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We introduce and study rough hyperideals in hyperlattices. First, we give some interesting examples of hyperlattices and introduce
hyperideals of hyperlattices. Then, applying the notion of rough sets to hyperlattices, we introduce rough hyperideals in
hyperlattices, which are extended notions of hyperideals of hyperlattices. In addition, we consider rough hyperideals in Cartesian
products and quotients of hyperlattices. Finally, we investigate some properties about homomorphic images of rough hyperideals
in hyperlattices.

1. Introduction

In applied mathematics, we encounter many examples of
mathematical objects that can be added to each other and
multiplied by scalar numbers. First of all, the real numbers
themselves are such objects. Other examples are real-valued
functions, the complex numbers, infinite series, vectors in 𝑛-
dimensional space, and vector valued functions. Sometimes
the sum of two elements is not an element. There are many
examples in chemistry where the sum of two elements is a
set of elements. In this case we have a hyperstructure. The
concept of hyperstructure was introduced in 1934 by a French
mathematician,Marty [1]. Algebraic hyperstructures are suit-
able generalizations of classical algebraic structures. In a clas-
sical algebraic structure, the composition of two elements is
an element, while in an algebraic hyperstructure, the com-
position of two elements is a set. Since then, there appeared
many components of hyperalgebras such as hypergroups in
[2] and hyperrings in [3]. Moreover, Konstantinidou and
Mittas introduced the concept of hyperlattices in [4] and
superlattices in [5]; also see [6–8]. In particular, Rasouli
and Davvaz further studied the theory of hyperlattices and
obtained some interesting results [9, 10], which enriched the
theory of hyperlattices.

Recently, a number of different hyperstructures arewidely
studied from the theoretical point of view and for their appli-
cations to many subjects of pure and applied mathematics
by many mathematicians. Also, a recent book [11] contains a

wealth of applications on geometry, binary relations, lattices,
fuzzy sets and rough sets, automata, combinatorics, codes,
artificial intelligence, and probabilistic. Another book [12] is
devoted especially to the study of hyperring theory, written by
Davvaz and Leoreanu-Fotea. Several kinds of hyperrings are
introduced and analyzed. The volume ends with an outline
of applications in chemistry and physics, analyzing sev-
eral special kinds of hyperstructures: 𝑒-hyperstructures and
transposition hypergroups. The theory of suitable modified
hyperstructures can serve as a mathematical background in
the field of quantum communication systems.

The theory of rough sets was introduced by Pawlak [13]
to deal with uncertain knowledge in information systems. It
is an expanding research area which stimulates explorations
on both real-world applications and on the theory itself.
Rough set theory is an extension of set theory, in which a
subset of a universe is described by a pair of ordinary sets
called the lower and upper approximations. It is a natural
question to ask what happens if we substitute an algebraic
system with the universe set. Some authors studied algebraic
properties of rough sets. Since Biswas and Nanda [14] applied
the notion of rough sets to algebra and introduced the notion
of rough subgroups, Davvaz et al. have been engaged in
extending concepts and methods of rough set theory to
various algebraic structures [15–21]. With the development
of the hyperstructure theory, Leoreanu-Fotea et al. attached
importance to the connections among rough sets, fuzzy sets,
and algebraic hyperstructures in [22–30]. These not only
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enriched the theory of rough sets but also provided new ideas
in the study of pure algebra and algebraic hyperstructures.

The combination of rough set theory and algebraic
systems may provide more new interesting research topics,
which have drawn attention of many mathematicians and
computer scientists. One can introduce roughness into an
algebraic system and investigate algebraic properties of var-
ious rough objects. In this paper, in order to broaden applica-
tion fields of the theory of rough sets and hyperstructures, we
introduce the rough set theory into hyperlattices. We intro-
duce rough hyperideals in hyperlattices, which are extended
notions of hyperideals in hyperlattices. And we study some
properties about rough hyperideals in hyperlattices.

2. Hyperideals in Hyperlattices

In this section, we recall the notion of hyperlattices and give
several new examples of it. Moreover, we will introduce hy-
perideals in hyperlattices and discuss some basic properties
of them, which will be used in the following paragraphs.

Let 𝐿 be a nonempty set, and let 𝑃∗(𝐿) be the set of all
nonempty subsets of 𝐿. A hyperoperation on 𝐿 is a map ∘ :

𝐿 × 𝐿 → 𝑃
∗

(𝐿), which associates a nonempty subset 𝑎 ∘ 𝑏

with any pair (𝑎, 𝑏) of elements of 𝐿 × 𝐿. The couple (𝐿, ∘) is
called a hypergroupoid.

If 𝐴 and 𝐵 are nonempty subsets of 𝐿, for all 𝑎, 𝑏, 𝑥 ∈ 𝐿,
we denote

(1) 𝑥∘𝐴 = {𝑥}∘𝐴 = ⋃
𝑎∈𝐴

𝑥∘𝑎,𝐴∘𝑥 = 𝐴∘{𝑥} = ⋃
𝑎∈𝐴

𝑎∘𝑥;

(2) 𝐴 ∘ 𝐵 = ⋃
𝑎∈𝐴,𝑏∈𝐵

𝑎 ∘ 𝑏.
In what follows, let us see what a hyperlattice is.
There are several kinds of hyperlattices that can be defined

on a nonempty set; see [4–8]. Throughout the paper, we shall
consider one of general types of hyperlattices [8]; also see [4].

Definition 1 (see [8]). Let 𝐿 be a nonempty set endowed with
two hyperoperations ⊗ and ⊕. The triple (𝐿, ⊗, ⊕) is called a
hyperlattice if the following conditions hold: for all 𝑎, 𝑏, 𝑐 ∈ 𝐿,

(1) 𝑎 ∈ 𝑎 ⊗ 𝑎, 𝑎 ∈ 𝑎 ⊕ 𝑎;

(2) 𝑎 ⊗ 𝑏 = 𝑏 ⊗ 𝑎, 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎;

(3) (𝑎 ⊗ 𝑏) ⊗ 𝑐 = 𝑎 ⊗ (𝑏 ⊗ 𝑐), (𝑎 ⊕ 𝑏) ⊕ 𝑐 = 𝑎 ⊕ (𝑏 ⊕ 𝑐);

(4) 𝑎 ∈ 𝑎 ⊗ (𝑎 ⊕ 𝑏), 𝑎 ∈ 𝑎 ⊕ (𝑎 ⊗ 𝑏).

Let (𝐿, ∧, ∨) be a lattice. Define hyperoperations “⊗” and
“⊕” on 𝐿 as follows: for all 𝑎, 𝑏 ∈ 𝐿, 𝑎 ⊗ 𝑏 = {𝑎 ∧ 𝑏}, 𝑎 ⊕ 𝑏 =

{𝑎 ∨ 𝑏}, then (𝐿, ⊗, ⊕) is a hyperlattice. From this, we can see
that hyperlattices are suitable generalizations of lattices.

Now, we give some new examples of hyperlattices. From
these examples, we can see that hyperlattices are connected to
several domains of mathematics.

Example 2. Let (𝐿, ≤) be a partially ordered set. Define the
following hyperoperations on 𝐿: for all 𝑎, 𝑏 ∈ 𝐿, 𝑎 ⊗ 𝑏 = {𝑥 ∈

𝐿 | 𝑥 ≤ 𝑎, 𝑥 ≤ 𝑏}, 𝑎 ⊕ 𝑏 = {𝑥 ∈ 𝐿 | 𝑎 ≤ 𝑥, 𝑏 ≤ 𝑥}. Then
(𝐿, ⊗, ⊕) is a hyperlattice.

Example 3. Let Sub(𝑉) be the set of all subspaces of 𝑛-
dimensional vectors space 𝑉. Define hyperoperations ⊗ and
⊕ on Sub(𝑉) as follows: for all 𝑉

1
, 𝑉
2
∈ Sub(𝑉), 𝑉

1
⊗ 𝑉
2
=

Sub(𝑉
1
∩𝑉
2
),𝑉
1
⊕𝑉
2
= Sub(𝑉

1
+𝑉
2
), where𝑉

1
+𝑉
2
represents

the sum space of𝑉
1
and𝑉

2
. One can check that (Sub(𝑉), ⊗, ⊕)

is a hyperlattice.

Example 4. Let (𝐿, ∧, ∨) be a lattice. Define the following
hyperoperations on 𝐿: for all 𝑎, 𝑏 ∈ 𝐿, 𝑎⊗𝑏 = {𝑥 ∈ 𝐿 | 𝑎∨𝑥 =

𝑏 ∨ 𝑥 = 𝑎 ∨ 𝑏}, 𝑎 ⊕ 𝑏 = {𝑥 ∈ 𝐿 | 𝑥 ≤ 𝑎 ∧ 𝑏}. Then (𝐿, ⊗, ⊕) is a
hyperlattice.

Example 5. Let (𝐿, ∧, ∨) be a lattice. We define two hyperop-
erations on 𝐿: for all 𝑎, 𝑏 ∈ 𝐿, 𝑎 ⊗ 𝑏 = {𝑥 ∈ 𝐿 | 𝑎 ∨ 𝑏 ≤ 𝑥},
𝑎 ⊕ 𝑏 = {𝑥 ∈ 𝐿 | 𝑎 ∧ 𝑥 = 𝑏 ∧ 𝑥 = 𝑎 ∧ 𝑏}. Then (𝐿, ⊗, ⊕) is also
a hyperlattice.

Example 6. Let 𝑁+ be the set of all positive integers. We
define hyperoperations⊗ and⊕ on𝑁+ as follows: for all 𝑎, 𝑏 ∈

𝑁
+, 𝑎⊗𝑏 = {𝑥 ∈ 𝑁

+

| 𝑥 | (𝑎, 𝑏)}, 𝑎⊕𝑏 = {𝑥 ∈ 𝑁
+

| 𝑥 | [𝑎, 𝑏]},
in which 𝑎 | 𝑏 represents that 𝑎 divides 𝑏, (𝑎, 𝑏) = gcd{𝑎, 𝑏}
and [𝑎, 𝑏] = lcm{𝑎, 𝑏}. We can check that (𝑁+, ⊗, ⊕) is a
hyperlattice.

Definition 7 (see [8]). Let (𝐿, ⊗, ⊕) be a hyperlattice. A
nonempty subset 𝐴 of 𝐿 is called a subhyperlattice of 𝐿 if
(𝐴, ⊗, ⊕) is itself a hyperlattice.

It is easy to see that a nonempty subset 𝐴 of (𝐿, ⊗, ⊕) is a
subhyperlattice of 𝐿 if and only if𝐴 holds: for all 𝑎, 𝑏 ∈ 𝐴, 𝑎⊗
𝑏 ∈ 𝑃
∗

(𝐴), 𝑎⊕𝑏 ∈ 𝑃
∗

(𝐴).That is to say,𝐴 is a subhyperlattice
of (𝐿, ⊗, ⊕) if and only if 𝐴 ⊗ 𝐴 ⊆ 𝐴, 𝐴 ⊕ 𝐴 ⊆ 𝐴.

Example 8. Let 𝐿 be a nonempty set. Define hyperoperations
on 𝐿 as follows: for all 𝑎, 𝑏 ∈ 𝐿, 𝑎 ⊗ 𝑏 = {𝑎, 𝑏}, 𝑎 ⊕ 𝑏 = {𝑎, 𝑏}.
Then (𝐿, ⊗, ⊕) is a hyperlattice. Each nonempty subset of 𝐿 is
a subhyperlattice of (𝐿, ⊗, ⊕).

Example 9 (see [8]). Let 𝐿 = {𝑎, 𝑏, 𝑐, 𝑑}, and let hyperopera-
tions ⊗ and ⊕ on 𝐿 be defined as follows:

a b c d

a {a} {a}{a}

{a}

{a}

{a}

{a} {a}

{a}b {a, b} {a, b}

{c, d}{a, b}

c {c}

{c}

{c}

d

⊕

a b c d

a {a, b}

b {b} {b}

{b}

c

{c, d}

{c, d}{c, d}

d {d}

{d}

{d}

{d} {d} {d}

{d}

{d}

{d}

⊕

Then (𝐿, ⊗, ⊕) is a hyperlattice, in which {𝑎, 𝑏} and {𝑐, 𝑑}

are subhyperlattices.
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In what follows, we introduce hyperideals of a hyperlat-
tice.

