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The concepts of𝛼𝜔-remote neighborhood family, 𝛾𝜔-cover, and 𝐿𝜔-compactness are defined in 𝐿𝜔-spaces.The characterizations of
𝐿𝜔-compactness are systematically discussed. Some important properties of 𝐿𝜔-compactness such as 𝜔-closed heredity, arbitrarily
multiplicative property, and preserving invariance under 𝜔-continuous mappings are obtained. Finally, the Alexander 𝜔-subbase
lemma and the Tychonoff product theorem with respect to 𝐿𝜔-compactness are given.

1. Introduction

Compactness is one of the most important notions in general
topology, fuzzy topology, and 𝐿-topology. Many research
workers have presented various kinds of compactness [1–19]
by means of introducing various operators, such as closure
operator, 𝜃-closure operator, 𝛿-closure operator, 𝑅-closure
operator, 𝑆-closure operator, 𝑆𝑅-closure operator, and 𝑃𝑆-
closure operator; because the above operators are all order
preserving. That is, they satisfy the following conditions: (i)
if 𝐴, 𝐵 ∈ 𝐿

𝑋 and 𝐴 ⩽ 𝐵, then 𝜔(𝐴) ⩽ 𝜔(𝐵); (ii) for any
𝐴 ∈ 𝐿

𝑋, 𝐴 ⩽ 𝜔(𝐴), where 𝜔 : 𝐿
𝑋

→ 𝐿
𝑋 can take and

of the above operators, 𝐿𝑋 is the family of all 𝐿-sets defined
on 𝑋 and with value in 𝐿, 𝐿 is a fuzzy lattice, and 1

𝑋
is the

greatest 𝐿-set of 𝐿𝑋. We introduced a kind of generalized
fuzzy space called 𝐿𝜔-space in [20] in order to unify various
elementary concepts in 𝐿-topological spaces. In the present
paper, we will propose and study a generalized compactness
which will be called 𝐿𝜔-compactness in 𝐿𝜔-spaces. The
𝐿𝜔-compactness is a unified form of 𝑁-compactness [16,
19], near 𝑁-compactness [5], almost 𝑁-compactness [6], 𝑆-
compactness [13], 𝑆𝑅-compactness [1], 𝑃𝑆-compactness [2],
𝛿-compactness [9], 𝜃-compactness [18], and so forth.

2. Preliminaries

Throughout this paper, 𝐿 denotes a fuzzy lattice, that is, a
completely distributive lattice with order-reserving involu-
tion , 0 and 1 denote the least and greatest elements of 𝐿,

respectively, and 𝑀 denotes the set that consisting of all
nonzero ∨-irreducible elements of 𝐿. Let 𝑋 be a nonempty
crisp set, 𝐿𝑋 the set of all 𝐿-fuzzy sets (briefly, 𝐿-sets) on 𝑋,
and𝑀∗

(𝐿
𝑋
) = {𝑥

𝛼
: 𝛼 ∈ 𝑀, 𝑥 ∈ 𝑋} the set of all nonzero ∨-

irreducible elements (i.e., so-called molecules [17] or points
for short) of 𝐿𝑋.The least and the greatest elements of 𝐿𝑋 will
be denoted by 0

𝑋
and 1

𝑋
, respectively. For any 𝛼 ∈ 𝑀, 𝛽(𝛼) is

called the greatestminimal set of𝛼 [12], and𝛽∗
(𝛼) = 𝛽(𝛼)∩𝑀

is said to be the standard minimal set of 𝛼 [17].

Definition 1 (Chen and Cheng [20]). Let 𝑋 be a nonempty
crisp set.

(i) An operator 𝜔: 𝐿𝑋
→ 𝐿

𝑋 is said to be an 𝜔-operator
if (1) for all 𝐴, 𝐵 ∈ 𝐿

𝑋 and 𝐴 ⩽ 𝐵, 𝜔(𝐴) ⩽ 𝜔(𝐵); (2)
for all 𝐴 ∈ 𝐿

𝑋, 𝐴 ⩽ 𝜔(𝐴).
(ii) An 𝐿-set 𝐴 ∈ 𝐿

𝑋 is called an 𝜔-set if 𝜔(𝐴) = 𝐴.
(iii) Put Ω = {𝐴 ∈ 𝐿

𝑋
| 𝜔(𝐴) = 𝐴}, and call the pair

(𝐿𝑋
, 𝜔) an 𝐿𝜔-space.

Definition 2 (Chen and Cheng [20]). Let (𝐿𝑋, Ω) be an
𝐿𝜔-space, 𝐴 ∈ 𝐿

𝑋, and 𝑥
𝛼
∈ 𝑀

∗
(𝐿

𝑋
). If there exists a

𝑄 ∈ Ω such that 𝑥
𝛼
≰ 𝑄 and 𝑃 ⩽ 𝑄, then call 𝑃 an

𝜔-remote neighborhood (briefly, 𝜔𝑅-neighborhood) of 𝑥
𝛼
.

The collection of all 𝜔𝑅-neighborhoods of 𝑥
𝛼
is denoted by

𝜔𝜂(𝑥
𝛼
). If 𝐴 ≰ 𝑃 for each 𝑃 ∈ 𝜔𝜂(𝑥

𝛼
), then 𝑥

𝛼
is said

to be an 𝜔-adherence point of 𝐴 and the union of all 𝜔-
adherence points of𝐴 is called the𝜔-closure of𝐴 anddenoted
by 𝜔 cl(𝐴). If 𝐴 = 𝜔 cl(𝐴), then call 𝐴 an 𝜔-closed set and
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call 𝐴 an 𝜔-open set. If 𝑃 is an 𝜔-closed set and 𝑥
𝛼

≰

𝑃, then 𝑃 is said to be an 𝜔-closed remote neighborhood
(briefly, 𝜔CR-neighborhood) of 𝑥

𝛼
and the collection of all

𝜔CR-neighborhoods of 𝑥
𝛼
is denoted by 𝜔𝜂−(𝑥

𝛼
). Note that

𝜔𝐶(𝐿
𝑋
) and𝜔𝑂(𝐿𝑋

) are the family of all𝜔-closed sets and all
𝜔-open sets in 𝐿𝑋, respectively.

Definition 3 (Chen and Cheng [20]). Let (𝐿𝑋
, Ω) be an 𝐿𝜔-

space, 𝐴 ∈ 𝐿
𝑋, and 𝜔 int(𝐴) = ∨{𝐵 ∈ 𝐿

𝑋
| 𝐵 ⩽ 𝐴 and 𝐵

is an 𝜔-open set in 𝐿𝑋
}. We call 𝜔 int(𝐴) the 𝜔-interior of 𝐴.

Obviously, 𝐴 is 𝜔-open if and only if 𝐴 = 𝜔 int(𝐴).

Definition 4 (Huang and Chen [11]). Let (𝐿𝑋
, Ω) be an 𝐿𝜔-

space, let𝑁 be amolecular net in 𝐿𝑋, and let 𝑥
𝛼
∈ 𝑀

∗
(𝐿

𝑋
). If

𝑁 is eventually not in 𝑃 for each 𝑃 ∈ 𝜔𝜂
−
(𝑥

𝛼
), then 𝑥

𝛼
is said

to be an 𝜔-limit point of𝑁 (or𝑁 𝜔-converges to 𝑥
𝛼
). If𝑁 is

frequently not in 𝑃 for each 𝑃 ∈ 𝜔𝜂
−
(𝑥

𝛼
), then 𝑥

𝛼
is said to

be an 𝜔-cluster point of 𝑁 (or 𝑁 𝜔-accumulates to 𝑥
𝛼
). The

union of all 𝜔-limit points (𝜔-cluster points) of 𝑁 is written
by 𝜔-lim𝑁 (𝜔-𝑎𝑑𝑁).

Definition 5 (Huang and Chen [11]). Let (𝐿𝑋
, Ω) be an 𝐿𝜔-

space, let 𝐼 be an ideal in 𝐿
𝑋, and let 𝑥

𝛼
∈ 𝑀

∗
(𝐿

𝑋
). If

𝜔𝜂
−
(𝑥

𝛼
) ⊆ 𝐼, then 𝑥

𝛼
is called an 𝜔-limit point of 𝐼 (or 𝐼𝜔-

converges to 𝑥
𝛼
). If 𝑃 ∨ 𝐵 ̸= 1

𝑋
for each 𝑃 ∈ 𝜔𝜂

−
(𝑥

𝛼
) and

each 𝐵 ∈ 𝐼, then 𝑥
𝛼
is called an 𝜔-cluster point of 𝐼 (or 𝐼 𝜔-

accumulates to 𝑥
𝛼
).The union of all 𝜔-limit points (𝜔-cluster

points) of 𝐼 is denoted by 𝜔-lim 𝐼 (𝜔-𝑎𝑑𝐼).

Definition 6 (Chen and Cheng [20]). Let (𝐿𝑋
, Ω) be an 𝐿𝜔-

space, 𝑥
𝛼
∈ 𝑀

∗
(𝐿

𝑋
), and 𝛽, 𝛾 ∈ 𝜔𝑂(𝐿𝑋

). Then,

(i) 𝛽 is said to be an 𝜔-base in (𝐿𝑋
, Ω) if for each 𝐺 ∈

𝜔𝑂(𝐿
𝑋
), there exists a subfamily 𝜑 of 𝛽 such that 𝐺 =

∨
𝐵∈𝜑

𝐵;

(ii) 𝛾 is said to be an𝜔-subbase in (𝐿𝑋
, Ω) if the collection

consisting of all intersections of any finite elements in
𝛾 is an 𝜔-base in (𝐿𝑋

, Ω).

Definition 7 (Chen and Cheng [20]). Assume (𝐿𝑋, Ω
𝑖
) to be

an 𝐿𝜔
𝑖
-space (𝑖 = 1, 2) and 𝑓 : (𝐿

𝑋
, Ω

1
) → (𝐿

𝑌
, Ω

2
) an 𝐿-

valued Zadeh’s type function [17]. If 𝑓←
(𝐵) ∈ 𝜔

1
𝑂(𝐿

𝑋
) for

each 𝐵 ∈ 𝜔
2
𝑂(𝐿

𝑌
), then call 𝑓(𝜔

1
, 𝜔

2
)-continuous.

3. 𝐿𝜔-Compact Set and Its Characteristics

In this section, we will introduce the concepts of 𝛼𝜔-remote
neighborhood family and 𝛾𝜔-cover in an 𝐿𝜔-space first,
propose the notion of 𝐿𝜔-compactness by making use of
𝛼𝜔-remote neighborhood family next, and then discuss the
characteristics of 𝐿𝜔-compactness.

