
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 927632, 10 pages
http://dx.doi.org/10.1155/2013/927632

Research Article
Nonlinear Dynamic Analysis on the Rain-Wind-Induced
Vibration of Cable Considering the Equilibrium Position
of Rivulet

Xijun Liu,1,2 Bing Huo,1,2 and Suxia Zhang1,2

1 Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
2 Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300072, China

Correspondence should be addressed to Bing Huo; huobing@tju.edu.cn

Received 1 October 2013; Accepted 19 November 2013

Academic Editor: Massimiliano Ferrara

Copyright © 2013 Xijun Liu et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The nonlinear dynamic behavior of rain-wind-induced vibration of inclined cable is investigated with the consideration of the
equilibrium position of the moving rivulet. The partial differential governing equations of three-degree-of-freedom on the model
of rain-wind-induced cable vibration are established, which are proposed for describing the nonlinear interactions among the in-
plane, out-of-plane vibration of the cable and the oscillation of the moving rivulet. The Galerkin method is applied to discretize
the partial differential governing equations. The approximately analytic solution is obtained by using the method of averaging.The
unique correspondence between thewind and the equilibriumposition of the rivulet is ascertained.Thepresence of rivulet at certain
positions on the surface of cable is then proved to be one of the trigger forwind-rain-induced cable vibration.Thenonlinear dynamic
phenomena of the inclined cable subjected to wind and rain turbulence are then studied by varying the parameters including mean
wind velocity, Coulomb damping force, damping ratio, the span length, and the initial tension of the inclined cable on the model.
The jump phenomenon is also observed which occurs when there are multiple solutions in the system.

1. Introduction

Dynamic behavior of corresponding differential systems has
been of extensive concern and investigated by many scholars
[1–8]. One of the systems is the inclined cable, which is
a structure characterized by small stiffness, low mass, and
light damping. The similar structures including transmission
line, suspended cable, and submarine cable are widely used
in the long-span structures, so the dynamic study of the
inclined cable is of great engineering significance. Rain-wind-
induced vibration of inclined cable is a phenomenon of large
amplitude vibration with low frequency under the conditions
of rain and wind. Many wind tunnel tests have been carried
on a cable model. Large amplitude vibrations of cables were
first observed by Hikami and Shiraishi [9]. Upper rivulet was
regarded as the origin of large amplitude vibration due to
its formulation on the cable, causing the cable cross section
aerodynamically unstable. Yamaguchi [10] took the lead in
aerodynamic test of cable with artificial rivulet. Aerodynamic

forces acting on the cable were obtained.Matsumoto et al. [11]
reported that another factor named an axial flow generated
at the near wake of the inclined cable may trigger the rain-
wind-induced oscillations. He stated that rain-wind-induced
vibration can be explained as a vortex-induced vibration,
which occurs at limited high reduced wind velocity region
[12]. Bosdogianni and Olivari [13] compared wind tunnel
results of cables with moving rivulet and fixed rivulet. They
concluded that it was the presence of rivulet at certain
positions on the surface of cable and not themotion of rivulet
that caused cable instability. Then the aerodynamic forces
acting on the moving rivulet were first measured by Gu et al.
[14], proposing a new description of friction force between
the water rivulet and the cable surface.

On the basis of the measured aerodynamic coefficients,
the kinetic equations of rain-wind-induced vibration have
been established. However, before the measurement of the
aerodynamic coefficients on the moving rivulet, the motion
of rivulet was assumed to be harmonic [15–17]. With the
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acquisition of the aerodynamic coefficients on the moving
rivulet, the analytic model for cable with the kinetic equation
of the rivulet was built [18]. Zhang et al. [3] presented
a two-degree-of-freedom model of the rain-wind-induced
vibration of a continuous stay cable. The phenomenon of
bifurcation was observed in the system using the singularity
theory. Zhang et al. [19] established the three-degree-of-
freedom model of rain-wind-induced vibration of inclined
cable. The motion characteristics of rivulet were achieved
with two rivulet models through numerical calculation and
some more rational explanations of the phenomenon were
obtained.