Definition 10. Let (𝐿, ⊗, ⊕) be a hyperlattice, and let 𝐴 be a
nonempty subset of 𝐿.

(1) 𝐴 is called a ⊕-hyperideal of 𝐿 if for all 𝑎, 𝑏 ∈ 𝐴 and
𝑥 ∈ 𝐿,

(i) 𝑎 ⊗ 𝑏 ⊆ 𝐴,

(ii) 𝑎 ⊕ 𝑥 ⊆ 𝐴.

(2) 𝐴 is called a ⊗-hyperideal of 𝐿 if for all 𝑎, 𝑏 ∈ 𝐴 and
𝑥 ∈ 𝐿,

(i) 𝑎 ⊕ 𝑏 ⊆ 𝐴,

(ii) 𝑎 ⊗ 𝑥 ⊆ 𝐴.

Obviously, a subhyperlattice 𝐴 of (𝐿, ⊗, ⊕) is a ⊗-
hyperideal of 𝐿 if and only if 𝐴 ⊗ 𝐿 ⊆ 𝐴. Similarly, a
subhyperlattice𝐴 of (𝐿, ⊗, ⊕) is a⊕-hyperideal of 𝐿 if and only
if 𝐴 ⊕ 𝐿 ⊆ 𝐴.

Now, we present some examples of ⊕-hyperideals and ⊗-
hyperideals of hyperlattices.

Example 11. Let (𝐿, ∧, ∨) be a lattice. Define the hyperopera-
tions ⊗ and ⊕ on 𝐿 as follows: for all 𝑎, 𝑏 ∈ 𝐿, 𝑎 ⊗ 𝑏 = {𝑎 ∧ 𝑏},
𝑎⊕𝑏 = {𝑎∨𝑏}, then (𝐿, ⊗, ⊕) is a hyperlattice. Every ideal and
filter of the lattice (𝐿, ∧, ∨) are ⊗-hyperideal and ⊕-hyperideal
of the hyperlattice (𝐿, ⊗, ⊕), respectively.

From the previous example, we can see that⊗-hyperideals
and⊕-hyperideals of hyperlattices are suitable generalizations
of ideals and filters of lattices, respectively.

Example 12. Let (𝐿, ⊗, ⊕) be a hyperlattice in Example 4. For
any element 𝑎 of the lattice 𝐿, denote the principal ideal
generated by 𝑎 of the lattice (𝐿, ∧, ∨) by 𝐼(𝑎), which means
that 𝐼(𝑎) = {𝑥 ∈ 𝐿 | 𝑥 ≤ 𝑎}, then it is easy to check that 𝐼(𝑎)
is a ⊕-hyperideal of the hyperlattice (𝐿, ⊗, ⊕).

Example 13. Let (𝐿, ⊗, ⊕) be a hyperlattice in Example 5. For
any element 𝑎 of the lattice 𝐿, denote the principal filter
generated by 𝑎 of the lattice (𝐿, ∧, ∨) by 𝐹(𝑎), which means
that 𝐹(𝑎) = {𝑥 ∈ 𝐿 | 𝑥 ≥ 𝑎}, then 𝐹(𝑎) is a ⊗-hyperideal of
the hyperlattice (𝐿, ⊗, ⊕).

Example 14. Let (𝐿, ⊗, ⊕) be the hyperlattice in Example 9.
One can check that {𝑎, 𝑏} is a ⊗-hyperideal, but not a ⊕-
hyperideal of 𝐿 and {𝑐, 𝑑} is a ⊕-hyperideal, but not a ⊗-
hyperideal of 𝐿.

Next, we discuss some basic properties of hyperideals,
which will be used in the following paragraphs.

Proposition 15. Let (𝐿, ⊗, ⊕) be a hyperlattice, and let 𝐴 be
a nonempty subset of 𝐿. Then the following conditions are
equivalent.

(1) 𝐴 is a ⊗-hyperideal of (𝐿, ⊗, ⊕).
(2) 𝑎 ⊕ 𝑏 ⊆ 𝐴 and 𝑎 ⊗ 𝑥 ⊆ 𝐴 for all 𝑎, 𝑏 ∈ 𝐴 and 𝑥 ∈ 𝐿.
(3) 𝐴 ⊕ 𝐴 ⊆ 𝐴 and 𝐴 ⊗ 𝐿 ⊆ 𝐴.

Similarly, the following conditions are equivalent.

(1) 𝐴 is a ⊕-hyperideal of (𝐿, ⊗, ⊕).
(2) 𝑎 ⊗ 𝑏 ⊆ 𝐴 and 𝑎 ⊕ 𝑥 ⊆ 𝐴 for all 𝑎, 𝑏 ∈ 𝐴 and 𝑥 ∈ 𝐿.
(3) 𝐴 ⊗ 𝐴 ⊆ 𝐴 and 𝐴 ⊕ 𝐿 ⊆ 𝐴.

Proof. It is obvious.

Let (𝐿
1
, ⊗
1
, ⊕
1
) and (𝐿

2
, ⊗
2
, ⊕
2
) be two hyperlattices.

Define hyperoperations on the Cartesian product 𝐿
1
× 𝐿
2
as

follows: for all (𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
) ∈ 𝐿
1
×𝐿
2
, (𝑥
1
, 𝑦
1
)⊗ (𝑥
2
, 𝑦
2
) =

{(𝑥, 𝑦) | 𝑥 ∈ 𝑥
1
⊗
1
𝑥
2
, 𝑦 ∈ 𝑦

1
⊗
2
𝑦
2
}, (𝑥
1
, 𝑦
1
) ⊕ (𝑥

2
, 𝑦
2
) =

{(𝑥, 𝑦) | 𝑥 ∈ 𝑥
1
⊕
1
𝑥
2
, 𝑦 ∈ 𝑦

1
⊕
2
𝑦
2
}. One can check that

(𝐿
1
× 𝐿
2
, ⊗, ⊕) is a hyperlattice, which is called the Cartesian

product hyperlattice of 𝐿
1
and 𝐿

2
.

Proposition 16. Let 𝐴 and 𝐵 be two nonempty subsets of
(𝐿
1
, ⊗
1
, ⊕
1
) and (𝐿

2
, ⊗
2
, ⊕
2
), respectively.

(1) If 𝐴 and 𝐵 are subhyperlattices of 𝐿
1
and 𝐿

2
, respec-

tively, then𝐴×𝐵 is a subhyperlattice of (𝐿
1
×𝐿
2
, ⊗, ⊕).

(2) If𝐴 and𝐵 are⊗
1
-hyperideals (⊕

1
-hyperideals) and⊗

2
-

hyperideals (⊕
2
-hyperideals) of𝐿

1
and𝐿

2
, respectively,

then 𝐴 × 𝐵 is a ⊗-hyperideal ( ⊕-hyperideal) of (𝐿
1
×

𝐿
2
, ⊗, ⊕).

Proof. The proof is straightforward.

Let (𝐿
1
, ⊗
1
, ⊕
1
) and (𝐿

2
, ⊗
2
, ⊕
2
) be two hyperlattices. A

map 𝑓 : 𝐿
1

→ 𝐿
2
is called a weak homomorphism if

𝑓(𝑎⊗
1
𝑏) ⊆ 𝑓(𝑎)⊗

2
𝑓(𝑏) and 𝑓(𝑎⊕

1
𝑏) ⊆ 𝑓(𝑎)⊕

2
𝑓(𝑏) for

all 𝑎, 𝑏 ∈ 𝐿
1
. In particular, if 𝑓(𝑎⊗

1
𝑏) = 𝑓(𝑎)⊗

2
𝑓(𝑏) and

𝑓(𝑎⊕
1
𝑏) = 𝑓(𝑎)⊕

2
𝑓(𝑏), then 𝑓 is called a homomorphism.

If such a homomorphism 𝑓 is surjective, injective, or
bijective, then 𝑓 is called an epimorphism, a monomorphism,
or an isomorphism from (𝐿

1
, ⊗
1
, ⊕
1
) to (𝐿

2
, ⊗
2
, ⊕
2
), respec-

tively.

Proposition 17. Let 𝑓 be a surjective homomorphism from a
hyperlattice (𝐿

1
, ⊗
1
, ⊕
1
) to a hyperlattice (𝐿

2
, ⊗
2
, ⊕
2
).

(1) If𝐴 is a⊗
1
-hyperideal (⊕

1
-hyperideal) of𝐿

1
, then𝑓(𝐴)

is a ⊗
2
-hyperideal (⊕

2
-hyperideal) of 𝐿

2
.

(2) If 𝐵 is a ⊗
2
-hyperideal (⊕

2
-hyperideal) of 𝐿

2
, then

𝑓
−1

(𝐵) is a ⊗
1
-hyperideal (⊕

1
-hyperideal) of 𝐿

1
.

Proof. (1) Assume that 𝐴 is a ⊗
1
-hyperideal of 𝐿

1
. For all

𝑎
󸀠

, 𝑏
󸀠

∈ 𝑓(𝐴), there exist 𝑎, 𝑏 ∈ 𝐴 such that 𝑓(𝑎) = 𝑎
󸀠, 𝑓(𝑏) =

𝑏
󸀠. Then 𝑎

󸀠

⊕
2
𝑏
󸀠

= 𝑓(𝑎) ⊕
2
𝑓(𝑏) = 𝑓(𝑎⊕

1
𝑏) = {𝑓(𝑧) | 𝑧 ∈

𝑎⊕
1
𝑏}. It follows from 𝑎 ⊕

1
𝑏 ∈ 𝑃
∗

(𝐴) that 𝑎󸀠⊕
2
𝑏
󸀠

∈ 𝑃
∗

(𝑓(𝐴)).
Now, let 𝑥󸀠 ∈ 𝐿

2
; notice that 𝑓 is surjective, then there exists

𝑥 ∈ 𝐿
1
such that 𝑓(𝑥) = 𝑥

󸀠. Hence, 𝑎󸀠⊗
2
𝑥
󸀠

= 𝑓(𝑎)⊕
2
𝑓(𝑥) =

𝑓(𝑎 ⊕
1
𝑥) = {𝑓(𝑧) | 𝑧 ∈ 𝑎⊗

1
𝑥}. By 𝑎⊗

1
𝑥 ⊆ 𝐴, we have

𝑎
󸀠

⊗
2
𝑥
󸀠

∈ 𝑃
∗

(𝑓(𝐴)). Therefore, 𝑓(𝐴) is a ⊗
2
-hyperideal of 𝐿

2
.
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(2) Suppose that 𝐵 is a ⊗
2
-hyperideal of 𝐿

2
. For all 𝑎, 𝑏 ∈

𝑓
−1

(𝐵), then 𝑓(𝑎⊕
1
𝑏) = 𝑓(𝑎)⊕

2
𝑓(𝑏) ⊆ 𝐵. It follows that

𝑎⊕
1
𝑏 ⊆ 𝑓

−1

(𝐵). On the other hand, let 𝑥 ∈ 𝐿
1
, then

𝑓(𝑎⊗
1
𝑥) = 𝑓(𝑎)⊗

2
𝑓(𝑥) ⊆ 𝐵; that is, 𝑎⊗

1
𝑥 ⊆ 𝑓

−1

(𝐵).
Therefore, 𝑓−1(𝐵) is a ⊗

1
-hyperideal of 𝐿

1
.

3. Rough Hyperideals in Hyperlattices

In this section, we introduce the notion of rough hyperideals
in hyperlattices and discuss some properties of them.

Given a hyperlattice 𝐿, by 𝑃∗(𝐿) we will denote the set of
all nonempty subsets of 𝐿. If 𝜃 is an equivalence relation on
𝐿, then, for every 𝑎 ∈ 𝐿, [𝑎]

𝜃
stands for the equivalence class

of 𝑎with the represent 𝜃. For any nonempty subset𝐴 of 𝐿, we
denote [𝐴]

𝜃
= {[𝑎]

𝜃
| 𝑎 ∈ 𝐴}.

For any 𝐴, 𝐵 ∈ 𝑃
∗

(𝐿), we denote 𝐴𝜃𝐵 if the following
conditions hold:

(1) for all 𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵 such that 𝑎𝜃𝑏;

(2) for all 𝑑 ∈ 𝐵, ∃𝑐 ∈ 𝐴 such that 𝑐𝜃𝑑.