Definition 8. Suppose (𝐿𝑋, Ω) be an 𝐿𝜔-space, 𝐴 ∈ 𝐿
𝑋, 𝛼 ∈

𝑀, and Φ ⊆ 𝜔𝐶(𝐿
𝑋
). If there exists a 𝑃 ∈ Φ such that 𝑃 ∈

𝜔𝜂
−
(𝑥

𝛼
) for each molecule 𝑥

𝛼
in 𝐴, then Φ is called an 𝛼𝜔-

remote neighborhood family (briefly, 𝛼𝜔-RF) of𝐴, in symbol
∧Φ < 𝐴(𝛼𝜔). If there exists a nonzero ∨-irreducible element

𝜆 ∈ 𝛽
∗
(𝛼) with ∧Φ < 𝐴(𝜆𝜔), then Φ is said to be an (𝛼𝜔)−-

RF, in symbol ∧Φ ≪ 𝐴(𝛼𝜔).

Definition 9. Assume (𝐿𝑋
, Ω) be an 𝐿𝜔-space, 𝐴 ∈ 𝐿

𝑋, 𝛾 ∈
𝑀, and Γ ⊆ 𝜔𝑂(𝐿

𝑋
). If there is a 𝐵 ∈ Γ such that 𝐵(𝑥)�⩽𝛾 for

each 𝑥 ∈ 𝜏
𝛾
(𝐴) = {𝑥 ∈ 𝑋 | 𝐴(𝑥) ⩾ 𝛾


}, then Γ is known as a

𝛾𝜔-cover. If there exists a prime element 𝑡 ∈ 𝛼∗
(𝛾) such that

Γ is a 𝑡𝜔-cover of 𝐴, then Γ is said to be a (𝛾𝜔)+-cover of 𝐴,
where 𝛼∗

(𝛾) is the standard maximal set of 𝛾 [17].

Definition 10. Assume (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋.
If every 𝛼𝜔-RF Φ of 𝐴 has a finite subfamily Ψ such that Ψ
is an (𝛼𝜔)−-RF, where 𝛼 ∈ 𝑀, then call 𝐴 an 𝛼𝐿𝜔-compact
set. If 𝐴 is an 𝛼𝐿𝜔-compact set for any 𝛼 ∈ 𝑀, then call 𝐴
an 𝐿𝜔-compact set. Specially, when 1

𝑋
is 𝛼𝐿𝜔-compact, we

call (𝐿𝑋
, Ω) an 𝛼𝐿𝜔-compact space, and if (𝐿𝑋

, Ω) is 𝛼𝐿𝜔-
compact for each 𝛼 ∈ 𝑀, we say that (𝐿𝑋

, Ω) is an 𝐿𝜔-
compact space.

Obviously, when 𝜔 is the 𝐿-closure operator on 𝐿𝑋, the
𝐿𝜔-compactness is just the𝑁-compactness in [19], and while
𝜔 takes the 𝜃-closure operator (resp., 𝛿-closure operator, 𝑅-
closure operator, 𝑆-closure operator,𝑃𝑆-closure operator, and
𝑆𝑅-closure operator) on𝐿𝑋, the𝐿𝜔-compactness is just the 𝜃-
compactness (resp., 𝛿-compactness, near𝑁-compactness, 𝑆-
compactness,𝑃𝑆-compactness, and 𝑆𝑅-compactness).There-
fore, the 𝐿𝜔-compactness is of the universal significance.

Example 11. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. If the
support 𝜎

0
(𝐴) = {𝑥 ∈ 𝑋 | 𝐴(𝑥) > 0} of 𝐴 is a finite set, then

𝐴 is an 𝐿𝜔-compact set.

Proof. Assume that 𝜎
0
(𝐴) = {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
} and Φ is an 𝛼𝜔-

RF of 𝐴. For each 𝑖 ∈ {1, 2, . . . , 𝑛} we choose an 𝜔-closed set
𝑃
𝑖
∈ Φ with 𝛼 �⩽ 𝑃

𝑖
(𝑥

𝑖
). Being 𝛼 = sup𝛽∗

(𝛼), there is a 𝜆
𝑖
∈

𝛽
∗
(𝛼) such that 𝜆 �⩽ 𝑃

𝑖
(𝑥

𝑖
). Since 𝛽∗

(𝛼) is an upper directed
set, there is a 𝜆 ∈ 𝛽∗

(𝛼) with 𝜆 ⩾ 𝜆
𝑖
for each 𝑖 ∈ {1, 2, . . . , 𝑛},

and thus 𝜆
𝑖 �⩽ 𝑃

𝑖
(𝑥

𝑖
). Therefore Φ has a finite subfamily Ψ =

{𝑃
1
, 𝑃

2
, . . . , 𝑃

𝑛
} which is an (𝛼𝜔)−-RF of 𝐴. By Definition 10,

𝐴 is an 𝐿𝜔-compact set.

Now we give some characteristics of 𝐿𝜔-compactness as
follows.

Theorem 12. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is an 𝐿𝜔-compact set if and only if the following conditions
hold:

(1) for each 𝛼 ∈ 𝑀, every 𝛼𝜔-RF Φ of 𝐴 has a finite
subfamily Ψ with ∧Ψ < 𝐴(𝛼𝜔);

(2) for each 𝛼 ∈ 𝑀, ifΦ = {𝑃} is an 𝛼𝜔-RF of 𝐴, thenΦ is
also an (𝛼𝜔)−-RF of 𝐴.

Proof. Necessity. Assume that 𝐴 is 𝐿𝜔-compact and Φ is an
𝛼𝜔-RF of 𝐴(𝛼 ∈ 𝑀). According to Definition 10, Φ has a
finite subfamilyΨwith ∧Ψ ≪ 𝐴(𝛼𝜔) and so it certainly holds
that ∧Ψ < 𝐴(𝛼𝜔). Thus (1) is satisfied. If Φ = {𝑃} is an 𝛼𝜔-
RF of 𝐴, then Φ has a finite Ψ with ∧Ψ ≪ 𝐴(𝛼𝜔) by the
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𝐿𝜔-compactness of 𝐴. Obviously, Ψ = Φ, and hence Φ is an
(𝛼𝜔)−-RF of 𝐴. Therefore (2) holds.

Sufficiency. Suppose that conditions (1) and (2) are satisfied,
and Φ is an 𝛼𝜔-RF of 𝐴 (𝛼 ∈ 𝑀). By (1), there is a finite
subfamily Ψ of Φ such that Ψ is an 𝛼𝜔-RF of 𝐴. Let 𝑃 = ∧Ψ.
Then {𝑃} is an 𝛼𝜔-RF of 𝐴. According to (2), {𝑃} is also an
𝛼𝜔-RF of 𝐴; that is, there exists a 𝜆 ∈ 𝛽∗

(𝛼) with 𝜆 �⩽ 𝑃(𝑥) =

∧{𝑄(𝑥) | 𝑄 ∈ Ψ} for each molecule 𝑥
𝜆
⩽ 𝐴. Since Ψ is

finite, we can choose an 𝜔-closed set 𝑄 ∈ Ψ with 𝜆 �⩽ 𝑄(𝑥);
that is, 𝑄 ∈ 𝜔𝜂

−
(𝑥

𝜆
). This shows that Ψ is an (𝛼𝜔)−-RF of 𝐴.

Therefore 𝐴 is 𝐿𝜔-compact.

Theorem 13. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is an 𝐿𝜔-compact set if and only if for each 𝛾 ∈ 𝑀, every
𝛾𝜔-cover Γ of𝐴 has a finite subfamily Ξ such that Ξ is a (𝛾𝜔)+-
cover of 𝐴.

Proof. Necessity. Suppose that𝐴 is an 𝐿𝜔-compact set and Γ is
any 𝛾𝜔-cover of 𝐴 (𝛾 ∈ 𝑀). Put Φ = Γ

. Then Φ ⊆ 𝜔𝐶(𝐿
𝑋
),

and there is an𝜔-closed set𝐵
∈ Φwith𝐵(𝑥) �⩽ 𝛾 for each 𝑥 ∈

𝜏
𝛾
(𝐴); that is, 𝛾 �⩽ 𝐵


(𝑥); equivalently, 𝐵

∈ 𝜔𝜂
−
(𝑥

𝛾
). This

implies thatΦ is a 𝛾𝜔-RF of𝐴. ThusΦ has a finite subfamily
Ψ which is a (𝛾𝜔)−-RF of 𝐴; that is, there exists 𝑡 ∈ 𝛽

∗
(𝛾


)

such that for each 𝑥 ∈ 𝜏
𝛾
(𝐴) we can take an 𝜔-open set 𝐵 ∈

Ψ
 with 𝑡 �⩽ 𝐵


(𝑥). In other words, there are 𝑡 ∈ 𝛼

∗
(𝛾) and

𝐵 ∈ Ψ

= Ξ with 𝐵(𝑥) �⩽ 𝑡 for each 𝑥 ∈ 𝜏

𝛾
(𝐴). This means

that Ξ is a finite subfamily of Γ and a (𝛾𝜔)+-cover of 𝐴.

Sufficiency. Assume that every 𝛾𝜔-cover of 𝐴 has a finite
subfamily which is a (𝛾𝜔)+-cover of 𝐴 (𝛾 ∈ 𝑀). If Φ is an
𝛼𝜔-RF of 𝐴 (𝛼 ∈ 𝑀), then Γ = Φ

 is a 𝛾𝜔-cover of 𝐴 where
𝛾 = 𝛼

. Hence Γ has a finite subfamily Ξ which is a (𝛾𝜔)+-
cover of 𝐴 by the hypothesis. Write Ψ = Ξ

. One can easily
see that Ψ is a finite subfamily of Φ and is an (𝛼𝜔)−-RF of 𝐴.
Therefore 𝐴 is 𝐿𝜔-compact.

Theorem 14. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is 𝐿𝜔-compact if and only if for each 𝛼 ∈ 𝑀 and each
Φ ⊆ 𝜔𝐶(𝐿

𝑋
) having 𝛼-finite intersection property for 𝐴 (i.e.,

for each finite subfamilyΨ ofΦ and each 𝜆 ∈ 𝛽∗
(𝛼) there exists

a molecule 𝑥
𝜆
⩽ 𝐴 with 𝑥

𝜆
⩽ ∧Ψ), there exists a molecule

𝑥
𝛼
⩽ 𝐴 with 𝑥

𝛼
⩽ ∧Φ.