The influences of equilibrium position of rivulet on cable
have been studied, in which the equilibrium position of
rivulet was always assumed to be independent of wind. The
equilibrium position of rivulet was altered factitiously to
inspect its effects on the vibration while the mean wind
velocity was fixed [15, 18]. However, the equilibrium position
of rivulet is uniquely corresponding to the wind once the
mass of the rivulet is fixed. Meanwhile, the similar structures
including beam, suspended cables, and inclined cablewithout
wind or rain have been extensively researched analytically
to discover more dynamic phenomena [4–8]. However, the
nonlinear dynamic behavior of rain-wind-induced vibration
has been rarely investigated using approximately analytic
method for its complexity.

In comparison with the literature above, the equilibrium
position of themoving rivulet is considered and the nonlinear
dynamic characteristics of rain-wind-induced vibration are
investigated analytically by using the approximate method
of averaging. The present paper established the continuum
model of the inclined cable subjected to wind and rain
turbulence with the consideration of the equilibriumposition
of the rivulet. The reliance of the equilibrium position of
the rivulet on wind is figured out and the effects of the
equilibrium position of the rivulet on the cable vibration are
observed and proved. Furthermore, the amplitude response
curves of parameters includingmeanwind velocity, Coulomb
damping force, damping ratio, the span length, and the
initial tension of the inclined cable present abundant dynamic
behaviors. The jump phenomenon is also observed when
multivalued solutions exit in the system.

2. Model and Nonlinear Equations

Assumptions of inclined cable are made in present paper: (1)
The flexural rigidity, torsional stiffness and shear stiffness are
ignored; (2) The constitutive relation of cable deformation
submits to Hooke’s law and the points bear the stress evenly;
(3)The axialmotion of the cable is ignored; (4)The influences
of bridge and tower are disregarded.

The analytic model of rain-wind-induced vibration of
inclined cable is shown in Figures 1(a), 1(b), and 1(c), 𝑈

0

is mean wind velocity, 𝛼 is cable angle, 𝛽 is wind angle, 𝐿
is the span length of the cable, and V and 𝑤 are dynamic
displacement in the 𝑦 and 𝑧 direction, respectively. V

0
is

deflection at the equilibrium position of cable. Define that
the vibration in the plane 𝑥-𝑦 is in-plane vibration, while the

vibration in the plane 𝑥-𝑦 is out-of-plane vibration.𝑀 is the
mass per unit length of cable, 𝑇 is the initial tension of the
cable, and 𝜏 is the dynamic tension of the cable. d𝑠 and d𝑠

0
are

arc length of undeformed and deformed cable, respectively.
Figure 1(d) presents the force analysis of rivulet. 𝜃

0
is the

equilibrium position of rivulet, 𝜃 is dynamic displacement
of rivulet which is the angle deviating from the equilibrium
position, 𝜑 is dynamic displacement of rivulet which is the
angle deviating from𝑦direction.𝑚 is themass per unit length
of rivulet, 𝑔 is the gravity acceleration,𝑅 is the radius of cable,
𝐹
0
is Coulomb damping force whose direction is opposite

to its motion, 𝜁
𝑟
is the linear viscous damping coefficient

between cable and rivulet, and effective angle of attack 𝛾 is the
angle between effective wind velocity 𝑈 and 𝑧 direction. 𝜓 is
the angle between relative wind velocity 𝑈

𝑟
and z direction.

Balance equations of the system are obtained from the
force analysis of the cable element and rivulet (see Figures 1(c)
and 1(d)):
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𝐸 is the elasticity modulus of cable, 𝐴 is the cross sectional
area of cable, and 𝜀

0
is dynamic strain. 𝜁V, 𝜁𝑤 are the

damping coefficients of in-plane and out-of-plane vibration,
respectively. 𝐹

𝑦
, 𝐹
𝑧
, and 𝑓

𝜏
are the aerodynamic forces on

the in-plane, out-of-plane, and rivulet vibration, respectively,
with the function of V̇, �̇�, �̇�, and 𝜑 which are defined by
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Figure 1: Mechanical model of inclined cable.
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where 𝜌 is air density, 𝐷 is the diameter of the cable, 𝐵 is
the characteristic length of rivulet, and 𝜓∗ is equivalent wind
attack angle and can be written as

𝜓
∗
= 𝜓 − 𝜑,

𝜓 = tan−1
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,
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0
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(4)