Now, we can introduce the notion of hypercongruences
on hyperlattices in the following manner.

Definition 18. Let (𝐿, ⊗, ⊕) be a hyperlattice. An equivalence
relation 𝜃 on 𝐿 is called a hypercongruence on 𝐿 if for all
𝑎, 𝑎
󸀠

, 𝑏, 𝑏
󸀠

∈ 𝐿, the following implication holds: 𝑎𝜃𝑎󸀠 and 𝑏𝜃𝑏󸀠

imply (𝑎 ⊗ 𝑏)𝜃(𝑎
󸀠

⊗ 𝑏
󸀠

) and (𝑎 ⊕ 𝑏)𝜃(𝑎
󸀠

⊕ 𝑏
󸀠

).

Obviously, an equivalence relation 𝜃 on (𝐿, ⊗, ⊕) is a
hypercongruence if and only if for all 𝑎, 𝑏, 𝑥 ∈ 𝐿, we have
that 𝑎𝜃𝑏 implies (𝑎 ⊗ 𝑥)𝜃(𝑏 ⊗ 𝑥) and (𝑎 ⊕ 𝑥)𝜃(𝑏 ⊕ 𝑥).

Lemma 19. Let (𝐿, ⊗, ⊕) be a hyperlattice, and let 𝜃 be a
hypercongruence on 𝐿. For all 𝑎, 𝑏 ∈ 𝐿, then [𝑎]

𝜃
⊗ [𝑏]
𝜃
⊆

[𝑎 ⊗ 𝑏]
𝜃
, [𝑎]
𝜃
⊕ [𝑏]
𝜃
⊆ [𝑎 ⊕ 𝑏]

𝜃
.

Proof. Suppose that 𝑥 ∈ [𝑎]
𝜃
⊗ [𝑏]
𝜃
, then there exist 𝑥

1
∈ [𝑎]
𝜃

and 𝑥
2
∈ [𝑏]
𝜃
such that 𝑥 ∈ 𝑥

1
⊗ 𝑥
2
. Since 𝑎𝜃𝑥

1
, 𝑏𝜃𝑥
2
, by

Definition 18, we have (𝑎⊗𝑏)𝜃(𝑥
1
⊗𝑥
2
). So 𝑥 ∈ 𝑥

1
⊗𝑥
2
implies

that there exists 𝑦 ∈ 𝑎 ⊗ 𝑏 such that 𝑥𝜃𝑦. Therefore, we have
𝑥 ∈ [𝑎 ⊗ 𝑏]

𝜃
, which implies [𝑎]

𝜃
⊗ [𝑏]
𝜃
⊆ [𝑎 ⊗ 𝑏]

𝜃
. Similarly,

we can prove that [𝑎]
𝜃
⊕ [𝑏]
𝜃
⊆ [𝑎 ⊕ 𝑏]

𝜃
.

A hypercongruence relation 𝜃 on (𝐿, ⊗, ⊕) is called ⊗-
complete if [𝑎]

𝜃
⊗ [𝑏]
𝜃
= [𝑎 ⊗ 𝑏]

𝜃
for all 𝑎, 𝑏 ∈ 𝐿. Similarly,

𝜃 is called ⊕-complete if [𝑎]
𝜃
⊕ [𝑏]
𝜃
= [𝑎 ⊕ 𝑏]

𝜃
for all 𝑎, 𝑏 ∈ 𝐿.

We call 𝜃 complete if it is both ⊗-complete and ⊕-complete.
Now, we briefly recall the rough set theory in Pawlak’s

sense. Let 𝜃 be an equivalence relation on 𝐿, and let 𝐴 be
a nonempty subset of 𝐿. Then, the sets 𝜃(𝐴) = {𝑥 ∈ 𝐿 |

[𝑥]
𝜃
∩ 𝐴 ̸= 𝜙} and 𝜃(𝐴) = {𝑥 ∈ 𝐿 | [𝑥]

𝜃
⊆ 𝐴} are called,

respectively, the upper and lower approximations of 𝐴 with
respect to 𝜃. 𝜃(𝐴) = (𝜃(𝐴), 𝜃(𝐴)) is called a rough set with
respect to 𝜃.

Proposition 20. Let 𝜃 be a hypercongruence on a hyperlattice
(𝐿, ⊗, ⊕). If 𝐴, 𝐵 are two nonempty subsets of 𝐿, then

(1) 𝜃(𝐴)⊗𝜃(𝐵) ⊆ 𝜃(𝐴⊗𝐵). In particular, if 𝜃 is⊗-complete,
then 𝜃(𝐴) ⊗ 𝜃(𝐵) = 𝜃(𝐴 ⊗ 𝐵),

(2) 𝜃(𝐴)⊕𝜃(𝐵) ⊆ 𝜃(𝐴⊕𝐵). In particular, if 𝜃 is⊕-complete,
then 𝜃(𝐴) ⊕ 𝜃(𝐵) = 𝜃(𝐴 ⊕ 𝐵).

Proof. (1) Suppose that 𝑥 ∈ 𝜃(𝐴)⊗𝜃(𝐵).There exist 𝑥
1
∈ 𝜃(𝐴)

and 𝑥
2
∈ 𝜃(𝐵) such that 𝑥 ∈ 𝑥

1
⊗𝑥
2
. It follows that there exist

𝑎, 𝑏 ∈ 𝐿 such that 𝑎 ∈ [𝑥
1
]
𝜃
∩ 𝐴 and 𝑏 ∈ [𝑥

2
]
𝜃
∩ 𝐵. Since 𝜃

is a hypercongruence on 𝐿, we have 𝑎 ⊗ 𝑏 ⊆ [𝑥
1
]
𝜃
⊗ [𝑥
2
]
𝜃
⊆

[𝑥
1
⊗ 𝑥
2
]
𝜃
by Lemma 19. On the other hand, since 𝑎 ⊗ 𝑏 ⊆

𝐴 ⊗ 𝐵, we obtain 𝑎 ⊗ 𝑏 ⊆ [𝑥
1
⊗ 𝑥
2
]
𝜃
∩ (𝐴 ⊗ 𝐵), which implies

𝑥 ∈ 𝑥
1
⊗ 𝑥
2
⊆ 𝜃(𝐴 ⊗ 𝐵). Therefore, 𝜃(𝐴) ⊗ 𝜃(𝐵) ⊆ 𝜃(𝐴 ⊗ 𝐵).

If 𝜃 is ⊗-complete, let 𝑥 ∈ 𝜃(𝐴⊗𝐵), then [𝑥]
𝜃
∩(𝐴⊗𝐵) ̸= 𝜙.

Therefore, there exists 𝑦 ∈ [𝑥]
𝜃
∩ (𝐴 ⊗ 𝐵), and so for some

𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, we have 𝑦 ∈ 𝑎⊗ 𝑏. Since 𝜃 is ⊗-complete, we
can obtain 𝑥 ∈ [𝑦]

𝜃
⊆ [𝑎 ⊗ 𝑏]

𝜃
= [𝑎]
𝜃
⊗ [𝑏]
𝜃
. Thus, there exist

𝑥
1
∈ [𝑎]
𝜃
and 𝑥

2
∈ [𝑏]
𝜃
such that 𝑥 ∈ 𝑥

1
⊗ 𝑥
2
. It follows that

𝑎 ∈ [𝑥
1
]
𝜃
∩ 𝐴 and 𝑏 ∈ [𝑥

2
]
𝜃
∩ 𝐵. Hence, 𝑥

1
∈ 𝜃(𝐴) and 𝑥

2
∈

𝜃(𝐵), and we have 𝑥 ∈ 𝑥
1
⊗ 𝑥
2
⊆ 𝜃(𝐴) ⊗ 𝜃(𝐵), which implies

𝜃(𝐴 ⊗ 𝐵) ⊆ 𝜃(𝐴) ⊗ 𝜃(𝐵). Therefore, 𝜃(𝐴) ⊗ 𝜃(𝐵) = 𝜃(𝐴 ⊗ 𝐵).
(2)The proof is similar to that of (1).

Proposition 21. Let 𝜃 be a hypercongruence on a hyperlattice
(𝐿, ⊗, ⊕), and 𝐴, 𝐵 are two nonempty subsets of 𝐿.

(1) If 𝐴 and 𝐵 are two ⊗-hyperideals of 𝐿, then 𝜃(𝐴) ⊗

𝜃(𝐵) = 𝜃(𝐴 ⊗ 𝐵).

(2) If 𝐴 and 𝐵 are two ⊕-hyperideals of 𝐿, then 𝜃(𝐴) ⊕

𝜃(𝐵) = 𝜃(𝐴 ⊕ 𝐵).

Proof. (1) Let 𝑥 ∈ 𝜃(𝐴 ⊗ 𝐵), then there exist 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵

such that [𝑥]
𝜃
∩ (𝑎 ⊗ 𝑏) ̸= 𝜙, which implies that there exists

𝑡 ∈ 𝑎 ⊗ 𝑏 such that 𝑥𝜃𝑡. Since 𝐴 is a ⊗-hyperideal of 𝐿, we
have 𝑎 ⊗ 𝑏 ⊆ 𝐴. It follows that 𝑡 ∈ 𝐴. Hence, we obtain that
[𝑥]
𝜃
∩ 𝐴 = [𝑡]

𝜃
∩ 𝐴 ̸= 𝜙, which implies 𝑥 ∈ 𝜃(𝐴). In a similar

way, we have 𝑥 ∈ 𝜃(𝐵). Thus, 𝑥 ∈ 𝑥 ⊗ 𝑥 ⊆ 𝜃(𝐴) ⊗ 𝜃(𝐵).
Combining Proposition 20, we have 𝜃(𝐴) ⊗ 𝜃(𝐵) = 𝜃(𝐴 ⊗ 𝐵).

(2)The proof is similar to that of (1).

Proposition 22. Let 𝜃 be a hypercongruence relation on a
hyperlattice (𝐿, ⊗, ⊕), and let 𝐴, 𝐵 be two nonempty subsets of
𝐿.

(1) If 𝜃 is ⊗-complete, then 𝜃(𝐴) ⊗ 𝜃(𝐵) ⊆ 𝜃(𝐴 ⊗ 𝐵).

(2) If 𝜃 is ⊕-complete, then 𝜃(𝐴) ⊕ 𝜃(𝐵) ⊆ 𝜃(𝐴 ⊕ 𝐵).

Proof. (1) Let 𝑥 ∈ 𝜃(𝐴)⊗𝜃(𝐵), then there exist 𝑥
1
∈ 𝜃(𝐴) and

𝑥
2
∈ 𝜃(𝐵) such that 𝑥 ∈ 𝑥

1
⊗ 𝑥
2
. It follows that [𝑥

1
]
𝜃
⊆ 𝐴

and [𝑥
2
]
𝜃
⊆ 𝐵. Since 𝜃 is ⊗-complete, we have [𝑥

1
⊗ 𝑥
2
]
𝜃
=

[𝑥
1
]
𝜃
⊗ [𝑥
2
]
𝜃
⊆ 𝐴 ⊗ 𝐵, which implies 𝑥 ∈ 𝑥

1
⊗ 𝑥
2
⊆ 𝜃(𝐴 ⊗ 𝐵).

Therefore, 𝜃(𝐴) ⊗ 𝜃(𝐵) ⊆ 𝜃(𝐴 ⊗ 𝐵).
(2) Similar to the proof of (1).

The following example shows that the converses of
Proposition 22 do not hold in general.
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Figure 1: The lattice in Example 23.