Proof. Necessity. Grant that 𝐴 is an 𝐿𝜔-compact set, Φ ⊆

𝜔𝐶(𝐿
𝑋
), and Φ has 𝛼-finite intersection property for 𝐴 (𝛼 ∈

𝑀). If 𝑥
𝛼 �⩽ ∧ Φ for each 𝑥

𝛼
⩽ 𝐴, then Φ is an 𝛼𝜔-RF of

𝐴 by the hypothesis of Φ. Hence Φ has a finite subfamily
Ψ which is an (𝛼𝜔)

−-RF of 𝐴; that is, there is a 𝜆 ∈ 𝛽
∗
(𝛼)

satisfying 𝑥
𝜆 �⩽ ∧ Ψ for each 𝑥

𝜆
⩽ 𝐴; in other words,

∨
𝑥∈𝑋

(𝐴 ∧ (∧Ψ))(𝑥)  𝜆. It contradicts the fact that Φ has
𝛼-finite intersection property for 𝐴. Hence the necessity is
proved.

Sufficiency. Assume that the condition holds and that Φ is
an 𝛼𝜔-RF of 𝐴. If for any finite subfamily Ψ of Φ, Ψ is not
an (𝛼𝜔)

−-RF of 𝐴, then for each 𝜆 ∈ 𝛽
∗
(𝛼) there exists a

molecule 𝑥
𝜆
⩽ 𝐴 with 𝑥

𝜆
⩽ ∧Ψ; that is, ∨

𝑥∈𝑋
(𝐴 ∧ (∧Ψ))(𝑥) ⩾

𝜆. This shows thatΦ has 𝛼-finite intersection property for 𝐴.
By the assumption we have 𝑥

𝛼
⩽ 𝐴 satisfying 𝑥

𝛼
⩽ ∧Ψ. It

contradicts that Φ is an 𝛼𝜔-RF of 𝐴. Therefore Φ has a finite
subfamily Ψ which is an (𝛼𝜔)−-RF of 𝐴, and hence 𝐴 is 𝐿𝜔-
compact.

Theorem 15. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and𝐴 ∈ 𝐿

𝑋. Then𝐴
is 𝐿𝜔-compact if and only if for each 𝛼 ∈ 𝑀, every 𝛼-net in 𝐴
has an 𝜔-cluster point in 𝐴 with height 𝛼.

Proof. Necessity. Suppose that 𝐴 is an 𝐿𝜔-compact set and
that 𝑁 = {𝑁(𝑛) | 𝑛 ∈ 𝐷} is an 𝛼-net [16] in 𝐴. If 𝑁 does
not have any 𝜔-cluster point in 𝐴 with height 𝛼, then there
exists a 𝑃[𝑥] ∈ 𝜔𝜂−(𝑥

𝛼
) such that𝑁 is eventually in 𝑃[𝑋] for

each 𝑥
𝛼
⩽ 𝐴; that is, there is a 𝑛(𝑥) ∈ 𝐷 with 𝑁(𝑛) ⩽ 𝑃[𝑥]

whenever 𝑛 ⩾ 𝑛(𝑥). Write Φ = {𝑃[𝑥] | 𝑥
𝛼
⩽ 𝐴}. Obviously,

Φ is 𝛼𝜔-RF of 𝐴. By the 𝐿𝜔-compactness of 𝐴, Φ has a finite
subfamily Ψ = {𝑃[𝑥

𝑖
] | 𝑖 = 1, 2, . . . , 𝑚} which is an (𝛼𝜔)−-RF

of 𝐴; that is, there is an 𝑖 ∈ {1, 2, . . . , 𝑚} with 𝑦
𝑟�⩽𝑃[𝑋𝑖

] for
some 𝑟 ∈ 𝛽

∗
(𝛼) and each 𝑦

𝑟
⩽ 𝐴. Take 𝑃 = ∧

𝑚

𝑖=1
𝑃[𝑥

𝑖
]. Then

𝑦
𝑟�⩽𝑃 for each𝑦

𝑟
⩽ 𝐴. Since𝐷 is a directed set, there is an 𝑛

0
∈

𝐷, such that 𝑛
0
⩾ 𝑛(𝑥

𝑖
) and 𝑁(𝑛) ⩽ 𝑃[𝑥

𝑖
] (𝑖 = 1, 2, . . . , 𝑚)

whenever 𝑛 ⩾ 𝑛
𝑜
, and so𝑁(𝑛) ⩽ 𝑃. This shows that for each

𝑦
𝑟
⩽ 𝐴, ∨(𝑁(𝑛))�⩾𝑟 as long as 𝑛 ⩾ 𝑛

𝑜
. It contradicts the fact

that𝑁 is an 𝛼-net.Therefore𝑁 has at least an 𝜔-cluster point
in 𝐴 with height 𝛼.

Sufficiency. Assume that every 𝛼-net in 𝐴 has at least an 𝜔-
cluster point with hight 𝛼 for each 𝛼 ∈ 𝑀, Φ is an 𝛼𝜔-RF of
𝐴, and 2(Φ) is the set of all finite subfamilies of Φ. If for each
𝑟 ∈ 𝛽

∗
(𝛼) and each Ψ ∈ 2

(Φ), Ψ is not an 𝑟𝜔-RF of 𝐴; that is,
𝑥
𝑟
⩽ ∧Ψ for each 𝑥

𝑟
⩽ 𝐴, and hence there exists a molecule

𝑁(𝑟, Ψ) ⩽ 𝐴 satisfying 𝑁(𝑟, Ψ) ⩽ ∧Ψ. In 𝛽∗
(𝛼) × 2

(Φ), we
define the relation as follows: (𝑟

1
, Ψ

1
) ⩾ (𝑟

2
, Ψ

2
) if and only if

𝑟
1
⩾ 𝑟

2
andΨ

1
⊇ Ψ

2
, then𝛽∗

(𝛼)×2
(Φ) is a directed set with the

relation “⩾”. Let 𝑁 = {𝑁(𝑟, Ψ) | (𝑟, Ψ) ∈ 𝛽
∗
(𝛼) × 2

(Φ)
}. One

can easily see that𝑁 is an 𝛼-net in 𝐴. We assert that𝑁 does
not have any 𝜔-cluster point in 𝐴 with hight 𝛼. In fact, for
each 𝑥

𝛼
⩽ 𝐴, we can choose an 𝜔-closed set 𝑃 ∈ Φ with 𝑃 ∈

𝜔𝜂
−
(𝑥

𝛼
) by the definition of Φ. Taking 𝑟

1
∈ 𝛽

∗
(𝛼) and Ψ ∈

2
(Φ), we have 𝑃 ∈ Ψ according to (𝑟, Ψ) ⩾ (𝑟

1
, {𝑃}), and hence

𝑁(𝑟, Ψ) ⩽ ∧Ψ ⊆ 𝑃.This implies that𝑁 is eventually in 𝑃, and
thus 𝑥

𝛼
is not an 𝜔-cluster point of 𝑁. It is in contradiction

with the hypothesis of sufficiency. Consequently, 𝐴 is 𝐿𝜔-
compact.

Definition 16. Let (𝐿𝑋,Ω) be an 𝐿𝜔-space, letF be an 𝛼-filter
in 𝐿𝑋; that is, ∨

𝑥∈𝑋
(𝐹 ∧ 𝐴)(𝑥) ⩾ 𝛼 for each 𝐹 ∈ F and 𝑥

𝛼
∈

𝑀
∗
(𝐿

𝑋
). If 𝐹�⩽𝑃 and for each 𝑃 ∈ 𝜔𝜂

−
(𝑥

𝛼
) and each 𝐹 ∈ F,

then 𝑥
𝛼
is called an 𝜔-cluster point ofF.

Theorem 17. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is 𝐿𝜔-compact if and only if for each 𝛼 ∈ 𝑀, every 𝛼-filter
containing 𝐴 as an element has an 𝜔-cluster point in 𝐴 with
hight 𝛼.

Proof. Necessity. Grant that 𝐴 is an 𝐿𝜔-compact set and that
F is an 𝛼-filter containing 𝐴 as an element. Then 𝐹 ∧ 𝐴 ∈ F
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for each 𝐹 ∈ F and ∨
𝑥∈𝑋

(𝐹 ∧ 𝐴)(𝑥) ⩾ 𝛼, and thus there
exists a molecule𝑁(𝐹, 𝑟) ⩽ 𝐴with hight 𝑟 for each 𝑟 ∈ 𝛽∗

(𝛼).
Define𝑁 = {𝑁(𝐹, 𝑟) ⩽ 𝐹∧𝐴 | (𝐹, 𝑟) ∈ F×𝛽

∗
(𝛼)} and define

a relation inF × 𝛽
∗
(𝛼) as follows:

(𝐹
1
, 𝑟

1
) ⩾ (𝐹

2
, 𝑟

2
) iff 𝐹

1
⩽ 𝐹

2
, 𝑟

1
⩾ 𝑟

2
. (1)

Evidently, F × 𝛽
∗
(𝛼) is a directed set with the relation “⩾”,

and then 𝑁 is an 𝛼-net in 𝐴. By the 𝐿𝜔-compactness of 𝐴
and Theorem 15,𝑁 has an 𝜔-cluster point in 𝐴 with hight 𝛼,
say 𝑥

𝛼
. We assert that 𝑥

𝛼
is also an 𝜔-cluster point of F. In

reality,𝑁 is frequently not in 𝑃 for each 𝑃 ∈ 𝜔𝜂
−
(𝑥

𝛼
); that is,

for each 𝐹 ∈ F there exist 𝐹
1
∈ F with 𝐹

1
⩽ 𝐹 and some

𝑟 ∈ 𝛽
∗
(𝛼) satisfying 𝑁(𝐹

1
, 𝑟) �⩽ 𝑃. Hence we have 𝐹 �⩽ 𝑃 by

virtue of the fact that𝑁(𝐹
1
, 𝑟) ⩽ 𝐹

1
⩽ 𝐹. This means that 𝑥

𝛼

is an 𝜔-cluster point ofF. Therefore the necessity is proved.