In (3), lift coefficient𝐶
𝐿
, resistance coefficient𝐶

𝐷
of cable

are the fitting functions of 𝜓∗, aerodynamic coefficients of
rivulet 𝑐

𝑥
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are the fitting functions of 𝜑 which are

obtained in the experiment [18] and can be expressed as
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(5)

where 𝑒
𝑖𝑗
are constant coefficients, 𝑖 = 1 ∼ 4, 𝑗 = 1 ∼ 4. At

static situation, the force analysis of rivulet is given by

𝑚𝑔 cos𝛼 sin𝜑 = 𝑓
𝜏
(V̇, �̇�, 𝜑, �̇�)V̇=0,�̇�=0,�̇�=0. (6)

The equilibrium position 𝜃
0
can be attained from (6) and

expressed as 𝜃
0
= Θ(𝑈

0
, 𝑚). The equation of rivulet on

the equilibrium position is obtained by substituting 𝜑 =

𝜃 + 𝜃
0
(Figure 1(d)) into system (1). Galerkin method is

then adopted to discretize system (1) and the first mode of
vibration is reserved, assuming that
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the final equations are obtained:
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(9)

𝜔
𝑖
is the natural frequency of in-plane, out-of-plane, and

rivulet vibration, respectively. 𝑎
𝑖1
∼ 𝑎
𝑖32
,𝑔
𝑖1
∼ 𝑔
𝑖16

are integral
constants related to physical parameters of cable and mean
wind velocity, 𝑖 = V, 𝑤, 𝜃. The equations are composed of
geometric nonlinearity and aerodynamic nonlinearity.
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3. Average Analysis
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6
.

(11)

𝑎
1
∼ 𝑎
38
, 𝑏
1
∼ 𝑏
37
, and 𝑐

1
∼ 𝑐
50

are integral constants. The
analytic solutions are assumed to be

𝑥
𝑠
=

3

∑

𝑘=1

𝐴
𝑘
𝜙
𝑠𝑘
(𝜃
𝑘
) . (12)

𝐴
𝑘
(𝑡) is amplitude and 𝜃

𝑘
(𝑡) is phase position. They can be

obtained according to the orthogonality of derived equations
and conjugate equations which are given by

𝑑𝐴
𝑘

𝑑𝑡
=

𝜀

Δ
𝑘

6

∑

𝑠=1

𝐹
𝑠
𝜓
𝑠𝑘
(𝜃
𝑘
) ,

𝑑𝜃
𝑘

𝑑𝑡
= 𝜆
𝑘
−

𝜀

Δ
𝑘
𝐴
𝑘

6

∑

𝑠=1

𝐹
𝑠
𝜓
∗

𝑠𝑘
(𝜃
𝑘
) ,

(13)

Δ
𝑘
=

6

∑

𝑠=1

𝜙
𝑠𝑘
𝜓
𝑠𝑘
= 1 +

(𝜆
2

𝑘
+ 1)
2

𝑎
1
𝑎
4

(
𝑎
3
𝑎
5

(𝜆
2

𝑘
+ 𝑎
2
)
2
+ 1) . (14)

𝜆
𝑘
is the natural frequency of derived equations. 𝐹

1
= 0,

𝐹
2
= 𝐹
1
, 𝐹
3
= 0, 𝐹

4
= 𝐹
2
, 𝐹
5
= 0, and 𝐹

6
= 𝐹
3
. The

basic solutions 𝜙
𝑠𝑘
, 𝜙∗
𝑠𝑘
, 𝜓
𝑠𝑘
, and 𝜓∗

𝑠𝑘
of derived equations and

conjugate equations are obtained according to system (10),
𝑠 = 1, 2, 3, 4, 5, 6, 𝑘 = 1, 2, 3.

Given that the rivulet vibrates mainly with the frequency
of cable, 𝐹

0
sgn(𝑥

6
) which is in system (8) is related to 𝑥

6
,

described as

𝑥
6
= 𝐴
1
𝜙
61
+ 𝐴
2
𝜙
62
+ 𝐴
3
𝜙
63
≈ 𝐴
1
𝜙
61

= (

𝐴
1
𝜆
1
(𝜆
2

1
+ 𝑎
1
)

𝑎
2

) sin (𝜆
1
𝑡) ,

(15)

making 𝑥
6
= 0 can ascertain the interval of the symbolic

function. Thus 𝛼
1
= 𝜋, 𝛼

2
= 2𝜋. The last average equations

can be written as

d𝐴
𝑘

d𝑡
=

𝜀

2𝜋Δ
𝑘

(∫

2𝜋

0

6

∑

𝑠=1

𝐹
𝑠
𝜓
𝑠𝑘
(𝜃
𝑘
) d𝜃
𝑘
)