Example 23. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 1} be a lattice (𝐿, ∧, ∨), where
the partial order relation on𝑋 is defined as shown in Figure 1.
For all 𝑥, 𝑦 ∈ 𝐿, 𝑥⊗𝑦 = {𝑥∧𝑦}, 𝑥⊕𝑦 = {𝑥∨𝑦}, then (𝐿, ⊗, ⊕) is
a hyperlattice. Let 𝜃 be a complete hypercongruence relation
on the hyperlattice 𝐿 with the following equivalence classes:
[1]
𝜃
= {1}, [𝑐]

𝜃
= {𝑎, 𝑐}, [𝑏]

𝜃
= {𝑏, 0}. If 𝐴 = {𝑎}, 𝐵 =

{𝑏, 𝑐, 0}, then 𝜃(𝐴) = 𝜙 and 𝜃(𝐵) = {𝑏, 0}. We have 𝜃(𝐴 ⊕ 𝐵) =

{𝑎, 𝑐}, 𝜃(𝐴) ⊕ 𝜃(𝐵) = 𝜙. So, 𝜃(𝐴 ⊕ 𝐵) ̸⊆ 𝜃(𝐴) ⊕ 𝜃(𝐵). If the
partial order is reverse, then 𝜃(𝐴⊗𝐵) = {𝑎, 𝑐}, 𝜃(𝐴)⊗𝜃(𝐵) = 𝜙.
Therefore, 𝜃(𝐴 ⊗ 𝐵) ̸⊆ 𝜃(𝐴) ⊗ 𝜃(𝐵).

Proposition 24. Let 𝜃 be a hypercongruence relation on
a hyperlattice (𝐿, ⊗, ⊕). If 𝐴 and 𝐵 are ⊗-hyperideals (⊕-
hyperideals) of 𝐿, then 𝜃(𝐴 ∩ 𝐵) = 𝜃(𝐴) ∩ 𝜃(𝐵).

Proof. Let 𝑥 ∈ 𝜃(𝐴) ∩ 𝜃(𝐵), we have [𝑥]
𝜃
∩ 𝐴 ̸= 𝜙 and [𝑥]

𝜃
∩

𝐵 ̸= 𝜙.Then, there exist 𝑥
1
∈ 𝐴 and 𝑥

2
∈ 𝐵 such that 𝑥

1
𝜃𝑥 and

𝑥
2
𝜃𝑥. It follows from 𝜃 which is a hypercongruence relation

that 𝑥
1
⊗ 𝑥
2
𝜃𝑥 ⊗ 𝑥, which implies that there exists 𝑡 ∈ 𝑥

1
⊗ 𝑥
2

such that 𝑡𝜃𝑥. Since 𝐴 and 𝐵 are ⊗-hyperideals of 𝐿, we have
𝑥
1
⊗ 𝑥
2
⊆ 𝐴 ∩ 𝐵. So, 𝑡 ∈ 𝐴 ∩ 𝐵. It follows that [𝑥]

𝜃
∩ (𝐴 ∩

𝐵) = [𝑡]
𝜃
∩ (𝐴 ∩ 𝐵) ̸= 𝜙, which implies 𝑥 ∈ 𝜃(𝐴 ∩ 𝐵). Hence,

𝜃(𝐴) ∩ 𝜃(𝐵) ⊆ 𝜃(𝐴 ∩ 𝐵). On the other hand, it is clear that
𝜃(𝐴∩𝐵) ⊆ 𝜃(𝐴)∩𝜃(𝐵). Therefore, 𝜃(𝐴∩𝐵) = 𝜃(𝐴)∩𝜃(𝐵). In
a similar way, if 𝐴 and 𝐵 are ⊕-hyperideals of 𝐿, we can also
obtain 𝜃(𝐴 ∩ 𝐵) = 𝜃(𝐴) ∩ 𝜃(𝐵).

Up to now, we have studied some properties of the lower
and upper approximations in hyperlattices. Next, we will
introduce and investigate a new algebraic structure called
rough hyperideals in hyperlattices. Let us begin with intro-
ducing the following definitions.

Definition 25. Let 𝜃 be a hypercongruence on a hyperlattice
(𝐿, ⊗, ⊕), and let 𝐴 be a nonempty subset of 𝐿. 𝐴 is called a
lower (an upper) rough subhyperlattice of 𝐿 if 𝜃(𝐴) (𝜃(𝐴)) is
a subhyperlattice of 𝐿.𝐴 is called a rough subhyperlattice of 𝐿
if𝐴 is both a lower rough subhyperlattice and an upper rough
subhyperlattice of 𝐿.

Similarly, 𝐴 is called a lower (an upper) rough ⊗-hyper-
ideal of 𝐿 if 𝜃(𝐴) (𝜃(𝐴)) is a ⊗-hyperideal of 𝐿. And we call
𝐴 a rough ⊗-hyperideal of 𝐿 if 𝐴 is both a lower rough ⊗-
hyperideal and an upper rough ⊗-hyperideal of 𝐿. In a similar
way, a rough ⊕-hyperideal of 𝐿 can be defined.

Example 26. Let 𝐿 = {𝑎, 𝑏, 𝑐} and hyperoperations ⊗ and ⊕ on
𝐿 defined as follows:

a b c
a {a, b, c}

{a, b, c}
{a, b, c}b

c {c}

{a, b, c}

{a, b, c}
{a, b, c}

{a, b, c}

{a, b, c}

⊕

a b c

a

b

c {c} {c}

⊕

{a, b, c}

{a, b, c}

{a, b, c}

{a, b, c}

{c}

{c}

{c}

Then, (𝐿, ⊗, ⊕) is a hyperlattice. Let 𝜃 be a complete
hypercongruence relation on the hyperlattice 𝐿 with the
following equivalence classes: [𝑎]

𝜃
= {𝑎, 𝑏}, [𝑐]

𝜃
= {𝑐}. Now

for 𝐴 = {𝑏, 𝑐}, 𝜃(𝐴) = {𝑐} and 𝜃(𝐴) = 𝐿. It is clear that {𝑐} and
𝐿 are ⊕-hyperideals, so 𝐴 is a rough ⊕-hyperideal of 𝐿.

Example 27. Let 𝐿 = {𝑎, 𝑏, 𝑐, 𝑑} be the hyperlattice in
Example 9. Let 𝜃 be a hypercongruence relation on the
hyperlattice 𝐿 with the following equivalence classes: [𝑎]

𝜃
=

{𝑎, 𝑏}, [𝑐]
𝜃
= {𝑐, 𝑑}. Considering 𝐴 = {𝑎, 𝑏, 𝑐}, we can obtain

that 𝜃(𝐴) = {𝑎, 𝑏} and 𝜃(𝐴) = 𝐿. Notice that {𝑎, 𝑏} and
𝐿 are ⊗-hyperideals, so 𝐴 is a rough ⊗-hyperideal of 𝐿. If
𝐴 = {𝑏, 𝑐, 𝑑}, we have that 𝜃(𝐴) = {𝑐, 𝑑} and 𝜃(𝐴) = 𝐿. From
Example 14, we obtain that {𝑐, 𝑑} and 𝐿 are ⊕-hyperideals, so
𝐴 is a rough ⊕-hyperideal of 𝐿.

Theorem 28. Let 𝜃 be a hypercongruence on a hyperlattice
(𝐿, ⊗, ⊕), and let 𝐴 be a nonempty subset of 𝐿.

(1) If 𝐴 is a subhyperlattice of 𝐿, then 𝐴 is an upper rough
subhyperlattice of 𝐿.

(2) If 𝐴 is a ⊗-hyperideal (⊕-hyperideal) of 𝐿, then 𝐴 is an
upper rough ⊗-hyperideal (⊕-hyperideal) of 𝐿.

Proof. (1) Suppose that 𝑎, 𝑏 ∈ 𝜃(𝐴), then [𝑎]
𝜃
∩ 𝐴 ̸= 𝜙 and

[𝑏]
𝜃
∩ 𝐴 ̸= 𝜙. It follows that there exist 𝑥

1
∈ [𝑎]

𝜃
∩ 𝐴 and

𝑥
2
∈ [𝑏]
𝜃
∩ 𝐴. Since 𝐴 is a subhyperlattice of 𝐿, we have 𝑥

1
⊗

𝑥
2
⊆ 𝐴. Also, by Lemma 19, we can obtain 𝑥 ∈ 𝑥

1
⊗ 𝑥
2
⊆

[𝑎]
𝜃
⊗ [𝑏]
𝜃
⊆ [𝑎 ⊗ 𝑏]

𝜃
. Hence, [𝑎 ⊗ 𝑏]

𝜃
∩ 𝐴 ̸= 𝜙, which implies

that 𝑎 ⊗ 𝑏 ⊆ 𝜃(𝐴). In a similar way, we have 𝑎 ⊕ 𝑏 ⊆ 𝜃(𝐴).
Therefore, 𝜃(𝐴) is a subhyperlattice of 𝐿; that is,𝐴 is an upper
rough subhyperlattice of 𝐿.

(2) Let 𝐴 be a ⊗-hyperideal of 𝐿; then 𝐴 is a subhyperlat-
tice of 𝐿. By (1), we have 𝜃(𝐴) ⊕ 𝜃(𝐴) ⊆ 𝜃(𝐴). On the other
hand, by Proposition 20, we have 𝜃(𝐴) ⊗ 𝐿 = 𝜃(𝐴) ⊗ 𝜃(𝐿) ⊆
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𝜃(𝐴⊗𝐿) ⊆ 𝜃(𝐴). Thus, 𝜃(𝐴) is a ⊗-hyperideal of 𝐿. Therefore,
𝐴 is an upper rough ⊗-hyperideal of 𝐿. The other case can be
proved in a similar way.

Theorem 29. Let 𝐴 be a nonempty subset of (𝐿, ⊗, ⊕), and
let 𝜃 be a complete hypercongruence relation on 𝐿 such that
𝜃(𝐴) ̸= 𝜙.

(1) If 𝐴 is a subhyperlattice of 𝐿, then 𝐴 is a lower rough
subhyperlattice of 𝐿.

(2) If 𝐴 is a ⊗-hyperideal (⊕-hyperideal) of 𝐿, then 𝐴 is a
lower rough ⊗-hyperideal (⊕-hyperideal) of 𝐿.

Proof. (1) Let 𝐴 be a subhyperlattice of 𝐿. Since 𝜃(𝐴) ̸= 𝜙, it
follows from Proposition 22 that 𝜃(𝐴) ⊗ 𝜃(𝐴) ⊆ 𝜃(𝐴 ⊗ 𝐴) ⊆

𝜃(𝐴) and 𝜃(𝐴)⊕𝜃(𝐴) ⊆ 𝜃(𝐴⊕𝐴) ⊆ 𝜃(𝐴). Therefore, 𝜃(𝐴) is a
subhyperlattice of𝐿; that is,𝐴 is a lower rough subhyperlattice
of 𝐿.

(2) Assume that 𝐴 is a ⊗-hyperideal of 𝐿; then 𝐴 is a sub-
hyperlattice of 𝐿. Notice that 𝜃 is complete; by the statement
of (1), we obtain 𝜃(𝐴) ⊕ 𝜃(𝐴) ⊆ 𝜃(𝐴). On the other hand, by
Proposition 22, we have 𝜃(𝐴) ⊗ 𝐿 = 𝜃(𝐴) ⊗ 𝜃(𝐿) ⊆ 𝜃(𝐴⊗𝐿) ⊆

𝜃(𝐴).Thus, 𝜃(𝐴) is a⊗-hyperideal of 𝐿.Therefore,𝐴 is a lower
rough ⊗-hyperideal of 𝐿. In a similar way, we can prove that
𝐴 is a lower rough ⊕-hyperideal of 𝐿.

By the two theorems above, we have immediately the fol-
lowing corollary.

Corollary 30. Let 𝐴 be a nonempty subset of (𝐿, ⊗, ⊕), and
let 𝜃 be a complete hypercongruence relation on 𝐿 such that
𝜃(𝐴) ̸= 𝜙.

(1) If 𝐴 is a subhyperlattice of 𝐿, then 𝐴 is a rough subhy-
perlattice of 𝐿.

(2) If 𝐴 is a ⊗-hyperideal (⊕-hyperideal) of 𝐿, then 𝐴 is a
rough ⊗-hyperideal (⊕-hyperideal) of 𝐿.

The above corollary shows that under some conditions
⊗-hyperideals (⊕-hyperideals) are rough ⊗-hyperideals (⊕-
hyperideals) in hyperlattices. The following example shows
that the converse of this result does not hold in general.

Example 31. In Example 26, 𝐴 = {𝑏, 𝑐} is a rough ⊕-
hyperideal of (𝐿, ⊗, ⊕), but 𝐴 is not a ⊕-hyperideal of 𝐿.

Example 32. In Example 27, 𝐴 = {𝑎, 𝑏, 𝑐} is a rough ⊗-
hyperideal of (𝐿, ⊗, ⊕), but 𝐴 is not a ⊗-hyperideal of 𝐿.