Sufficiency. Suppose that every 𝛼-filter containing 𝐴 as an
element has an 𝜔-cluster point in 𝐴 with hight 𝛼 for each
𝛼 ∈ 𝑀 and thatΦ is an 𝛼𝜔-RF of 𝐴. If for eachΨ ∈ 2

(Φ),Ψ is
not an (𝛼𝜔)−-RF of𝐴, then there exists amolecule𝑥

𝑟
⩽ 𝐴 and

𝑥
𝑟
⩽ ∧Ψ for each 𝑟 ∈ 𝛽

∗
(𝛼). Put F = {𝐹 ∈ 𝐿

𝑋
| ∃Ψ ∈ 2

(Φ)

with (∧Ψ) ∧ 𝐴 ⩽ 𝐹}. One can easily verify that F is an 𝛼-
filter containing 𝐴 as an element, and hence F has an 𝜔-
cluster point in 𝐴 with hight 𝛼 by the supposition, say 𝑥

𝛼
.

In accordance with Definition 16, we have 𝐹 �⩽ 𝑃 for each
𝑃 ∈ 𝜔𝜂

−
(𝑥

𝛼
) and each 𝐹 ∈ F, specially, ∧Ψ �⩽ 𝑃. Since Φ

is an 𝛼𝜔-RF of 𝐴, there exists an 𝜔-closed set 𝑄 ∈ Φ with
𝑄 ∈ 𝜔𝜂

−
(𝑥

𝛼
) for each 𝑥

𝛼
⩽ 𝐴. Obviously, {𝑄} ∈ 2(Φ), so𝑄�⩽𝑄,

and this is impossible. Hence there must be a Ψ ∈ 2
(Φ) which

is an (𝛼𝜔)−-RF of 𝐴. This shows that 𝐴 is 𝐿𝜔-compact.

Definition 18. Let 𝐼 be an ideal in 𝐿𝑋. If ∨
𝑥∈𝑋

𝐵

(𝑥) ⩾ 𝛼 for

each 𝐵 ∈ 𝐼, then 𝐼 is called an 𝛼-ideal (𝛼 ∈ 𝑀).

Theorem 19. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is 𝐿𝜔-compact if and only if every 𝛼-ideal 𝐼 whose 𝐴 is not
in 𝐼 has an 𝜔-cluster point in 𝐴 with hight 𝛼 for each 𝛼 ∈ 𝑀.

Proof. Necessity. Assume that 𝐴 is an 𝐿𝜔-compact set, 𝐼 is an
𝛼-ideal whose 𝐴 is not in 𝐼, and𝑁(𝐼) = {𝑁(𝐼)((𝑏, 𝐵)) = 𝑏 ⩽

𝐴 | (𝑏, 𝐵) ∈ 𝐷(𝐼)} where 𝐷(𝐼) = {(𝑏, 𝐵) | 𝑏 ∈ 𝑀
∗
(𝐿

𝑋
), 𝐵 ∈

𝐼 and 𝑏 �⩽ 𝐵}. Then 𝑁(𝐼) is an 𝛼-net in 𝐴. Hence 𝑁(𝐼) has
an 𝜔-cluster point in 𝐴 with hight 𝛼 by Theorem 15, say 𝑥

𝛼
.

Obviously, 𝑥
𝛼
is also an 𝜔-cluster point of 𝐼. Consequently,

the necessity is proved.

Sufficiency. Grant that every 𝛼-ideal whose 𝐴 is not in it has
an 𝜔-cluster point in 𝐴 with hight 𝛼 for each 𝛼 ∈ 𝑀 and
F is an 𝛼-filter containing 𝐴 as an element. Let 𝐼 = {𝐹


∈

𝐿
𝑋

| 𝐹 ∈ F}. Evidently, 𝐼 is an 𝛼-ideal whose 𝐴 is not
in 𝐼. Now we will prove that F has an 𝜔-cluster point in
𝐴 with hight 𝛼. Actually, by the hypothesis we know that
𝐼 has an 𝜔-cluster point in 𝐴 with hight 𝛼, say 𝑥

𝛼
; that is,

𝐹

∨ 𝑃 ̸= 1

𝑋
; equivalently, 𝐹 �⩽ 𝑃, for each 𝐹 ∈ F and each

𝑃 ∈ 𝜔𝜂
−
(𝑥

𝛼
). Therefore 𝑥

𝛼
is an 𝜔-cluster point of F in

line with Definition 16, and hence 𝐴 is an 𝐿𝜔-compact set by
Theorem 17. This implies that the sufficiency holds.

4. Some Important Properties of
𝐿𝜔-Compactness

In this section, we still further deliberate the properties of𝐿𝜔-
compactness in an 𝐿𝜔-space.

Theorem 20. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴, 𝐵 ∈ 𝐿𝑋. If 𝐴

is 𝐿𝜔-compact and 𝐵 is 𝜔-closed, then 𝐴 ∧ 𝐵 is 𝐿𝜔-compact.

Proof. Assume that 𝑁 is an 𝛼-net in 𝐴 ∧ 𝐵 (𝛼 ∈ 𝑀). Then
𝑁 is also an 𝛼-net in 𝐴. Since 𝐴 is 𝜔-compact, 𝑁 has an 𝜔-
cluster point in 𝐴 with hight 𝛼, say 𝑥

𝛼
. We assert that 𝑥

𝛼
⩽ 𝐵.

Actually, since 𝑁 is an 𝛼-net in 𝐵 and 𝑁 𝜔-accumulates 𝑥
𝛼
,

𝑁 has an 𝛼-subnet 𝑇 which 𝜔-converges to 𝑥
𝛼
and so 𝑥

𝛼
⩽

𝜔 cl(𝐵) = 𝐵. Hence 𝑥
𝛼
⩽ 𝐴∧𝐵, and thus𝐴∧𝐵 is 𝐿𝜔-compact

in accordance withTheorem 15.

This theorem shows that the 𝐿𝜔-compactness is heredi-
tary with respect to 𝜔-closed sets.

Theorem 21. Let𝐴 and 𝐵 be both 𝐿𝜔-compact sets in (𝐿𝑋
, Ω).

Then 𝐴 ∨ 𝐵 is also an 𝐿𝜔-compact set in (𝐿𝑋
, Ω).

Proof. Suppose thatΦ is an 𝛼𝜔-RF of𝐴∨𝐵 (𝛼 ∈ 𝑀). ThenΦ
is an 𝛼𝜔-RF of both 𝐴 and 𝐵. Owing to the 𝐿𝜔-compactness
of 𝐴, there are 𝜆

1
∈ 𝛽

∗
(𝛼) andΨ

1
∈ 2

(Φ) with ∧Ψ
1
< 𝐴(𝜆

1
𝜔).

Similarly, there exist 𝜆
2
∈ 𝛽

∗
(𝛼) and Ψ

2
∈ 2

(Φ) satisfying
∧Ψ

2
< 𝐴(𝜆

2
𝜔). Take 𝜆 = 𝜆

1
∧ 𝜆

2
and Ψ = Ψ

1
∪ Ψ

2
; then

𝜆 ∈ 𝛽
∗
(𝛼), Ψ ∈ 2

(Φ), and ∧Ψ < 𝐴(𝜆𝜔); that is, Ψ is an (𝛼𝜔)−-
RF of 𝐴 ∨ 𝐵. Consequently, 𝐴 ∨ 𝐵 is 𝐿𝜔-compact.

This theorem indicates that the 𝐿𝜔-compactness is
finitely additive.

Theorem 22. Let 𝐿 = [0, 1], (𝐿𝑋
, Ω) be an 𝐿𝜔-space and let

𝐴 ∈ 𝐿
𝑋 be an 𝐿𝜔-compact set. Then there exists a crisp point

𝑥 ∈ 𝑋 such that 𝐴(𝑥) = sup{𝐴(𝑡) | 𝑡 ∈ 𝑋}.

Proof. Let 𝛼 = sup{𝐴(𝑡) | 𝑡 ∈ 𝑋}; then 𝛼 ∈ [0, 1]. If 𝛼 = 0,
then 𝐴 = 0

𝑋
and hence 𝐴(𝑥) = sup{𝐴(𝑡) | 𝑡 ∈ 𝑋} holds for

each 𝑥 ∈ 𝑋. If 𝛼 > 0, and 𝐷 is the set of all natural numbers,
then we choose 𝑥𝑛

∈ 𝑋 with 𝐴(𝑥𝑛
) > 𝛼 − (1/𝑛) and 𝑁 =

{𝑥
𝑛

𝐴(𝑥
𝑛
)
| 𝑛 ∈ 𝐷}. Obviously,𝑁 is an 𝛼-net in 𝐴, and𝑁 has an

𝜔-cluster point 𝑥
𝛼
in 𝐴 by virtue of the 𝐿𝜔-compactness of

𝐴. Hence 𝐴(𝑥) ⩾ 𝛼 by 𝑥
𝛼
⩽ 𝐴. On the other hand, 𝐴(𝑥) ⩽ 𝛼

by the definition of 𝛼. Therefore 𝐴(𝑥) = 𝛼 = sup{𝐴(𝑡) | 𝑡 ∈
𝑋}.

This theorem implies that an 𝐿𝜔-compact set can reach
the maximum at some point in𝑋 as a function.

Theorem 23. Let (𝐿𝑋
, Ω

1
) and (𝐿𝑌

, Ω
2
) be an 𝐿𝜔

1
-space and

an 𝐿𝜔
2
-space, respectively, and let 𝑓 : 𝐿

𝑋
→ 𝐿

𝑌 be an
(𝜔

1
, 𝜔

2
)-continuous 𝐿-valued Zadeh’s type function. If 𝐴 is an

𝐿𝜔
1
-compact set in (𝐿𝑋

, Ω
1
), then 𝑓→

(𝐴) is an 𝐿𝜔
2
-compact

set in (𝐿𝑌
, Ω

2
).

Proof. Assume that Φ is an 𝛼𝜔
2
-RF of 𝑓→

(𝐴) and 𝑦
𝛼
∈

𝑀
∗
(𝐿

𝑌
) with 𝑦

𝛼
⩽ 𝑓

→
(𝐴)(𝛼 ∈ 𝑀). According to the
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definition of 𝑓, there is a molecule 𝑥
𝛼

∈ 𝑀
∗
(𝐿

𝑋
) such

that 𝑥
𝛼

⩽ 𝐴 and 𝑓
→
(𝑥

𝛼
) = 𝑦

𝛼
. Thus there is an 𝜔-

closed set 𝑄 ∈ Φ with 𝑓
→
(𝑥

𝛼
) �⩽ 𝑄; that is, 𝑥

𝛼 �⩽ 𝑓
←
(𝑄).