+
𝜀

2𝜋Δ
𝑘

(∫

𝛼
1

0

𝜇
0
𝐹
0
𝜓
6𝑘
(𝜃
𝑘
) d𝜃
𝑘

−∫

𝛼
2

𝛼
1

𝜇
0
𝐹
0
𝜓
6𝑘
(𝜃
𝑘
) d𝜃
𝑘
) ,
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d𝜃
𝑘

d𝑡
= 𝜆
𝑘
−

𝜀

2𝜋Δ
𝑘
𝑦
𝑘

(∫

2𝜋

0

6

∑

𝑠=1

𝐹
𝑠
𝜓
∗

𝑠𝑘
(𝜃
𝑘
) d𝜃
𝑘
)

−
𝜀

2𝜋Δ
𝑘
𝑦
𝑘

(∫

𝛼
1

0

𝜇
0
𝐹
0
𝜓
∗

6𝑘
(𝜃
𝑘
) d𝜃
𝑘

−∫

𝛼
2

𝛼
1

𝜇
0
𝐹
0
𝜓
∗

6𝑘
(𝜃
𝑘
) d𝜃
𝑘
) .

(16)

Make

d𝐴
1

d𝑡
=
d𝐴
2

d𝑡
=
d𝐴
3

d𝑡
= 0, (17)

then

𝐴
𝑘
= 𝐴
𝑘0
,

𝜃
𝑘
= 𝜀

d𝜃
𝑘

d𝑡
(𝐴
𝑘0
) 𝑡 + 𝜗

𝑘
.

(18)

𝜗
𝑘
is arbitrary constant; the steady state solutions are obtained

by substituting (18) into (12)

𝑥
𝑠
=

3

∑

𝑘=1

𝐴
𝑘0
𝜙
𝑠𝑘
((𝜆
𝑘
+ 𝜀

d𝜃
𝑘

d𝑡
(𝐴
𝑘0
)) 𝑡 + 𝜗

𝑘
) . (19)

4. Results Analysis

Parameters are selected as follows [20]:𝑀 = 64.8 kg/m, 𝐿 =
110.5m,𝑅 = 0.051275m,𝑇 = 4.9×106N,𝐴 = 8.26×10

−3m2,
𝐸 = 2.10 × 10

11 Pa, 𝛼 = 30∘, 𝛽 = 35∘, 𝜁
1
= 0.1%, 𝜁

2
= 0.1%,

𝜁
𝑟
= 0.0008Ns/m2, 𝑈

0
= 8m/s, 𝑚 = 0.16 kg/m, and 𝐹

0
is

10% of rivulet’s mass per unit length.

4.1. Numerical Solutions. Figure 2 shows the numerical solu-
tions of inclined cable vibration calculated form system (8)
utilizingMatlab.The full line in Figure 2(a) is the time-history
of in-plane vibration while the dotted line represents the
out-of-plane vibration of the cable. The in-plane amplitude
is about 4 times as that of out-of-plane vibration and they
have the same phase. The time-history of the displacement
response of the rivulet is presented in Figure 2(b).Themoving
rivulet vibrates at its equilibrium position. Note that, the
vibration is not exhibited to be harmonic and there is not
one frequency component. Figure 3 provides the vibration
frequencies of in-plane and rivulet vibration. Cable vibrates
at its natural frequency which is equal to 1.25Hz as shown
in the Figure 3(a). However, the frequency components of
rivulet vibration are more complex. As shown in Figure 3(b),
its primary frequency is the same as the natural frequency of
cable; in addition, some higher order frequencies also exist in
its vibration.

4.2. The Comparison between Analytic and Numerical Solu-
tions. Figure 4 represents the analytic solutions together
with the numerical results. The 𝑥-coordinate is the mean
wind velocity 𝑈

0
and the 𝑦-coordinate is the maximum

displacement response amplitude of the in-plane, out-of-
plane, and rivulet vibration, respectively. Analytic solution

is a smooth curve, describing the trend of the amplitude
more directly and visually. Numerical solutions are several
discrete points.The amplitudes of in-plane, out-of-plane, and
rivulet vibration present a directly proportional relationship.
The response curves also confirm that rain-wind-induced
inclined cable vibration is a kind of restricted amplitude
vibration rather than galloping. The analytic results are in
good agreement with the numerical results.Thus, the validity
of the approximately analytic method is proved.