Based on the discussion above, we obtain that rough hy-
perideals are extended notions of hyperideals in hyperlattices.

4. Rough Hyperideals in the Product
Hyperlattices and Quotient Hyperlattices

In this section, we consider rough hyperideals in Cartesian
products and quotients of hyperlattices. Let us begin with
introducing the following proposition.

Let 𝜃
1
and 𝜃

2
be two hypercongruence relations on

(𝐿
1
, ⊗
1
, ⊕
1
) and (𝐿

2
, ⊗
2
, ⊕
2
), respectively. Define a relation 𝜃

∗

on 𝐿
1
× 𝐿
2
as follows: for all (𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
) ∈ 𝐿

1
× 𝐿
2
,

(𝑥
1
, 𝑦
1
)𝜃
∗

(𝑥
2
, 𝑦
2
) ⇔ 𝑥

1
𝜃
1
𝑥
2
and 𝑦

1
𝜃
2
𝑦
2
. It is easy to check

that 𝜃∗ is a hypercongruence on the product hyperlattice
(𝐿
1
×𝐿
2
, ⊗, ⊕).Then we can obtain the following proposition.

Proposition 33. Let 𝐴 and 𝐵 be two nonempty subsets of
(𝐿
1
, ⊗
1
, ⊕
1
) and (𝐿

2
, ⊗
2
, ⊕
2
), respectively. Then,

(1) 𝜃
∗
(𝐴 × 𝐵) = 𝜃

1
(𝐴) × 𝜃

2
(𝐵).

(2) 𝜃
∗

(𝐴 × 𝐵) = 𝜃
1
(𝐴) × 𝜃

2
(𝐵).

Proof. (1) For all (𝑥, 𝑦) ∈ 𝐿
1
× 𝐿
2
, (𝑥, 𝑦) ∈ 𝜃

∗
(𝐴 × 𝐵) ⇔

[(𝑥, 𝑦)]
𝜃
∗ ∩ (𝐴 × 𝐵) ̸= 𝜙 ⇔ ∃(𝑥

󸀠

, 𝑦
󸀠

) ∈ 𝐴 × 𝐵 such that
(𝑥
󸀠

, 𝑦
󸀠

)𝜃
∗

(𝑥, 𝑦) ⇔ ∃𝑥
󸀠

∈ 𝐴, 𝑦
󸀠

∈ 𝐵, 𝑥
󸀠

𝜃
1
𝑥, 𝑦
󸀠

𝜃
2
𝑦 ⇔ [𝑥]

𝜃
1

∩

𝐴 ̸= 𝜙 and [𝑦]
𝜃
2

∩ 𝐵 ̸= 𝜙 ⇔ 𝑥 ∈ 𝜃
1
(𝐴), 𝑦 ∈ 𝜃

2
(𝐵) ⇔ (𝑥, 𝑦) ∈

𝜃
1
(𝐴) × 𝜃

2
(𝐵). It follows that 𝜃∗(𝐴 × 𝐵) = 𝜃

1
(𝐴) × 𝜃

2
(𝐵).

(2) For all (𝑥, 𝑦) ∈ 𝐿
1
× 𝐿
2
, (𝑥, 𝑦) ∈ 𝜃

∗

(𝐴 × 𝐵) ⇔

[(𝑥, 𝑦)]
𝜃
∗ ⊆ (𝐴 × 𝐵) ⇔ for all (𝑥󸀠, 𝑦󸀠)𝜃∗(𝑥, 𝑦), (𝑥󸀠, 𝑦󸀠) ∈ 𝐴 ×

𝐵 ⇔ for all 𝑥󸀠𝜃
1
𝑥, 𝑦
󸀠

𝜃
2
𝑦, 𝑥
󸀠

∈ 𝐴, 𝑦
󸀠

∈ 𝐵 ⇔ [𝑥]
𝜃
1

⊆ 𝐴 and
[𝑦]
𝜃
2

⊆ 𝐵 ⇔ 𝑥 ∈ 𝜃
1
(𝐴), 𝑦 ∈ 𝜃

2
(𝐵) ⇔ (𝑥, 𝑦) ∈ 𝜃

1
(𝐴) × 𝜃

2
(𝐵).

We conclude that 𝜃∗(𝐴 × 𝐵) = 𝜃
1
(𝐴) × 𝜃

2
(𝐵).

Theorem 34. Let 𝜃
1
and 𝜃

2
be hypercongruence relations on

(𝐿
1
, ⊗
1
, ⊕
1
) and (𝐿

2
, ⊗
2
, ⊕
2
), respectively. If 𝐴 and 𝐵 are two

nonempty subsets of 𝐿
1
and 𝐿

2
, respectively, then

(1) 𝐴×𝐵 is a rough subhyperlattice of (𝐿
1
×𝐿
2
, ⊗, ⊕) if and

only if𝐴 and𝐵 are rough subhyperlattices of 𝐿
1
and 𝐿

2
,

respectively.

(2) 𝐴 × 𝐵 is a rough ⊗-hyperideal (⊕-hyperideal) of
(𝐿
1
× 𝐿
2
, ⊗, ⊕) if and only if 𝐴 and 𝐵 are rough ⊗

1
-

hyperideals (⊕
1
-hyperideals) and rough ⊗

2
-hyperideals

(⊕
2
-hyperideals) of 𝐿

1
and 𝐿

2
, respectively.

Proof. (1) ⇒Assume that𝐴×𝐵 is an upper rough subhyper-
lattice of (𝐿

1
× 𝐿
2
, ⊗, ⊕). Let 𝑥

1
, 𝑥
2
∈ 𝜃
1
(𝐴), 𝑦

1
, 𝑦
2
∈ 𝜃
2
(𝐵), it

follows from Proposition 33 that (𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
) ∈ 𝜃
1
(𝐴) ×

𝜃
2
(𝐵) = 𝜃

∗
(𝐴 × 𝐵). Since 𝜃∗(𝐴 × 𝐵) is a subhyperlattice of

𝐿
1
×𝐿
2
, we have (𝑥

1
, 𝑦
1
)⊗(𝑥
2
, 𝑦
2
) = {(𝑥, 𝑦) | 𝑥 ∈ 𝑥

1
⊗
1
𝑥
2
, 𝑦 ∈

𝑦
1
⊗
2
𝑦
2
} ⊆ 𝜃
∗
(𝐴 × 𝐵) = 𝜃

1
(𝐴) × 𝜃

2
(𝐵), (𝑥

1
, 𝑦
1
) ⊕ (𝑥

2
, 𝑦
2
) =

{(𝑥, 𝑦) | 𝑥 ∈ 𝑥
1
⊕
1
𝑥
2
, 𝑦 ∈ 𝑦

1
⊕
2
𝑦
2
} ⊆ 𝜃

∗
(𝐴 × 𝐵) = 𝜃

1
(𝐴) ×

𝜃
2
(𝐵). It follows that 𝑥

1
⊗
1
𝑥
2

⊆ 𝜃
1
(𝐴), 𝑥

1
⊕
1
𝑥
2

⊆ 𝜃
1
(𝐴),

𝑦
1
⊗
2
𝑦
2
⊆ 𝜃
2
(𝐵), 𝑦

1
⊕
2
𝑦
2
⊆ 𝜃
2
(𝐵), which implies that 𝜃

1
(𝐴)

and 𝜃
2
(𝐵) are subhyperlattices of 𝐿

1
and 𝐿

2
, respectively.

Therefore, 𝐴 and 𝐵 are upper rough subhyperlattices of 𝐿
1

and 𝐿
2
, respectively.The case of the lower approximation can

be seen in a similar way.
⇐This follows from Propositions 16 and 33.
(2) ⇒ Assume that𝐴×𝐵 is an upper rough ⊗-hyperideal

of (𝐿
1
×𝐿
2
, ⊗, ⊕). Let 𝑥

1
, 𝑥
2
∈ 𝜃
1
(𝐴), 𝑦

1
, 𝑦
2
∈ 𝜃
2
(𝐵); it follows

from (1) that 𝑥
1
⊕
1
𝑥
2
⊆ 𝜃
1
(𝐴), 𝑦

1
⊕
2
𝑦
2
⊆ 𝜃
2
(𝐵). Now, for all

𝑎
1
∈ 𝐿
1
, 𝑏
1
∈ 𝐿
2
, (𝑥
1
, 𝑦
1
)⊗ (𝑎
1
, 𝑏
1
) = {(𝑥, 𝑦) | 𝑥 ∈ 𝑥

1
⊗
1
𝑎
1
, 𝑦 ∈

𝑦
1
⊗
2
𝑏
1
} ⊆ 𝜃
∗
(𝐴 × 𝐵) = 𝜃

1
(𝐴) × 𝜃

2
(𝐵) since 𝜃∗(𝐴 × 𝐵) is a ⊗-

hyperideal of𝐿
1
×𝐿
2
. Hence,𝑥

1
⊗
1
𝑎
1
⊆ 𝜃
1
(𝐴),𝑦

1
⊗
2
𝑏
1
∈ 𝜃
2
(𝐵),
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which implies that 𝐴 and 𝐵 are ⊗
1
-hyperideals and ⊗

2
-

hyperideals of 𝐿
1
and 𝐿

2
, respectively. Similarly, the case of

the lower approximation can be proved.
⇐This follows from Propositions 16 and 33.

Let 𝜃 be a hypercongruence relation on (𝐿, ⊗, ⊕). For all
[𝑎]
𝜃
, [𝑏]
𝜃
∈ 𝐿/𝜃, we define [𝑎]

𝜃
⊗
󸀠

[𝑏]
𝜃
= {[𝑧]

𝜃
| 𝑧 ∈ 𝑎 ⊗ 𝑏}

and [𝑎]
𝜃
⊕
󸀠

[𝑏]
𝜃
= {[𝑧]

𝜃
| 𝑧 ∈ 𝑎 ⊕ 𝑏}. Then, one can check

(𝐿/𝜃, ⊗
󸀠

, ⊕
󸀠

) is a hyperlattice, which is called the quotient
hyperlattice of 𝐿 with respect to 𝜃.

When 𝐿 is finite, 𝐿/𝜃 is smaller than 𝐿, and its structure is
usually less complicated than that of 𝐿. At the same time, 𝐿/𝜃
simulates 𝐿 in many ways. In fact, we may think of a quotient
hyperlattice of 𝐿 as a less complicated approximation of 𝐿.

The lower and upper approximations can be presented in
an equivalent form as shown bellow.

Let 𝜃 be a hypercongruence relation on (𝐿, ⊗, ⊕), and let
𝐴 be a nonempty subset of 𝐿. Denote 𝜃(𝐴)/𝜃 = {[𝑥]

𝜃
∈ 𝐿/𝜃 |

[𝑥]
𝜃
∩ 𝐴 ̸= 𝜙}, 𝜃(𝐴)/𝜃 = {[𝑥]

𝜃
∈ 𝐿/𝜃 | [𝑥]

𝜃
⊆ 𝐴}.

Theorem 35. Let 𝜃 be a hypercongruence relation on (𝐿, ⊗, ⊕),
and let 𝐴 be a nonempty subset of 𝐿. Then,

(1) 𝜃(𝐴) is a subhyperlattice of (𝐿, ⊗, ⊕) if and only if
𝜃(𝐴)/𝜃 is a subhyperlattice of (𝐿/𝜃, ⊗󸀠, ⊕󸀠).

(2) 𝜃(𝐴) is a ⊗-hyperideal (⊕-hyperideal) of (𝐿, ⊗, ⊕) if
and only if 𝜃(𝐴)/𝜃 is a ⊗

󸀠-hyperideal (⊕󸀠-hyperideal)
of (𝐿/𝜃, ⊗󸀠, ⊕󸀠).