Since𝑓 is (𝜔
1
, 𝜔

2
)-continuous,𝑓←

(𝑄) is𝜔-closed in (𝐿𝑋
, 𝜔

1
),

and hence 𝑓←
(𝑄) ∈ 𝜔

1
𝜂
−
(𝑥

𝛼
). This means that 𝑓←

(Φ) =

{𝑓
←
(𝑄) | 𝑄 ∈ Φ} is an 𝛼𝜔

1
-RF of 𝐴. Therefore Φ has a

finite subfamily Ψ = {𝑄
1
, 𝑄

2
, . . . , 𝑄

𝑛
} such that 𝑓←

(Ψ) is an
(𝛼𝜔

1
)
−-RF of 𝐴. We assert thatΨ is an (𝛼𝜔

2
)
−-RF of 𝑓→

(𝐴).
In reality, there exists a 𝜆 ∈ 𝛽∗

(𝛼) with ∧𝑓←
(Ψ) < 𝐴(𝜆𝜔

1
) by

virtue of the fact that 𝑓←
(Ψ) is an (𝛼𝜔

1
)
−-RF of 𝐴. Since for

each 𝑦
𝜆
⩽ 𝑓

→
(𝐴) there exists a 𝑥

𝜆
⩽ 𝐴 satisfying 𝑓→

(𝑥
𝜆
) =

𝑦
𝜆
, and there exists a 𝑄 ∈ Ψ with 𝑓←

(𝑄) ∈ 𝜔
1
𝜂
−
(𝑥

𝜆
), that is,

𝑥
𝜆 �⩽ 𝑓

←
(𝑄). Hence 𝑦

𝜆
= 𝑓

→
(𝑥

𝜆
) ≰ 𝑄 by Lemma 3.1 in [19],

and so Ψ is an (𝛼𝜔
2
)
−-RF of 𝑓→

(𝐴). Consequently, 𝑓→
(𝐴)

is an 𝐿𝜔
2
-compact set in (𝐿𝑌, Ω

2
).

This theoremmeans that the 𝐿𝜔-compactness is topolog-
ical variant under (𝜔

1
, 𝜔

2
)-continuous 𝐿-valued Zadeh’s type

functions.

Definition 24. Let (𝑋,Ω) be a crisp 𝜔-space, and letP(𝑋) be
the set of all subsets of 𝑋, that is, all crisp sets on 𝑋 and 𝐴 ∈

𝐿
𝑋, where 𝜔 : P(𝑋) → P(𝑋) is a crisp 𝜔-operator which

satisfies the following conditions: (1)𝜔(𝑈) ⊆ 𝜔(𝑉) for each
𝑈,𝑉 ∈ P(𝑋) and 𝑈 ⊆ 𝑉; (2)𝑈 ⊆ 𝜔(𝑈) for each 𝑈 ∈ P(𝑋).

(i) If 𝜉
𝛼
(𝐴) = {𝑥 ∈ 𝑋 | 𝐴(𝑥) ⩽ 𝛼} ∈ 𝜔𝐶(𝑋), where

𝜔𝐶(𝑋) denotes the set of all crisp 𝜔-closed sets on 𝑋
and 𝛼 ∈ 𝑀, then 𝐴 is said to be an 𝐿-valued lower
semicontinuous function on𝑋.

(ii) Let Δ
𝐿
(Ω) be the set of all 𝐿-valued lower semicon-

tinuous functions on𝑋, and call the pair (𝐿𝑋, Δ
𝐿
(Ω))

the 𝐿𝜔-space topologically generated by (𝑋,Ω).

Theorem 25. Let (𝑋,Ω) be a crisp 𝜔-space and let
(𝐿𝑋

, Δ
𝐿
(Ω)) be the 𝐿𝜔-space topologically generated

by (𝑋,Ω). Then 𝐴 ∈ 𝐿
𝑋 is 𝐿𝜔-compact if and only if

𝜏
𝛼
(𝐴) = {x ∈ 𝑋 | 𝐴(𝑥) ⩾ 𝛼} is 𝜔-compact for each 𝛼 ∈ 𝑀.

Proof. Necessity. Provided that 𝐴 ∈ 𝐿
𝑋 is an 𝐿𝜔-compact set

in (𝐿𝑋
, Δ

𝐿
(Ω)) andΦ is an𝜔-open cover of 𝜏

𝛼
(𝐴)(𝛼 ∈ 𝑀), let

Γ = {𝜒
𝐺
| 𝐺 ∈ Φ} and 𝛾 = 𝛼

, where 𝜒
𝐺
is the characteristic

function of 𝐺. We assert that Γ is a 𝛾𝜔-cover of 𝐴. In fact, for
each 𝑥 ∈ 𝜏

𝛾
(𝐴), there is an𝜔-open set𝐺 ∈ Φwith 𝑥 ∈ 𝐺; that

is, 𝜒
𝐺
(𝑥) = 1. Hence 𝜒

𝐺
(𝑥) �⩽ 𝛾 by virtue of the fact that 𝛾 is a

prime element in 𝐿 with 𝛾 ̸= 1. Thus Φ has a finite subfamily
{𝐺

1
, 𝐺

2
, . . . , 𝐺

𝑚
} such that 𝜇 = {𝜒

𝐺
𝑖

| 𝑖 = 1, 2, . . . , 𝑚} ∈ 2
(Γ)

which is a (𝛾𝜔)+-cover of 𝐴 in line with Theorem 13; that is,
there is an 𝑖 ∈ {1, 2, . . . , 𝑚} such that 𝜒

𝐺
𝑖

∈ 𝜇 with 𝜒
𝐺
𝑖

(𝑥) �⩽ 𝜆

for some 𝜆 ∈ 𝛼
∗
(𝛾) and each 𝑥 ∈ 𝜏

𝛼
(𝐴), and so 𝑥 ∈ 𝐺

𝑖
. This

implies that 𝜏
𝛼
(𝐴) ⊆ ∪

𝑚

𝑖=1
𝐺

𝑖
. Hence 𝜏

𝛼
(𝐴) is an𝜔-compact set

in (𝑋, Ω).

Sufficiency. Grant that 𝜏
𝛼
(𝐴) is an 𝜔-compact set in (𝑋, Ω)

for each 𝛼 ∈ 𝑀 and that Γ is a 𝛾𝜔-cover of 𝐴 where 𝛾 = 𝛼
.

Then there is an 𝜔-open set 𝐵
𝑥

∈ Γ with 𝐵
𝑥
(𝑥) �⩽ 𝛾 for

each 𝑥 ∈ 𝜏
𝛼
(𝐴), and hence there exists a prime element

𝑡(𝑥) ∈ 𝛼
∗
(𝛾) satisfying 𝐵

𝑥
(𝑥) �⩽ 𝑡(𝑥). Put 𝑙

𝑡(𝑥)
(𝐵

𝑥
) = {𝑦 ∈

𝑋 | 𝐵
𝑥
(𝑦) �⩽ 𝑡(𝑥)} and Φ = {𝑙

𝑡(𝑥)
(𝐵

𝑥
) | 𝑥 ∈ 𝜏

𝛼
(𝐴)}; then Φ

is an 𝜔-open cover of 𝜏
𝛼
(𝐴) according to 𝑥 ∈ 𝑙

𝑡(𝑥)
(𝐵

𝑥
) and

𝐵
𝑥
∈ Δ

𝐿
(Ω). Because of the 𝜔-compactness of 𝜏

𝛼
(𝐴),Φ has a

finite subfamily Ψ = {𝑙
𝑡(𝑥
𝑖
)
(𝐵

𝑥
𝑖

) | 𝑖 = 1, 2, . . . , 𝑚} which is an
𝜔-open cover of 𝜏

𝛼
(𝐴); that is, there exists an 𝑖 ∈ {1, 2, . . . , 𝑚}

with 𝑥 ∈ 𝑙
𝑡(𝑥
𝑖
)
(𝐵

𝑥
𝑖

); in other words, 𝐵
𝑥
𝑖

(𝑥) �⩽ 𝑡(𝑥
𝑖
) for each

𝑥 ∈ 𝜏
𝛼
(𝐴). Take 𝑡 = ∧

𝑚

𝑖=1
𝑡(𝑥

𝑖
); evidently, 𝑡 ∈ 𝛼

∗
(𝛾) and

𝐵
𝑥
𝑖

(𝑥) �⩽ 𝑡. Hence 𝜇 = {𝐵
𝑥
𝑖

| 𝑖 = 1, 2, . . . , 𝑚} is a (𝛾𝜔)+-
cover of 𝐴, and thus 𝐴 is an 𝐿𝜔-compact set in (𝐿𝑋, Δ

𝐿
(Ω))

by Theorem 13.

This theorem indicates that the 𝐿𝜔-compactness is a good
extension in the sense of R. Lowen.

Theorem 26. Let (𝐿𝑋,Ω) be a stratified 𝜔𝑇
2
and𝐴 ∈ 𝐿

𝑋. If𝐴
is 𝐿𝜔-compact, then 𝐴 is 𝜔-closed.

Proof. We only prove that 𝑥
𝛼
⩽ 𝐴 for each 𝑥

𝛼
∈ 𝑀

∗
(𝐿

𝑋
)

with 𝑥
𝛼
⩽ 𝜔 cl(𝐴) by the definition of 𝜔-operator. Actually, if

𝑥
𝛼
⩽ 𝜔 cl(𝐴), then there exists a molecular net 𝑁 = {𝑥

(𝑛)

𝑡(𝑛)
∈

𝑀
∗
(𝐿

𝑋
) | 𝑛 ∈ 𝐷} in𝐴which𝜔-converges to𝑥

𝛼
in accordance

with Theorem 2 in [11]. Write 𝜆 = ∧
𝑚∈𝐷

∨
𝑛⩾𝑚

𝑡(𝑛); we assert
that 𝜆 ⩾ 𝛼. In fact, if 𝜆 �⩾ 𝛼, then there is a 𝑚 ∈ 𝐷 with
∨
𝑛⩾𝑚

𝑡(𝑛) �⩾ 𝛼, and let𝑑 = ∨
𝑛⩾𝑚

𝑡(𝑛). Since (𝐿𝑋
, Ω) is stratified,

the constant 𝐿-set [𝑑] on 𝑋 is 𝜔-closed and 𝑥
𝛼 �⩽ [𝑑], that

is, [𝑑] ∈ 𝜔𝜂
−
(𝑥

𝛼
). Obviously, 𝑁 is eventually in [𝑑], and it

contradicts the fact that 𝑁 𝜔-converges to 𝑥
𝛼
. Hence 𝜆 ⩾ 𝛼;

that is, ∨
𝑛⩾𝑚

𝑡(𝑛) ⩾ 𝛼 for each𝑚 ∈ 𝐷. For each 𝑟 ∈ 𝛽∗
(𝛼) and

each 𝑚 ∈ 𝐷 we choose 𝑛(𝑟,𝑚) ∈ 𝐷 such that 𝑛(𝑟,𝑚) ⩾ 𝑚

and 𝑡(𝑛(𝑟, 𝑚)) ⩾ 𝑟, and define the relation “⩾” in 𝛽∗
(𝛼) × 𝐷

as follows:

(𝑟
1
, 𝑚

1
) ⩾ (𝑟

2
, 𝑚

2
) iff 𝑟

1
⩾ 𝑟

2
, 𝑚

1
⩾ 𝑚

2
. (2)

Then 𝛽
∗
(𝛼) × 𝐷 is a directed set with the relation. Write

𝑆 = {𝑥
𝑛(𝑟,𝑚)

𝑡(𝑛(𝑟,𝑚))
| (𝑟, 𝑚) ∈ 𝛽

∗
(𝛼) × 𝐷}; then 𝑆 = 𝑁 ∘ 𝑅, where

𝑅 : 𝛽
∗
(𝛼) × 𝐷 → 𝐷 is defined as 𝑅(𝑛(𝑟,𝑚)) = 𝑛(𝑟,𝑚).