4.3. Analysis of Equilibrium Position of Rivulet. The cor-
respondences among the equilibrium position of rivulet,
mean wind velocity, and rivulet mass are calculated from
(6) and shown in Figure 5(a). The equilibrium position of
rivulet is determined by mean wind velocity with certain
rivulet mass. The effective wind velocity is around 1m/s∼
24m/s. Greater rivulet mass needs larger mean wind velocity
to form on the surface of the inclined cable. Keeping the
other parameters invariant, the effects of rivulet mass on the
cable vibration subjected to variational mean wind velocity
are presented in Figure 5(b). Greater rivulet mass on the
surface of inclined cable will cause stronger oscillation. The
impact of the equilibrium position of rivulet on the inclined
cable is investigated and plotted in Figure 5(c). It can be
perceived that the amplitude is up to the maximum when
the equilibrium position of rivulet is around 48∘ and almost
irrelevant to the rivulet mass. It confirms that the presence of
rivulet at certain positions on the surface of inclined cable is
one of the trigger that stimulate the inclined cable to vibrate.

4.4. Nonlinear Dynamic Analysis. The nonlinear dynamic
behavior of cable reflected by parameters is given in Figure 6.
The effect of mean wind velocity on the cable is presented in
Figure 6(a), in which the full line is stable solution and the
dotted line represents unstable solution.The figure illustrates
that the mean wind velocity modify the number of the
solutions. Two stable solutions appear at the mean wind
velocity range from 7m/s to 8.7m/s. Figure 6(b) describes
the nonlinear response curve of Coulomb damping force 𝐹

0

acting on the cable amplitude subjected to variousmeanwind
velocities. When mean wind velocity 𝑈

0
is selected as 8m/s,

two stable solutions occur for 𝐹
0
is less than 15%. As 𝐹

0

increases, the amplitude of inclined cable first arises along the
smaller branch of the stable solution and it will not jump until
𝐹
0
reaches 15%. Once 𝐹

0
increases to 15%, the smaller branch

of amplitude will be substituted by the larger branch. The
jump phenomena will also exist while 𝐹

0
is about 9% for𝑈

0
is

7m/s. The variance of 𝐹
0
will make no change to the number

of solution while the mean wind velocity is 6m/s, where the
system has only one stable solution and no jump phenomena
occurs. Similarly, the response curve of damping ratio acting
on the inclined cable depicts the nonlinear behavior of the
system (Figure 6(c)). Multiple solutions lie in the certain
range of 𝜁V when 𝑈0 is beyond its critical mean wind velocity
7m/s; otherwise, unique solution is obtained irrelevant to the
damping ratio.

The relation curves of amplitude and the span length
of cable 𝐿 are obtained in Figure 6(d). It also illustrates
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that the mean wind velocity modified the stability of the
inclined cable. When the mean wind velocity is selected as
7m/s or 8m/s, the amplitude will jump to a solution of
higher branch as the span length of lengthens. However, the
mean wind velocity of 6m/s will not cause the modification
of the number of the solutions but only a slight increase.
Figure 6(e) shows the response curve of cable amplitude and
initial tension 𝑇. Similarly, the mean wind velocity of 7m/s
and 8m/s will cause cable amplitude to increase drastically
while the lower wind velocity acting on the cable makes little
sense to the variance of the initial tension.

5. Conclusions

The continuum model of inclined cable subjected to wind
with moving rivulet on its surface is established considering
the equilibrium position of the rivulet. The Galerkin and
average methods are adopted to analyze the cable system

analytically. The correspondence between mean wind veloc-
ity and the equilibrium position of the rivulet is ascertained
considered the different rivulet mass. The equilibrium posi-
tion of the rivulet is proved to be one of the major roles in
determining themaximum amplitude of the oscillating cable.

The nonlinear dynamic behavior of the rain-wind-
induced cable vibration is then investigated considering
the continuous change of parameters including mean wind
velocity, Coulomb damping force, damping ratio, the span
length, and the initial tension of the inclined cable. Mean
wind velocity is observed to be a significant factor in jump
phenomena, which is discovered in the range of multiple
solutions.
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