Proof. (1) ⇒ Let [𝑎]
𝜃
, [𝑏]
𝜃
∈ 𝜃(𝐴)/𝜃; then [𝑎]

𝜃
∩ 𝐴 ̸= 𝜙 and

[𝑏]
𝜃
∩ 𝐴 ̸= 𝜙. This implies that 𝑎, 𝑏 ∈ 𝜃(𝐴). Since 𝜃(𝐴) is a

subhyperlattice of 𝐿, we have 𝑎⊗𝑏 ⊆ 𝜃(𝐴), 𝑎⊕𝑏 ⊆ 𝜃(𝐴).Then,
for all 𝑥 ∈ 𝑎 ⊗ 𝑏, [𝑥]

𝜃
∩ 𝐴 ̸= 𝜙. Thus, [𝑎]

𝜃
⊗
󸀠

[𝑏]
𝜃
= {[𝑥]

𝜃
| 𝑥 ∈

𝑎 ⊗ 𝑏} ⊆ 𝜃(𝐴)/𝜃. Similarly, [𝑎]
𝜃
⊕
󸀠

[𝑏]
𝜃
⊆ 𝜃(𝐴)/𝜃. Therefore,

𝜃(𝐴)/𝜃 is a subhyperlattice of 𝐿/𝜃.
⇐ Assume that 𝜃(𝐴)/𝜃 is a subhyperlattice of 𝐿/𝜃. Let

𝑎, 𝑏 ∈ 𝜃(𝐴); then [𝑎]
𝜃
∩𝐴 ̸= 𝜙 and [𝑏]

𝜃
∩𝐴 ̸= 𝜙.This implies that

[𝑎]
𝜃
, [𝑏]
𝜃
∈ 𝜃(𝐴)/𝜃. Since 𝜃(𝐴)/𝜃 is a subhyperlattice of 𝐿/𝜃,

we conclude that [𝑎]
𝜃
⊗
󸀠

[𝑏]
𝜃
= {[𝑥]

𝜃
| 𝑥 ∈ 𝑎 ⊗ 𝑏} ⊆ 𝜃(𝐴)/𝜃,

which implies that for all 𝑥 ∈ 𝑎 ⊗ 𝑏, [𝑥]
𝜃
∩ 𝐴 ̸= 𝜙; that is,

𝑥 ∈ 𝜃(𝐴). Hence 𝑎 ⊗ 𝑏 ⊆ 𝜃(𝐴). In a similar way, we have
𝑎 ⊕ 𝑏 ⊆ 𝜃(𝐴). Therefore, 𝜃(𝐴) is a subhyperlattice of 𝐿.

(2) ⇒ Assume that 𝜃(𝐴) is a ⊗-hyperideal of 𝐿. Let
[𝑎]
𝜃
, [𝑏]
𝜃
∈ 𝜃(𝐴)/𝜃; it follows from the necessity of (1) that

[𝑎]
𝜃
⊕
󸀠

[𝑏]
𝜃
⊆ 𝜃(𝐴)/𝜃. Now, for every [𝑎]

𝜃
∈ 𝜃(𝐴)/𝜃 and [𝑥]

𝜃
∈

𝐿/𝜃, then [𝑎]
𝜃
∩ 𝐴 ̸= 𝜙. This implies that 𝑎 ∈ 𝜃(𝐴). Since

𝜃(𝐴) is a ⊗-hyperideal of 𝐿, we have 𝑎 ⊗ 𝑥 ⊆ 𝜃(𝐴). It follows
that [𝑎 ⊗ 𝑥]

𝜃
∩ 𝐴 ̸= 𝜙. Then, for every 𝑡 ∈ 𝑎 ⊗ 𝑥, [𝑡]

𝜃
∩ 𝐴 ̸= 𝜙,

which implies that [𝑎]
𝜃
⊗
󸀠

[𝑥]
𝜃
= {[𝑡]

𝜃
| 𝑡 ∈ 𝑎 ⊗ 𝑥} ⊆ 𝜃(𝐴)/𝜃.

Therefore, 𝜃(𝐴)/𝜃 is a ⊗
󸀠-hyperideal of 𝐿/𝜃. The other case

can be seen in a similar way.
⇐ Suppose that 𝜃(𝐴)/𝜃 is a ⊗

󸀠-hyperideal of 𝐿/𝜃. Let
𝑎, 𝑏 ∈ 𝜃(𝐴); it follows from the sufficiency of (1) that 𝑎 ⊕ 𝑏 ⊆

𝜃(𝐴). Now, let 𝑥 ∈ 𝐿; then [𝑎]
𝜃
∈ 𝜃(𝐴)/𝜃 and [𝑥]

𝜃
∈ 𝐿/𝜃.

Hence, we conclude that [𝑎]
𝜃
⊗
󸀠

[𝑥]
𝜃
= {[𝑡]

𝜃
| 𝑡 ∈ 𝑎 ⊗ 𝑥} ⊆

𝜃(𝐴)/𝜃, which implies that for all 𝑡 ∈ 𝑎 ⊗ 𝑥, [𝑡]
𝜃
∩ 𝐴 ̸= 𝜙;

that is, 𝑡 ∈ 𝜃(𝐴). Hence 𝑎 ⊗ 𝑥 ⊆ 𝜃(𝐴). Therefore, 𝜃(𝐴) is
a ⊗-hyperideal of 𝐿. In a similar way, the other case can be
seen.

Combining Theorems 28 and 35, we have the following
corollary.

Corollary 36. Let 𝜃 be a hypercongruence relation on (𝐿, ⊗,

⊕), and let 𝐴 be a nonempty subset of 𝐿.

(1) If 𝐴 is a subhyperlattice of 𝐿, then 𝜃(𝐴)/𝜃 is a
subhyperlattice of (𝐿/𝜃, ⊗󸀠, ⊕󸀠).

(2) If 𝐴 is a ⊗-hyperideal (⊕-hyperideal) of 𝐿, then 𝜃(𝐴)/𝜃

is a ⊗󸀠-hyperideal (⊕󸀠-hyperideal) of (𝐿/𝜃, ⊗󸀠, ⊕󸀠).

Theorem 37. Let 𝐴 be a nonempty subset of (𝐿, ⊗, ⊕), and let
𝜃 be a hypercongruence relation on 𝐿 such that 𝜃(𝐴) ̸= 𝜙.

(1) 𝜃(𝐴) is a subhyperlattice of 𝐿 if and only if 𝜃(𝐴)/𝜃 is a
subhyperlattice of (𝐿/𝜃, ⊗󸀠, ⊕󸀠).

(2) 𝜃(𝐴) is a ⊗-hyperideal (⊕-hyperideal) of 𝐿 if and
only if 𝜃(𝐴)/𝜃 is a ⊗

󸀠-hyperideal (⊕󸀠-hyperideal) of
(𝐿/𝜃, ⊗

󸀠

, ⊕
󸀠

).

Proof. (1) ⇒ Let [𝑎]
𝜃
, [𝑏]
𝜃
∈ 𝜃(𝐴)/𝜃, then [𝑎]

𝜃
⊆ 𝐴 and

[𝑏]
𝜃

⊆ 𝐴. That is, 𝑎 ∈ 𝜃(𝐴) and 𝑏 ∈ 𝜃(𝐴). Since 𝜃(𝐴)

is a subhyperlattice of 𝐿, we have 𝑎 ⊗ 𝑏 ⊆ 𝜃(𝐴), 𝑎 ⊕ 𝑏 ⊆

𝜃(𝐴). It follows that [𝑎 ⊗ 𝑏]
𝜃

⊆ 𝐴, [𝑎 ⊕ 𝑏]
𝜃

⊆ 𝐴. Thus,
[𝑎]
𝜃
⊗
󸀠

[𝑏]
𝜃

⊆ 𝜃(𝐴)/𝜃, [𝑎]
𝜃
⊕
󸀠

[𝑏]
𝜃

⊆ 𝜃(𝐴)/𝜃. Therefore,
𝜃(𝐴)/𝜃 is a subhyperlattice of 𝐿/𝜃.

⇐ Assume that 𝜃(𝐴)/𝜃 is a subhyperlattice of 𝐿/𝜃. Let
𝑎, 𝑏 ∈ 𝜃(𝐴); then [𝑎]

𝜃
⊆ 𝐴 and [𝑏]

𝜃
⊆ 𝐴. This implies that

[𝑎]
𝜃
, [𝑏]
𝜃
∈ 𝜃(𝐴)/𝜃. Since 𝜃(𝐴)/𝜃 is a subhyperlattice of 𝐿/𝜃,

we infer that [𝑎]
𝜃
⊗
󸀠

[𝑏]
𝜃
= {[𝑥]

𝜃
| 𝑥 ∈ 𝑎 ⊗ 𝑏} ⊆ 𝜃(𝐴)/𝜃, which

implies that for all 𝑥 ∈ 𝑎 ⊗ 𝑏, [𝑥]
𝜃
⊆ 𝐴; that is, 𝑥 ∈ 𝜃(𝐴). It

follows that 𝑎 ⊗ 𝑏 ⊆ 𝜃(𝐴). Likewise, we have 𝑎 ⊕ 𝑏 ⊆ 𝜃(𝐴).
Therefore, 𝜃(𝐴) is a subhyperlattice of 𝐿.

(2) ⇒ Assume that 𝐴 is a ⊗-hyperideal of 𝐿. Let
[𝑎]
𝜃
, [𝑏]
𝜃
∈ 𝜃(𝐴)/𝜃; it follows from the necessity of (1) that

[𝑎]
𝜃
⊕
󸀠

[𝑏]
𝜃

⊆ 𝜃(𝐴)/𝜃. Now, for every [𝑎]
𝜃

∈ 𝜃(𝐴)/𝜃 and
[𝑥]
𝜃
∈ 𝐿/𝜃, then [𝑎]

𝜃
⊆ 𝐴. This implies that 𝑎 ∈ 𝜃(𝐴). Since

𝜃(𝐴) is a ⊗-hyperideal of 𝐿, we have 𝑎 ⊗ 𝑥 ⊆ 𝜃(𝐴). Then, for
all 𝑡 ∈ 𝑎 ⊗ 𝑥, we have 𝑡 ∈ 𝜃(𝐴), which implies that [𝑡]

𝜃
⊆ 𝐴.

Hence, [𝑡]
𝜃
∈ 𝜃(𝐴)/𝜃. On the other hand, from 𝑡 ∈ 𝑎 ⊗ 𝑥, we

have [𝑡]
𝜃
∈ [𝑎]
𝜃
⊗
󸀠

[𝑥]
𝜃
. It follows that [𝑎]

𝜃
⊗
󸀠

[𝑥]
𝜃
⊆ 𝜃(𝐴)/𝜃.

Therefore, 𝜃(𝐴)/𝜃 is a ⊗
󸀠-hyperideal of 𝐿/𝜃. The other case

can be seen in a similar way.
⇐Assume that 𝜃(𝐴)/𝜃 is a⊗󸀠-hyperideal of𝐿/𝜃. Let 𝑎, 𝑏 ∈

𝜃(𝐴); it follows from the sufficiency of (1) that 𝑎 ⊕ 𝑏 ⊆ 𝜃(𝐴).
Now, let 𝑥 ∈ 𝐿; then [𝑎]

𝜃
∈ 𝜃(𝐴)/𝜃 and [𝑥]

𝜃
∈ 𝐿/𝜃. Hence,

we conclude that [𝑎]
𝜃
⊗
󸀠

[𝑥]
𝜃
= {[𝑡]

𝜃
| 𝑡 ∈ 𝑎 ⊗ 𝑥} ⊆ 𝜃(𝐴)/𝜃,

which implies that for all 𝑡 ∈ 𝑎 ⊗ 𝑥, [𝑡]
𝜃
⊆ 𝐴; that is, 𝑡 ∈ 𝜃(𝐴).

Hence 𝑎 ⊗ 𝑥 ⊆ 𝜃(𝐴). Therefore, 𝜃(𝐴) is a ⊗-hyperideal of 𝐿.
In a similar way, the other case can be seen.

Combining Theorems 29 and 37, we have the following
corollary.



8 Journal of Applied Mathematics

Corollary 38. Let 𝐴 be a nonempty subset of (𝐿, ⊗, ⊕), and
let 𝜃 be a complete hypercongruence relation on 𝐿 such that
𝜃(𝐴) ̸= 𝜙.

(1) If 𝐴 is a subhyperlattice of 𝐿, then 𝜃(𝐴)/𝜃 is a
subhyperlattice of (𝐿/𝜃, ⊗󸀠, ⊕󸀠).

(2) If 𝐴 is a ⊗-hyperideal (⊕-hyperideal) of 𝐿, then 𝜃(𝐴)/𝜃

is a ⊗󸀠-hyperideal (⊕󸀠-hyperideal) of (𝐿/𝜃, ⊗󸀠, ⊕󸀠).