Evidently 𝑆 is a subnet of 𝑁 and 𝜔-converges to 𝑥
𝛼
, and 𝑆 is

an 𝛼-net in 𝐴. Being the 𝐿𝜔-compactness of 𝐴, 𝑆 has an 𝜔-
cluster point in𝐴with hight 𝛼, say 𝑧

𝛼
. Since (𝐿𝑋,Ω) is an𝜔𝑇

2

space, 𝑆 𝜔-converges to 𝑥
𝛼
and 𝜔-accumulates to 𝑧

𝛼
, 𝑧 = 𝑥

by Theorem 2.7 in [11], and hence 𝑥
𝛼
= 𝑧

𝛼
⩽ 𝐴. This implies

that 𝜔 cl(𝐴) ⩽ 𝐴; that is, 𝐴 is an 𝜔-closed set.

The following example shows that the stratified condition
inTheorem 26 can not be omitted.

Example 27. Let 𝑋 = {𝑥} be a single set, 𝐿 = [0, 1], and
let 𝜔 : 𝐿

𝑋
→ 𝐿

𝑋 be the fuzzy closure operator. Define
𝜔𝑂(𝐿

𝑋
) = {0

𝑋
, 𝑥

1/3
, 1

𝑋
}, where 𝐴 : 𝑥 → [0, 1] is defined

as 𝐴(𝑥) = 𝑥
𝛼
, 𝛼 ∈ [0, 1] for 𝑥 ∈ 𝑋. Obviously, (𝐿𝑋

, Ω) is both
an 𝐿𝜔-compact space and an 𝑁-compact space. According
to Example 11 we know that𝐴 = 𝑥

1/3
is an 𝐿𝜔-compact set in

(𝐿𝑋
, Ω), but 𝐴 is not 𝜔-closed.

The following theorems imply that the 𝐿𝜔-compactness
can strengthen 𝜔-seperation properties.
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Theorem 28. If (𝐿𝑋, Ω) is both 𝜔𝑇
2
and 𝐿𝜔-compact 𝐿𝜔-

space, then (𝐿𝑋
, Ω) is an 𝜔-regular space [11].

Proof. Let 𝐺 ∈ 𝐿
𝑋 be an 𝜔-closed pseudocrisp set and let 𝑥

𝜆

be a molecule which 𝑥 is not in supp 𝐺. By Definition 7.1 in
[19], there is an 𝛼 ∈ 𝑀 such that 𝐺(𝑥) > 0 implies 𝐺(𝑥) ⩾ 𝛼.
For each 𝑦

𝛼
∈ 𝑀

∗
(𝐿

𝑋
), there are 𝑃

𝑦
∈ 𝜔𝜂

−
(𝑥

𝜆
) and 𝑄

𝑦
∈

𝜔𝜂
−
(𝑦

𝛼
) satisfying 𝑃

𝑦
∨ 𝑃

𝑦
= 1

𝑋
by virtue of 𝑥 ̸= 𝑦 and the

𝜔𝑇
2
separation of (𝐿𝑋

, Ω). Put Φ = {𝑄
𝑦
| 𝑦

𝛼
⩽ 𝐺}; then

Φ is an 𝛼𝜔-RF of 𝐺. Since (𝐿𝑋
, Ω) is an 𝐿𝜔-compact space,

𝐺 is an 𝐿𝜔-compact set in accordance with Theorem 20, and
thus Φ has a finite subfamily Ψ = {𝑄

𝑦
1

, 𝑄
𝑦
2

, . . . , 𝑄
𝑦
𝑛

} which
is an (𝛼𝜔)−-RF of 𝐺; that is, there is an 𝑟 ∈ 𝛽

∗
(𝛼) such that

for each molecule 𝑧
𝑟
⩽ 𝐺 we have 𝑖 ⩽ 𝑛 with 𝑧

𝑟 �⩽ 𝑄
𝑦
𝑖

. Let
𝑄 = ∧

𝑛

𝑖=1
𝑄

𝑦
𝑖

; then 𝑧
𝑟 �⩽ 𝑄; that is, 𝑟 �⩽ 𝑄(𝑧) for each 𝑧

𝑟
⩽ 𝐺.

Since 𝐺(𝑧) > 0 implies that 𝐺(𝑧) ⩾ 𝛼 ⩾ 𝑟, 𝐺(𝑧) �⩽ 𝑄(𝑧) for
each 𝑧 ∈ supp𝐺, and hence 𝑄 ∈ 𝜔𝜂

−
(𝐺). Write 𝑃 = ∨

𝑛

𝑖=1
𝑃𝑦

𝑖
;

then 𝑃 ∈ 𝜔𝜂
−
(𝑥

𝜆
) and

𝑃 ∨ 𝑄 = (∨
𝑛

𝑖=1
𝑃𝑦

𝑖
) ∨ (∧

𝑛

𝑖=1
𝑄𝑦

𝑖
) ⩾ ∨

𝑛

𝑖=1
(𝑃𝑦

𝑖
∨ 𝑄𝑦

𝑖
) = 1. (3)

Consequently, (𝐿𝑋, Ω) is an 𝜔-regular space.

Theorem 29. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-compact 𝜔𝑇

2
space. Then

(𝐿𝑋
, Ω) is an 𝜔-normal space [11].

Proof. Let both 𝐺,𝐻 be 𝜔-closed pseudocrisp sets in (𝐿𝑋
, Ω)

with (supp𝐺) ∩ (supp𝐻) = 𝜙. Then there are 𝜆, 𝜇 ∈ 𝑀 such
that 𝐺(𝑥) > 0 if and only if 𝐺(𝑥) ⩾ 𝜆, and 𝐻(𝑥) > 0 if and
only if𝐻(𝑥) ⩾ 𝜇. According to the proof of Theorem 28, for
each molecule 𝑦

𝜇
⩽ 𝐺, there is an 𝜔-closed set 𝑃

𝑦
∈ 𝜔𝜂

−
(𝐺)

satisfying 𝜆 �⩽ 𝑃
𝑦
(𝑧) for each 𝑧 ∈ supp𝐺, and there is a 𝑄

𝑦
∈

𝜔𝜂
−
(𝑦

𝜇
) such that 𝑃

𝑦
∨ 𝑄

𝑦
= 1. One can easily see that Φ =

{𝑄
𝑦
| 𝑦

𝜇
⩽ 𝐵} is a 𝜇𝜔-RF of 𝐻. In line with Theorem 20

we know that 𝐻 is an 𝐿𝜔-compact set, and so Φ has a finite
subfamily Ψ = {𝑄

𝑦
1

, 𝑄
𝑦
2

, . . . , 𝑄
𝑦
𝑛

} such that Ψ is a (𝜇𝜔)−-RF
of 𝐻. Put 𝑃 = ∨

𝑛

𝑖=1
𝑃𝑦

𝑖
; 𝑄 = ∧

𝑛

𝑖=1
𝑄

𝑦
𝑖

; then 𝑃 ∈ 𝜔𝜂
−
(𝐺), 𝑄 ∈

𝜔𝜂
−
(𝐻) and 𝑃 ∨ 𝑄 = 1. Therefore (𝐿𝑋, Ω) is an 𝜔-normal

space.

5. The Tychonoff Product Theorem

In this section, we will first extend Alexandar’s subbase
Lemma in general topology and give the Alexandar’s 𝜔-
subbase lemma and next prove that the Tychonoff product
theorem holds in 𝐿𝜔-spaces.

Theorem 30 (Alexandar 𝜔-subbase lemma). Let (𝐿𝑋, Ω) be
an 𝐿𝜔-space, 𝐴 ∈ 𝐿

𝑋, and let 𝛾 be an 𝜔-subbase [20] in 𝐿𝑋.
If for each 𝛼𝜔-RF Φ of 𝐴 where Φ ⊆ 𝛾


⊆ 𝜔𝐶(𝐿

𝑋
), there is a

finite subfamily Ψ of Φ with ∧Ψ ≪ 𝐴(𝛼𝜔)(𝛼 ∈ 𝑀), then 𝐴 is
𝐿𝜔-compact.

Proof. Suppose that Φ is an arbitrary 𝛼𝜔-RF of 𝐴. We will
prove thatΦ has a finite subfamilyΨwhich is an (𝛼𝜔)+-RF of
𝐴. In fact, if for each Ψ ∈ 2

(Φ), ∧Ψ ≪ 𝐴(𝛼𝜔) does not hold,
then 𝐻 = {Δ | Φ ⊆ Δ ⊆ 𝜔𝐶(𝐿

𝑋
), for all Ψ ∈ 2

(Δ)
, ∧Ψ ≪

𝐴(𝛼𝜔) does not hold} ̸= 0, and𝐻 is a partial-ordered set with
respect to the upper bound and hence there exists a maximal
elementΔ

0
in𝐻 by Zorn’s Lemma.We assert thatΔ

0
satisfies

the following conditions:
(1) ∧Δ

0
< 𝐴(𝛼 ⩾ 𝜔);

(2) if 𝑃 ∈ Δ
0
, then 𝑄 ∈ Δ

0
for each 𝑄 ∈ 𝜔𝐶(𝐿

𝑋
) with

𝑄 ⩾ 𝑃;
(3) if 𝑃,𝑄 ∈ 𝜔𝐶(𝐿

𝑋
) and 𝑃 ∨ 𝑄 ∈ Δ

0
, then 𝑃 ∈ Δ

0
or

𝑄 ∈ Δ
0
.

