoising is highly recommended [11, 12], as physiological
noise differences amongst the subjects can certainly lead to
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false inferences. In our recommended pipeline in Figure 7, we
advocate bandpass filtering in the same model for nuisance
regression. This manner of censoring can be handled readily,
unlike in the pipelines 1 and 2 of Figure 3.

The regression model used here contains 6 motion
estimates, their first difference terms, and WMeLOCAL only,
since “global” tissue-based regressors (e.g., GS, average gray
matter, GM, noneroded LV, and WM) can also cause group
differences either by spreading hardware artifacts that are
undetectable by visual inspection in FMRI data [3] or by
corrupting the correlation matrix, as can be seen when using
GSReg [5]. As long as care is taken to prevent the inclusion of
gray matter signals of interest, tissue-based regressors such
as eroded LV (LVe) and WMeLOCAL can be beneficial at
reducing physiological and hardware artifacts and are part
of our recommended ANATICOR [3] approach. The results
presented here further demonstrate the utility of WMeLOCAL
in helping to reduce head motion artifacts. In these data,
we were not able to include time series from the LVe mask
as a nuisance component because the erosion operation
eliminated too many LV voxels in most subjects due to a
combination of small brain size and relatively coarse EPI
resolution.

4.3. Summary. In this work, we have demonstrated that
the distance-dependent bias in correlations between ROIs
reported by Power and colleagues [2] is not driven only
by motion. It is considerably exacerbated by the regression
of nonspecific, tissue-averaged time series such as the GS.
Specifically, the use of GS as a nuisance regressor can increase
the sensitivity of correlation estimates to motion and motion
censoring levels. This constitutes another example of why
GS and equivalent regressors should not be projected out
of the data in RS-FMRI [5]. We also find that Despike +
WMeLOCAL, a reduced version of our denoising approach
dubbed ANATICOR [3], resulted in correlation estimates
with minimal sensitivity to motion. While many in the
field are rightfully concerned about the impact of motion
on functional connectivity measures, these concerns can be
effectively mitigated by the choice of appropriate preprocess-
ing methods.

Acknowledgments

This studywas greatly facilitated by the generous contribution
of data by the authors of Power et al. 2012. The authors
thank Kelly Barnes for helpful discussions. This research was
supported by the NIMH and NINDS Intramural Research
Programs of the NIH.

References

[1] B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde,
“Functional connectivity in the motor cortex of resting human
brain using echo-planarMRI,”Magnetic Resonance inMedicine,
vol. 34, no. 4, pp. 537–541, 1995.

[2] J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S.
E. Petersen, “Spurious but systematic correlations in functional

connectivity MRI networks arise from subject motion,” Neu-
roImage, vol. 59, no. 3, pp. 2142–2154, 2012.

[3] H. J. Jo, Z. S. Saad, W. K. Simmons, L. A. Milbury, and R. W.
Cox, “Mapping sources of correlation in resting state FMRI,
with artifact detection and removal,” NeuroImage, vol. 52, no.
2, pp. 571–582, 2010.

[4] K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A.
Bandettini, “The impact of global signal regression on resting
state correlations: are anti-correlated networks introduced?”
NeuroImage, vol. 44, no. 3, pp. 893–905, 2009.

[5] Z. S. Saad, S. J. Gotts, K. Murphy et al., “Trouble at rest: how
correlation patterns and group differences become distorted
after global signal regression,” Brain Connectivity, vol. 2, pp. 25–
32, 2012.

[6] A. Vovk, R. W. Cox, J. Stare, D. Suput, and Z. S. Saad, “Seg-
mentation priors from local image properties: without using
bias field correction, location-based templates, or registration,”
NeuroImage, vol. 55, no. 1, pp. 142–152, 2011.

[7] R. W. Cox and A. Jesmanowicz, “Real-time 3D image registra-
tion for functional MRI,” Magnetic Resonance in Medicine, vol.
42, pp. 1014–1018, 1999.

[8] J. Carp, “Optimizing the order of operations for movement
scrubbing: comment on Power et al.,” NeuroImage, vol. 76, pp.
436–438, 2013.

[9] S. J. Gotts, W. K. Simmons, L. A. Milbury, G. L. Wallace, R. W.
Cox, and A. Martin, “Fractionation of social brain circuits in
autism spectrum disorders,” Brain, vol. 135, pp. 2711–2725, 2012.

[10] T. D. Satterthwaite, M. A. Elliott, R. T. Gerraty et al., “An
improved framework for confound regression and filtering for
control of motion artifact in the preprocessing of resting-state
functional connectivity data,”Neuroimage, vol. 64, pp. 240–256,
2013.

[11] G. H. Glover, T. Q. Li, and D. Ress, “Image-based method
for retrospective correction of physiological motion effects in
fMRI: RETROICOR,”Magnetic Resonance in Medicine, vol. 44,
pp. 162–167, 2000.

[12] R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandet-
tini, “Separating respiratory-variation-related fluctuations from
neuronal-activity-related fluctuations in fMRI,” NeuroImage,
vol. 31, no. 4, pp. 1536–1548, 2006.