5. Homomorphic Images of
Rough Hyperideals

In this section, we will discuss relations between the upper
(lower) rough hyperideals of hyperlattices and the upper
(lower) approximations of their homomorphic images. Final-
ly, combining results in the previous sections, we obtain the
corresponding relationships between rough hyperideals of
quotient hyperlattices of two homomorphic hyperlattices.

Lemma 39. Let (𝐿
1
, ⊗
1
, ⊕
1
) and (𝐿

2
, ⊗
2
, ⊕
2
) be two hyperlat-

tices, and let 𝑓 : 𝐿
1
→ 𝐿
2
be a homomorphism from 𝐿

1
to

𝐿
2
. Then 𝜃 = ker 𝑓 = {(𝑎, 𝑏) ∈ 𝐿

1
× 𝐿
1
| 𝑓(𝑎) = 𝑓(𝑏)} is a

hypercongruence on (𝐿
1
, ⊗
1
, ⊕
1
), which is called the kernel of

𝑓.

Proof. Clearly, 𝜃 = ker 𝑓 is an equivalence relation on 𝐿
1
.

For all 𝑎, 𝑎󸀠, 𝑏, 𝑏󸀠 ∈ 𝐿
1
, let 𝑎𝜃𝑎󸀠 and 𝑏𝜃𝑏

󸀠; then 𝑓(𝑎) =

𝑓(𝑎
󸀠

) and 𝑓(𝑏) = 𝑓(𝑏
󸀠

). Let 𝑥 ∈ 𝑎 ⊗
1
𝑏; then 𝑓(𝑥) ∈

𝑓(𝑎⊗
1
𝑏) = 𝑓(𝑎)⊗

2
𝑓(𝑏) = 𝑓(𝑎

󸀠

)⊗
2
𝑓(𝑏
󸀠

) = 𝑓(𝑎
󸀠

⊗
1
𝑏
󸀠

), which
implies that there exists 𝑦 ∈ 𝑎

󸀠

⊗
1
𝑏
󸀠 such that 𝑓(𝑥) = 𝑓(𝑦).

That is, there exists 𝑦 ∈ 𝑎
󸀠

⊗
1
𝑏
󸀠 such that 𝑥𝜃𝑦. Conversely,

for any 𝑠 ∈ 𝑎
󸀠

⊗
1
𝑏
󸀠, there also exists 𝑡 ∈ 𝑎 ⊗

1
𝑏 such that 𝑠𝜃𝑡.

It follows that (𝑎 ⊗
1
𝑏)𝜃(𝑎
󸀠

⊗
1
𝑏
󸀠

). Similarly, we can prove that
(𝑎 ⊕
1
𝑏)𝜃(𝑎
󸀠

⊕
1
𝑏
󸀠

).Therefore, 𝜃 = ker 𝑓 is a hypercongruence
on (𝐿

1
, ⊗
1
, ⊕
1
).

Theorem 40. Let𝑓 be a homomorphism from the hyperlattice
(𝐿
1
, ⊗
1
, ⊕
1
) to the hyperlattice (𝐿

2
, ⊗
2
, ⊕
2
) and 𝜃 = ker 𝑓. If 𝐴

is a nonempty subset of 𝐿
1
, then

(1) 𝑓(𝜃(𝐴)) = 𝑓(𝐴).

(2) if 𝑓 is one to one, 𝑓(𝜃(𝐴)) = 𝑓(𝐴).

Proof. (1) Since 𝐴 ⊆ 𝜃(𝐴), it follows that 𝑓(𝐴) ⊆ 𝑓(𝜃(𝐴)).
Conversely, let 𝑦 ∈ 𝑓(𝜃(𝐴)); there exists 𝑥 ∈ 𝜃(𝐴) such that
𝑓(𝑥) = 𝑦, so we have [𝑥]

𝜃
∩ 𝐴 ̸= 𝜙. Thus, there exists 𝑎 ∈

[𝑥]
𝜃
∩ 𝐴. So, 𝑎𝜃𝑥; that is, 𝑓(𝑎) = 𝑓(𝑥) = 𝑦 ∈ 𝑓(𝐴). Thus,

𝑓(𝜃(𝐴)) ⊆ 𝑓(𝐴). Therefore, 𝑓(𝜃(𝐴)) = 𝑓(𝐴).
(2) It is obvious that 𝑓(𝜃(𝐴)) ⊆ 𝑓(𝐴). Let 𝑦 ∈ 𝑓(𝐴); there

exists𝑥 ∈ 𝐴 such that𝑓(𝑥) = 𝑦. If 𝑎 ∈ [𝑥]
𝜃
, then𝑓(𝑎) = 𝑓(𝑥).

Since 𝑓 is one to one, we have 𝑎 = 𝑥 ∈ 𝐴. So [𝑥]
𝜃
⊆ 𝐴, which

implies 𝑥 ∈ 𝜃(𝐴). Thus, 𝑦 = 𝑓(𝑥) ∈ 𝑓(𝜃(𝐴)). Therefore, we
obtain 𝑓(𝜃(𝐴)) = 𝑓(𝐴).

In order to discuss some relations between the upper
(lower) rough hyperideals of hyperlattices and the upper
(lower) approximations of their homomorphic images, we
give the following lemma.

Lemma 41. Let 𝑓 be a surjective homomorphism from a
hyperlattice (𝐿

1
, ⊗
1
, ⊕
1
) to a hyperlattice (𝐿

2
, ⊗
2
, ⊕
2
), and let

𝜃
2
be a hypercongruence relation on 𝐿

2
. If 𝐴 is a nonempty

subset of 𝐿
1
, then

(1) 𝜃
1
= {(𝑎, 𝑏) ∈ 𝐿

1
× 𝐿
1
| (𝑓(𝑎), 𝑓(𝑏)) ∈ 𝜃

2
} is a

hypercongruence relation on a hyperlattice 𝐿
1
.

(2) 𝑓(𝜃
1
(𝐴)) = 𝜃

2
(𝑓(𝐴)).

(3) 𝑓(𝜃
1
(𝐴)) ⊆ 𝜃

2
(𝑓(𝐴)). Furthermore, if 𝑓 is injective,

then 𝑓(𝜃
1
(𝐴)) = 𝜃

2
(𝑓(𝐴)).

Proof. (1) It is clear that 𝜃
1
is an equivalence relation.

Now, let 𝑥 ∈ 𝐿
1
; if 𝑎𝜃

1
𝑏, then 𝑓(𝑎)𝜃

2
𝑓(𝑏). Since 𝜃

2
is a

hypercongruence relation on 𝐿
2
, we have that (𝑓(𝑎)⊗

2
𝑓(𝑥))×

𝜃
2
(𝑓(𝑏)⊗

2
𝑓(𝑥)) and (𝑓(𝑎) ⊕

2
𝑓(𝑥))𝜃

2
(𝑓(𝑏) ⊕

2
𝑓(𝑥)). It follows

that 𝑓(𝑎 ⊗
1
𝑥)𝜃
2
𝑓(𝑏 ⊗
1
𝑥), 𝑓(𝑎 ⊕

1
𝑥)𝜃
2
𝑓(𝑏 ⊕

1
𝑥). By the defi-

nition of 𝜃
1
, we easily get that (𝑎 ⊗

1
𝑥)𝜃
1
(𝑏 ⊗
1
𝑥), (𝑎 ⊕

1
𝑥)𝜃
1
×

(𝑏 ⊕
1
𝑥). Therefore, 𝜃

1
is a hypercongruence relation on a

hyperlattice 𝐿
1
.

(2) For any 𝑦 ∈ 𝑓(𝜃
1
(𝐴)), then there exists 𝑥 ∈ 𝜃

1
(𝐴)

such that 𝑓(𝑥) = 𝑦; hence, [𝑥]
𝜃
1

∩ 𝐴 ̸= 𝜙. This means that
there exists 𝑎 ∈ [𝑥]

𝜃
1

∩ 𝐴 such that 𝑓(𝑎) ∈ 𝑓(𝐴) and
𝑓(𝑎)𝜃

2
𝑓(𝑥). It follows that [𝑓(𝑥)]

𝜃
2

∩ 𝑓(𝐴) ̸= 𝜙. Then 𝑦 =

𝑓(𝑥) ∈ 𝜃
2
(𝑓(𝐴)). Therefore, we conclude that 𝑓(𝜃

1
(𝐴)) ⊆

𝜃
2
(𝑓(𝐴)). Conversely, let 𝑦 ∈ 𝜃

2
(𝑓(𝐴)); then there exists

𝑥 ∈ 𝐿
1
such that 𝑓(𝑥) = 𝑦. Hence [𝑓(𝑥)]

𝜃
2

∩ 𝑓(𝐴) ̸= 𝜙. So,
there exists 𝑎 ∈ 𝐴 such that𝑓(𝑎) ∈ 𝑓(𝐴) and𝑓(𝑎) ∈ [𝑓(𝑥)]

𝜃
2

.
Now, by definition of 𝜃

1
, we have 𝑎 ∈ 𝐴, 𝑎 ∈ [𝑥]

𝜃
1

. Thus
[𝑥]
𝜃
1

∩ 𝐴 ̸= 𝜙, which implies 𝑥 ∈ 𝜃
1
(𝐴). So, 𝑦 = 𝑓(𝑥) ∈

𝑓(𝜃
1
(𝐴)). This means that 𝜃

2
(𝑓(𝐴)) ⊆ 𝑓(𝜃

1
(𝐴)). Therefore,

𝑓(𝜃
1
(𝐴)) = 𝜃

2
(𝑓(𝐴)).

(3) If 𝑦 ∈ 𝑓(𝜃
1
(𝐴)), then there exists 𝑥 ∈ 𝜃

1
(𝐴) such that

𝑓(𝑥) = 𝑦, so we have [𝑥]
𝜃
1

⊆ 𝐴. Now, let 𝑏 ∈ [𝑦]
𝜃
2

; then
there exists 𝑎 ∈ 𝐿

1
such that 𝑓(𝑎) = 𝑏; then 𝑓(𝑎) ∈ [𝑓(𝑥)]

𝜃
2

.
Therefore, 𝑎 ∈ [𝑥]

𝜃
1

⊆ 𝐴, which implies 𝑏 = 𝑓(𝑎) ∈ 𝑓(𝐴).
Thus [𝑦]

𝜃
2

⊆ 𝑓(𝐴); that is, 𝑦 ∈ 𝜃
2
(𝑓(𝐴)). Hence, 𝑓(𝜃

1
(𝐴)) ⊆

𝜃
2
(𝑓(𝐴)). Now, let 𝑓 is injective. For any 𝑦 ∈ 𝜃

2
(𝑓(𝐴)), then

there exists 𝑥 ∈ 𝐿
1
such that 𝑓(𝑥) = 𝑦 and [𝑓(𝑥)]

𝜃
2

⊆ 𝑓(𝐴).
Let 𝑎 ∈ [𝑥]

𝜃
1

, then 𝑓(𝑎) ∈ [𝑓(𝑥)]
𝜃
2

⊆ 𝑓(𝐴), and so 𝑎 ∈ 𝐴.
Thus [𝑥]

𝜃
1

⊆ 𝐴, which implies 𝑥 ∈ 𝜃
1
(𝐴). Then 𝑦 = 𝑓(𝑥) ∈

𝑓(𝜃
1
(𝐴)), and so 𝜃

2
(𝑓(𝐴)) ⊆ 𝑓(𝜃

1
(𝐴)). From the above, we

conclude that 𝑓(𝜃
1
(𝐴)) = 𝜃

2
(𝑓(𝐴)).

Now, we arrive at one of our main theorems.

Theorem 42. Let 𝑓 be a surjective homomorphism from a
hyperlattice (𝐿

1
, ⊗
1
, ⊕
1
) to a hyperlattice (𝐿

2
, ⊗
2
, ⊕
2
), let 𝜃

2
be

a hypercongruence relation on 𝐿
2
, and 𝜃

1
the hypercongruence

on 𝐿
1
defined in Lemma 41. If 𝐴 is a nonempty subset of 𝐿

1
,

then

(1) 𝜃
1
(𝐴) is a subhyperlattice of 𝐿

1
if and only if 𝜃

2
(𝑓(𝐴))

is a subhyperlattice of 𝐿
2
.
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(2) 𝜃
1
(𝐴) is a ⊗

1
-hyperideal (⊕

1
-hyperideal) of 𝐿

1
if and

only if 𝜃
2
(𝑓(𝐴)) is a ⊗

2
-hyperideal (⊕

2
-hyperideal) of

𝐿
2
.