Actually, since ∧Φ < 𝐴(𝛼𝜔) and Φ ⊆ Δ
0
, condition (1)

holds. If𝑃 ∈ Δ
0
,𝑄 ∈ 𝜔𝐶(𝐿

𝑋
),𝑄 ⩾ 𝑃, and𝑄 is not inΔ

0
, then

Δ
∗
= Δ

0
∪ {𝑄} ∈ 𝐻 and Δ

0
⊂ Δ

∗. It contradicts the fact that
Δ

0
is the maximal element in𝐻 thus condition (2) holds. Let

𝑃,𝑄 ∈ 𝜔𝐶(𝐿
𝑋
). If 𝑃 and 𝑄 are both not in Δ

0
, then Δ

0
∪ {𝑃}

and Δ
0
∪ {𝑄} are both not in𝐻 by the maximality of Δ

0
, and

thus there are Ψ
1
, Ψ

2
∈ 2

(Δ
0
) such that ∧(Ψ

1
∪ {𝑃}) ≪ 𝐴(𝛼𝜔)

and ∧(Ψ
2
∪ {𝑄}) ≪ 𝐴(𝛼𝜔) according to the definition of 𝐻;

that is, there are 𝑠, 𝑡 ∈ 𝛽
∗
(𝛼) with ∧(Ψ

1
∪ {𝑃}) < 𝐴(𝑠𝜔) and

∧(Ψ
2
∪ {𝑄}) < 𝐴(𝑡𝜔). Since 𝛽∗

(𝛼) is upper directed, we can
choose 𝑟 ∈ 𝛽∗

(𝛼) with 𝑟 ⩾ 𝑠 ∨ 𝑡. Now we prove ∧{Ψ
2
∪ Ψ

2
∪

{𝑃∨𝑄}} < 𝐴(𝑟𝜔). In reality, ifΨ
2
∪Ψ

2
does not have any 𝜔𝑅-

neighborhood of𝑥
𝑟
for each𝑥

𝑟
⩽ 𝐴, thenΨ

2
∪Ψdoes not have

any 𝜔𝑅-neighborhood of 𝑥
𝑠
and 𝑥

𝑡
, respectively, and hence

𝑃 ∈ 𝜔𝜂
−
(𝑥

𝑠
) and 𝑄 ∈ 𝜔𝜂

−
(𝑥

𝑡
). Particularly, 𝑃,𝑄 ∈ 𝜔𝜂

−
(𝑥

𝑟
)

and so𝑃∨𝑄 ∈ 𝜔𝜂
−
(𝑥

𝑟
).This shows that∧(Ψ

2
∪Ψ

2
∪{𝑃∨𝑄}) <

𝐴(𝑟𝜔). Therefore 𝑃∨𝑄 is not in Δ
0
by virtue of the definition

of Δ
0
and Ψ

1
, Ψ

2
∈ 2

(Δ
0
). So, condition (3) holds.

From (2) and (3) we have the following result:

(4) If 𝑅 ∈ Δ
0
, 𝑃

𝑖
∈ 𝜔𝐶(𝐿

𝑋
) (𝑖 = 1, 2, . . . , 𝑛) and 𝑅 ⩽

∨
𝑛

𝑖=1
𝑃
𝑖
, then there is an 𝑖 ∈ {1, 2, . . . , 𝑛} satisfying 𝑃

𝑖
∈

Δ
0
.

Consider now 𝛾

∩ Δ

0
. If 𝛾 ∩ Δ

0
is an 𝛼𝜔-RF of 𝐴, then

there is a finite subfamily 𝛿 of 𝛾 ∩ Δ
0
which is an (𝛼𝜔)−-RF

of 𝐴. Evidently, 𝛿 ∈ 2
(Δ
0
); it is in contradiction with Δ

0
∈

𝐻. Hence 𝛾 ∩ Δ
0
is not an 𝛼𝜔-RF of 𝐴; that is, there is a

molecule 𝑥
𝛼
in 𝐴 meeting 𝑥

𝛼
⩽ ∧(𝛾


∩ Δ

0
). We now verify

that 𝑥
𝛼
⩽ ∧Δ

0
. In fact, if there is𝑄 ∈ Δ

0
with 𝑥

𝛼 �⩽ 𝑄, then
by Definition 5 in [17] we can take a finite subfamily {𝑃

𝑖𝑗
|

𝑗 ∈ 𝐽
𝑖
, 𝑖 ∈ 𝐼} of 𝛾 satisfying 𝑄 = ∧

𝑖∈𝐼
∨
𝑗∈𝐽
𝑖

𝑃
𝑖𝑗
, where 𝐽

𝑖
is a

finite set for each 𝑖 ∈ 𝐼. Because of 𝑥
𝛼 �⩽ 𝑄, we can choose

𝑖 ∈ 𝐼 with 𝑥
𝛼 �⩽ ∨

𝑗∈𝐽
𝑖

𝑃
𝑖𝑗
. Since 𝑄 ⩽ ∨

𝑗∈𝐽
𝑖

𝑃
𝑖𝑗
, there is a 𝑗 ∈ 𝐽

𝑖

such that 𝑃
𝑖𝑗
∈ Δ

0
by (4). Hence 𝑃

𝑖𝑗
∈ 𝛾


∩ Δ

0
and 𝑥

𝛼 �⩽ 𝑃
𝑖𝑗
; it

contradicts the fact that 𝑥
𝛼
⩽ ∧(𝛾


∩Δ

0
) ⩽ 𝑃

𝑖𝑗
; thus 𝑥

𝛼
⩽ ∧Δ

0
.

However, this is in contradiction with (1) again. This implies
that Φ has a finite subfamily Ψ with ∧Ψ ≪ 𝐴(𝛼𝜔). Therefore
𝐴 is an 𝐿𝜔-compact set in (𝐿𝑋

, Ω).

Theorem 31. Let {(𝐿𝑋
𝑡
, Ω

𝑡
) | 𝑡 ∈ 𝑇} be a collection of 𝐿𝜔-

spaces and let (𝐿𝑋
, Ω) be the product space of them. If 𝐴

𝑡
is an

𝐿𝜔-compact set in (𝐿𝑋
𝑡
, Ω

𝑡
) for each 𝑡 ∈ 𝑇, then the product

𝐴 = Π
𝑡∈𝑇
𝐴

𝑡
of all 𝐿𝜔-compact sets 𝐴

𝑡
(𝑡 ∈ 𝑇) is an 𝐿𝜔-

compact set in (𝐿𝑋
, Ω).

Proof. Assume that Φ is an 𝛼𝜔-RF of 𝐴(𝛼 ∈ 𝑀). By
Theorem 30 we can grant that every 𝜔-closed set in Φ is of
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the form 𝜌
←

𝑡
(𝐵

𝑡
) where 𝐵

𝑡
∈ 𝜔𝐶(𝐿

𝑋
𝑡
) and 𝜌

𝑡
: 𝐿

𝑋
→ 𝐿

𝑋
𝑡 is

a protection because {𝜌←

𝑡
(𝑈

𝑡
) | 𝑈

𝑡
∈ 𝜔𝑂(𝐿

𝑋
), 𝑡 ∈ 𝑇} is an 𝜔-

subbase in (𝐿𝑋
, Ω) [20]. Now we consider the following two

cases.
(i) If there exists a 𝑡

0
∈ 𝑇 such that no molecule with

hight 𝛼 is contained in 𝐴
𝑡
0

, then by the 𝐿𝜔-compactness of
𝐴

𝑡
0

, there is an 𝑟 ∈ 𝛽∗
(𝛼) such that no molecule with hight 𝑟

is contained in 𝐴
𝑡
0

. In reality, if there exists a molecule with
hight 𝑟 in 𝐴

𝑡
0

for each 𝑟 ∈ 𝛽∗
(𝛼), say𝑁(𝑟), then𝑁 = {𝑁(𝑟) |

𝑟 ∈ 𝛽
∗
(𝛼)} is an 𝛼-net in 𝐴

𝑡
0

by the directivity of 𝛽∗
(𝛼).

Since𝐴
𝑡
0

is 𝐿𝜔-compact,𝑁 has an𝜔-cluster point in𝐴
𝑡
0

with
hight 𝛼 according to Theorem 15. It is in contradiction with
the hypothesis of 𝐴

𝑡
0

. Thus it can be seen that there exists an
𝑟 ∈ 𝛽

∗
(𝛼) with 𝐴

𝑡
0

(𝑥
𝑡
0
) �⩾ 𝑟 for each 𝑥𝑡

0
∈ 𝑋

𝑡
0

. Hence for
each 𝑥 ∈ 𝑋, we have

𝐴 (𝑥) = (Π𝑡∈𝑇
𝐴

𝑡
) (𝑥)

= ∧
𝑡∈𝑇
𝐴

𝑡
(𝜌

𝑡 (
𝑥)) ⩽ 𝐴 𝑡

0

(𝜌
𝑡
0

(𝑥)) = 𝐴 𝑡
0

(𝑥
𝑡
0
) ,

(4)

and hence𝐴(𝑥) �⩾ 𝑟 for each 𝑥 ∈ 𝑋; that is, no molecule with
hight 𝑟 is contained in 𝐴. This shows that for each Ψ ∈ 2

(Φ),
Ψ is an (𝛼𝜔)−-RF of 𝐴.

(ii) Suppose that for each 𝑡 ∈ 𝑇, 𝐴
𝑡
contains a molecule

with hight 𝛼, say 𝑥𝑡

𝛼
. Since Φ ⊆ {𝜌

←

𝑡
(𝐵

𝑡
) | 𝐵

𝑡
∈ 𝜔𝐶(𝐿

𝑋
), 𝑡 ∈

𝑇}, we can take 𝑅 ⊆ 𝑇 such that Φ = ∪
𝑡∈𝑅
Φ

𝑡
, where Φ

𝑡
=

{𝜌
←

𝑡
(𝐵

𝑡
) | 𝐵

𝑡
∈ B

𝑡
⊆ 𝜔𝐶(𝐿

𝑋
)}. Now we prove that there

must be 𝑠 ∈ 𝑅 with ∧B
𝑠
< 𝐴(𝛼𝜔). In fact, if there is a crisp

point 𝑦𝑡
∈ 𝑋

𝑡
such that 𝑦𝑡

⩽ 𝐴
𝑡
∧ (∧B

𝑡
) for each 𝑡 ∈ 𝑅, then

we choose a crisp point 𝑧 in 𝑋 as follows: if 𝑡 ∈ 𝑅, 𝑧𝑡 = 𝑦
𝑡;

if 𝑡 is not in 𝑅, 𝑧𝑡 = 𝑥
𝑡. Taking any 𝜔-closed set 𝜌←

𝑡
(𝐵

𝑡
) in Φ,

where 𝑡 ∈ 𝑅 and 𝐵
𝑡
∈ B

𝑡
, we have

𝜌
←

𝑡
(𝐵

𝑡
) (𝑧) = 𝐵𝑡

(𝑧
𝑡
) = 𝐵

𝑡
(𝑦

𝑡
) ⩾ (𝐴

𝑡
∧ (∧B

𝑡
)) (𝑦

𝑡
) ⩾ 𝛼,

(5)

that is, 𝑧
𝛼
⩽ 𝜌

←

𝑡
(𝐵

𝑡
), and hence 𝑧

𝛼
⩽ ∧Φ by the arbitrariness

of 𝜌←

𝑡
(𝐵

𝑡
) ∈ Φ. On the other hand,

𝐴 (𝑧) = ∧𝑡∈𝑅
𝐴

𝑡
(𝑧

𝑡
) = (∧

𝑡∈𝑅
𝐴

𝑡
(𝑦

𝑡
)) ∧ (∧

𝑡∈𝑅
𝐴

𝑡
(𝑥

𝑡
)) ⩾ 𝛼.

(6)

This implies that 𝑧
𝛼
is a molecule in 𝐴; it contradicts the fact

that Φ is an 𝛼𝜔-RF of 𝐴. Consequently, there is 𝑠 ∈ 𝑅 with
∧B

𝑠
< 𝐴

𝑠
(𝛼); thus there is a finite subfamily Γ

𝑠
of B

𝑠
with

Γ
𝑠
< 𝐴

𝑠
(𝑟𝜔) for some 𝑟 ∈ 𝛽∗

(𝛼). Put Ψ = {𝜌
←

𝑠
(𝐵

𝑠
) | 𝐵

𝑠
∈ Γ

𝑠
};

then Ψ ∈ 2
(Φ). We assert that ∧Ψ < 𝐴(𝑟𝜔). Actually, for any

molecule 𝑒
𝑟
in 𝐴 with hight 𝑟 we have 𝐴

𝑠
(𝑒

𝑠
) ⩾ 𝐴(𝑒) ⩾ 𝑟;

that is, 𝑒𝑠
𝑟
is a molecule in 𝐴

𝑠
, where 𝑒 = {𝑒

𝑡
}
𝑡∈𝑇

∈ 𝑋. Hence
there exists an 𝜔-closed set 𝐵

𝑠
∈ Γ

𝑠
meeting 𝐵

𝑠
∈ 𝜔𝜂

−
(𝑒

𝑠

𝑟
) by

virtue of the fact that Γ
𝑠
is an 𝑟𝜔-RF of 𝐴

𝑠
; thus 𝜌←

𝑠
(𝐵

𝑠
)(𝑒) =

𝐵
𝑠
(𝑒

𝑠
) �⩾ 𝑟; that is, 𝜌←

𝑠
(𝐵

𝑠
) ∈ 𝜔𝜂

−
(𝑒

𝑟
). This shows that Ψ is an

𝑟𝜔-RF of𝐴.Therefore𝐴 is an 𝐿𝜔-compact set in (𝐿𝑋
, Ω).

Theorem32 (Tychonoff product theorem). Let (𝐿𝑋,Ω) be the
product space of a collection of 𝐿𝜔-spaces {(𝐿𝑋

𝑡
, Ω

𝑡
) | 𝑡 ∈ 𝑇}.

Then (𝐿𝑋,Ω) is 𝐿𝜔-compact if and only if for each 𝑡 ∈ 𝑇, (𝐿𝑋
𝑡 ,

Ω
𝑡
) is 𝐿𝜔-compact.

Proof. Necessity. Assume that (𝐿𝑋, Ω) is an 𝐿𝜔-compact
space. Since 𝜌

𝑡
: (𝐿

𝑋
, Ω) → (𝐿

𝑋
𝑡
, Ω

𝑡
) is an 𝜔-continuous

𝐿-valued Zadeh’s type function for each 𝑡 ∈ 𝑇, (𝐿𝑋
𝑡
, Ω

𝑡
) is

an 𝐿𝜔-compact space byTheorem 23.Therefore the necessity
holds.

Sufficiency. It follows fromTheorem 31.

The following example shows that the inverse theorem of
Theorem 31 does not hold.

Example 33. Let 𝐸 = {𝑒
1
, 𝑒

2
, . . .} be a countably infinite set,

𝑋
𝑡
= 𝐸 for each 𝑡 ∈ 𝑇 = {1, 2, . . .}, 𝐿 = [0, 1],Ω

𝑡
= [0, 1]

𝐸 and
let 𝜔 be a fuzzy closure operator. Then (𝐿𝑋

𝑡
, Ω

𝑡
) is a discrete

𝐿𝜔-space for each 𝑡 ∈ 𝑇. Define 𝐴
𝑡
∈ 𝐿

𝑋
𝑡 (𝑡 ∈ 𝑇) as follows:

if 𝑗 = 1, 𝐴
𝑡
(𝑒

𝑗
) = 1; if 𝑗 ⩾ 2, 𝐴

𝑡
(𝑒

𝑗
) = 1/𝑡.

Suppose that (𝐿𝑋
, Ω) is the product space of {(𝐿𝑋

𝑡
, Ω

𝑡
) |

𝑡 ∈ 𝑇} and 𝐴 = Π
𝑡∈𝑇
𝐴

𝑡
. Now we prove that 𝐴 is an 𝐿𝜔-

compact set in (𝐿𝑋, Ω), but 𝐴
𝑡
is not an 𝜔-compact set in

(𝐿
𝑋
𝑡
, Ω

𝑡
) for each 𝑡 ∈ 𝑇. In reality, for each 𝑥 = (𝑥

1
, 𝑥

2
, . . .) ∈

𝑋 we put 𝑥
𝑡
= 𝑒

𝑡

𝑗(𝑡)
, where 𝑥

𝑡
is a crisp point 𝑒

𝑗
in 𝑋

𝑡
; then

from the definitions of 𝐴
𝑡
and fuzzy product set 𝐴 we know

𝐴 (𝑥) = (Π𝑡∈𝑇
𝐴

𝑡
) (𝑥) = ∧𝑡∈𝑇

𝐴
𝑡
(𝑥

𝑡
) = ∧

𝑡∈𝑇
𝐴

𝑡
(𝑒

𝑡

𝑗(𝑡)
)

=

{
{
{
{
{
{

{
{
{
{
{
{

{

0, if there are infinite elements 𝑡
such that 𝑗 (𝑡) ⩾ 2.

1

𝑡
𝑅

, if there is a 𝑡
𝑅
∈ 𝑇such that 𝑗 (𝑡

𝑅
) ⩾ 2

and 𝑗 (𝑡) = 1whenever 𝑡 > 𝑡𝑅.
(7)

Thus it can be seen that 𝐴 ̸= 0
𝑋
and if 𝐴(𝑥) ⩾ 1/𝑡

𝑅
, then the

coordinates 𝑥
𝑡
= 𝑒

𝑡

𝑗(𝑡)
= 𝑒

1
of 𝑥 whenever 𝑡 > 𝑡

𝑅
. Obviously,

points in𝑋 satisfying the condition are only finite. Let𝛼 ∈ 𝑀,
that is, 𝛼 > 0, and letΦ be an 𝛼𝜔-RF of𝐴. Choose 𝑡

𝑅
∈ 𝑇with

1/𝑡
𝑅
< 𝛼. Since there are only finite molecule in 𝐴 with hight

𝛼, denote the finite crisp points as 𝑥1
, 𝑥

2
, . . . , 𝑥

𝑛. If (𝑥𝑖
)
𝛼
⩽ 𝐴

for each 𝑖 ∈ {1, 2, . . . , 𝑛}, then there is 𝑃
𝑖
∈ Φ with 𝑃

𝑖
(𝑥

𝑖
) < 𝛼.

Put 𝑠 = max{𝑃
𝑖
(𝑥

𝑖
) | 𝑃

𝑖
(𝑥

𝑖
) < 𝛼, 𝑖 ⩽ 𝑛}; then 𝑠 < 𝛼. Taking

𝑠
1
∈ (𝑠, 𝛼) and 𝑟 = max(𝑠

1
, 1/𝑡

𝑅
), we know that 𝐴 has at most

𝑛molecules with hight 𝑟, say (𝑥𝑖
)
𝑟
(𝑖 ⩽ 𝑛). By the definition

ofΦ, there is a 𝑃
𝑖
∈ Φ such that 𝑃

𝑖
∈ 𝜔𝜂

−
((𝑥

𝑖
)
𝑟
) for each (𝑥𝑖

)
𝑟

in 𝐴. Denote Ψ = {𝑃
𝑖
∈ Φ | 𝑃

𝑖
∈ 𝜔𝜂

−
((𝑥

𝑖
)
𝑟
), 𝑖 ⩽ 𝑛}; then

Ψ ∈ 2
(Φ) and Ψ is an 𝑟𝜔-RF of 𝐴. This implies that Ψ is an

(𝛼𝜔)
−-RF of 𝐴 by 𝑟 ∈ 𝛽∗

(𝛼). Hence 𝐴 is 𝐿𝜔-compact in (𝐿𝑋,
Ω). On the other hand, take𝐷 = 𝑇 and𝑁 = {𝑁(𝑚) | 𝑚 ∈ 𝐷}

where 𝑁(𝑚) = (𝑒
𝑚
)
1/𝑡

for each 𝑚 ∈ 𝐷 and each 𝑡 ∈ 𝑇; then
𝑁 is a (1/𝑡)-net in 𝐴

𝑡
. Since (𝐿𝑋

𝑡
, Ω

𝑡
) is discrete,𝑁 does not

have any 𝜔-cluster point in 𝐴
𝑡
with hight 1/𝑡. Therefore 𝐴

𝑡

is not 𝐿𝜔-compact in (𝐿𝑋
𝑡
, Ω

𝑡
) for each 𝑡 ∈ 𝑇 according to

Theorem 15.
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