Proof. (1) ⇒ Let 𝑥, 𝑦 ∈ 𝜃
2
(𝑓(𝐴)). By Lemma 41, we have

that 𝑥, 𝑦 ∈ 𝑓(𝜃
1
(𝐴)) = 𝜃

2
(𝑓(𝐴)). So there exist 𝑎, 𝑏 ∈ 𝜃

1
(𝐴)

such that 𝑥 = 𝑓(𝑎), 𝑦 = 𝑓(𝑏). Then 𝑥⊗
2
𝑦 = 𝑓(𝑎) ⊗

2
𝑓(𝑏) =

𝑓(𝑎 ⊗
1
𝑏), 𝑥 ⊕

2
𝑦 = 𝑓(𝑎) ⊕

2
𝑓(𝑏) = 𝑓(𝑎 ⊕

1
𝑏). Since 𝜃

1
(𝐴)

is a subhyperlattice of 𝐿
1
, we have that 𝑎 ⊗

1
𝑏 ⊆ 𝜃

1
(𝐴),

𝑎⊕
1
𝑏 ⊆ 𝜃
1
(𝐴). It follows that 𝑥⊗

2
𝑦 ⊆ 𝑓(𝜃

1
(𝐴)) = 𝜃

2
(𝑓(𝐴)),

𝑥⊕
2
𝑦 ⊆ 𝑓(𝜃

1
(𝐴)) = 𝜃

2
(𝑓(𝐴)). Therefore, 𝜃

2
(𝑓(𝐴)) is a

subhyperlattice of 𝐿
2
.

⇐Assume that 𝑥, 𝑦 ∈ 𝜃
1
(𝐴); then𝑓(𝑥), 𝑓(𝑦) ∈ 𝑓(𝜃

1
(𝐴)).

By Lemma 41, we have that 𝑓(𝑥), 𝑓(𝑦) ∈ 𝑓(𝜃
1
(𝐴)) =

𝜃
2
(𝑓(𝐴)). Since 𝜃

2
(𝑓(𝐴)) is a subhyperlattice of 𝐿

2
, 𝑓(𝑥)×

⊗
2
𝑓(𝑦) ⊆ 𝜃

2
(𝑓(𝐴)), 𝑓(𝑥) ⊕

2
𝑓(𝑦) ⊆ 𝜃

2
(𝑓(𝐴)). It follows that

𝑓(𝑥⊗
1
𝑦) ⊆ 𝑓(𝜃

1
(𝐴)), 𝑓(𝑥⊕

1
𝑦) ⊆ 𝑓(𝜃

1
(𝐴)). Then for all

𝑚 ∈ 𝑥⊗
1
𝑦, 𝑛 ∈ 𝑥 ⊕

1
𝑦, there exist 𝑚󸀠, 𝑛󸀠 ∈ 𝜃

1
(𝐴) such that

𝑓(𝑚) = 𝑓(𝑚
󸀠

), 𝑓(𝑛) = 𝑓(𝑛
󸀠

). So we have that [𝑚󸀠]
𝜃
1

∩ 𝐴 ̸= 𝜙,
[𝑛
󸀠

]
𝜃
1

∩ 𝐴 ̸= 𝜙 and 𝑚 ∈ [𝑚
󸀠

]
𝜃
1

, 𝑛 ∈ [𝑛
󸀠

]
𝜃
1

. This implies
[𝑚]
𝜃
1

∩ 𝐴 ̸= 𝜙, [𝑛]
𝜃
1

∩ 𝐴 ̸= 𝜙, and so 𝑚 ∈ 𝜃
1
(𝐴), 𝑛 ∈ 𝜃

1
(𝐴).

Hence, 𝑥⊗
1
𝑦 ⊆ 𝜃

1
(𝐴), 𝑥⊕

1
𝑦 ⊆ 𝜃

1
(𝐴). Therefore, 𝜃

1
(𝐴) is a

subhyperlattice of 𝐿
1
.

(2) ⇒ Assume that 𝜃
1
(𝐴) is a ⊗

1
-hyperideal of 𝐿

1
; let

𝑥, 𝑦 ∈ 𝜃
2
(𝑓(𝐴)). From the proof of necessity of (1), we obtain

𝑥⊕
2
𝑦 ⊆ 𝜃

2
(𝑓(𝐴)). On the other hand, it follows from 𝑥 ∈

𝜃
2
(𝑓(𝐴)) = 𝑓(𝜃

1
(𝐴)) that there exists 𝑠 ∈ 𝜃

1
(𝐴) such that

𝑥 = 𝑓(𝑠). Now, let 𝑎 = 𝑓(𝑡) ∈ 𝐿
2
; then 𝑎⊗

2
𝑥 = 𝑓(𝑡) ⊗

2
𝑓(𝑠) =

𝑓(𝑡 ⊗
1
𝑠). Since 𝜃

1
(𝐴) is a ⊗

1
-hyperideal of 𝐿

1
, we have 𝑡⊗

1
𝑠 ⊆

𝜃
1
(𝐴). Hence 𝑎 ⊗

2
𝑥 = 𝑓(𝑡⊗

1
𝑠) ⊆ 𝑓(𝜃

1
(𝐴)) = 𝜃

2
(𝑓(𝐴)).

Therefore, 𝜃
2
(𝑓(𝐴)) is a ⊗

2
-hyperideal of 𝐿

2
.

⇐ Let 𝑥, 𝑦 ∈ 𝜃
1
(𝐴). From the proof of sufficiency of

(1), we have 𝑥⊕
1
𝑦 ⊆ 𝜃

1
(𝐴). From 𝑥 ∈ 𝜃

1
(𝐴), then 𝑓(𝑥) ∈

𝑓(𝜃
1
(𝐴)). Now, let 𝑎 ∈ 𝐿

1
; then 𝑓(𝑎) ∈ 𝐿

2
. Since 𝜃

2
(𝑓(𝐴)) is

a ⊗
2
-hyperideal of 𝐿

2
, 𝑓(𝑎)⊗

2
𝑓(𝑥) = 𝑓(𝑎 ⊗

1
𝑥) ⊆ 𝜃

2
(𝑓(𝐴)) =

𝑓(𝜃
1
(𝐴)). Then for all 𝑚 ∈ 𝑎⊗

1
𝑥, there exists 𝑚󸀠 ∈ 𝜃

1
(𝐴)

such that 𝑓(𝑚) = 𝑓(𝑚
󸀠

). So we have that [𝑚󸀠]
𝜃
1

∩ 𝐴 ̸= 𝜙 and
𝑚 ∈ [𝑚

󸀠

]
𝜃
1

. This implies [𝑚]
𝜃
1

∩ 𝐴 ̸= 𝜙, and so 𝑚 ∈ 𝜃
1
(𝐴).

Hence, 𝑎⊗
1
𝑥 ⊆ 𝜃

1
(𝐴). Therefore, 𝜃

1
(𝐴) is a ⊗

2
-hyperideal of

𝐿
1
.
The other cases can be seen in a similar way.

Theorem 43. Let 𝑓 be an isomorphism from a hyperlattice
(𝐿
1
, ⊗
1
, ⊕
1
) to a hyperlattice (𝐿

2
, ⊗
2
, ⊕
2
), let 𝜃

2
be a hyper-

congruence relation on 𝐿
2
, and 𝜃

1
the hypercongruence on 𝐿

1

defined in Lemma 41. If 𝐴 is a nonempty subset of 𝐿
1
, then

(1) 𝜃
1
(𝐴) is a subhyperlattice of 𝐿

1
if and only if 𝜃

2
(𝑓(𝐴))

is a subhyperlattice of 𝐿
2
.

(2) 𝜃
1
(𝐴) is a ⊗

1
-hyperideal (⊕

1
-hyperideal) of 𝐿

1
if and

only if 𝜃
2
(𝑓(𝐴)) is a ⊗

2
-hyperideal (⊕

2
-hyperideal) of

𝐿
2
.

Proof. Since 𝑓 is one to one, we have 𝑓(𝜃
1
(𝐴)) = 𝜃

2
(𝑓(𝐴))

by Lemma 41. Therefore, the proof is similar to that of
Theorem 42.

CombiningTheorems 42 and 43, we have immediately the
following corollary.

Corollary 44. Let 𝑓 be an isomorphism from a hyperlattice
(𝐿
1
, ⊗
1
, ⊕
1
) to a hyperlattice (𝐿

2
, ⊗
2
, ⊕
2
), let 𝜃

2
be a hyper-

congruence relation on 𝐿
2
, and 𝜃

1
the hypercongruence on 𝐿

1

defined in Lemma 41. If 𝐴 is a nonempty subset of 𝐿
1
, then

(1) 𝐴 is a rough subhyperlattice of 𝐿
1
if and only if 𝑓(𝐴) is

a rough subhyperlattice of 𝐿
2
.

(2) 𝐴 is a rough ⊗
1
-hyperideal (⊕

1
-hyperideal) of 𝐿

1
if and

only if 𝑓(𝐴) is a rough ⊗
2
-hyperideal (⊕

2
-hyperideal)

of 𝐿
2
.

In what follows, we obtain the corresponding relation-
ships between rough hyperideals of quotient hyperlattices of
two homomorphic hyperlattices.

CombiningTheorems 35 and 42, we conclude the follow-
ing theorem.

Theorem 45. Let 𝑓 be a surjective homomorphism from a
hyperlattice (𝐿

1
, ⊗
1
, ⊕
1
) to a hyperlattice (𝐿

2
, ⊗
2
, ⊕
2
), let 𝜃

2
be

a hypercongruence relation on 𝐿
2
, and 𝜃

1
the hypercongruence

on 𝐿
1
defined in Lemma 41. If 𝐴 is a nonempty subset of 𝐿

1
,

then

(1) 𝜃
1
(𝐴)/𝜃

1
is a subhyperlattice of 𝐿

1
/𝜃
1
if and only if

𝜃
2
(𝑓(𝐴))/𝜃

2
is a subhyperlattice of 𝐿

2
/𝜃
2
.

(2) 𝜃
1
(𝐴)/𝜃

1
is a ⊗

1
-hyperideal (⊕

1
-hyperideal) of 𝐿

1
if

and only if 𝜃
2
(𝑓(𝐴))/𝜃

2
is a ⊗
2
-hyperideal (⊕

2
-hyper-

ideal) of 𝐿
2
/𝜃
2
.

Combining Theorems 37 and 43, we can obtain the fol-
lowing results.

Theorem 46. Let 𝑓 be an isomorphism from a hyperlattice
(𝐿
1
, ⊗
1
, ⊕
1
) to a hyperlattice (𝐿

2
, ⊗
2
, ⊕
2
), let 𝜃

2
be a hypercon-

gruence relation on 𝐿
2
, and 𝜃

1
the hypercongruence on 𝐿

1

defined in Lemma 41. If 𝐴 is a nonempty subset of 𝐿
1
, then

(1) 𝜃
1
(𝐴)/𝜃

1
is a subhyperlattice of 𝐿

1
/𝜃
1
if and only if

𝜃
2
(𝑓(𝐴))/𝜃

2
is a subhyperlattice of 𝐿

2
/𝜃
2
.

(2) 𝜃
1
(𝐴)/𝜃

1
is a ⊗

1
-hyperideal (⊕

1
-hyperideal) of 𝐿

1
/𝜃
1

if and only if 𝜃
2
(𝑓(𝐴))/𝜃

2
is a ⊗

2
-hyperideal (⊕

2
-

hyperideal) of 𝐿
2
/𝜃
2
.

6. Conclusions

In the present paper, we have combined rough set theory and
hyperlattices. We introduce rough hyperideals in hyperlatti-
ces, which are extended notions of hyperideals of hyperlat-
tices. We conclude the corresponding relationships between
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rough hyperideals of hyperlattices and that of quotient hyper-
lattices. Also, we have the relations between rough hyper-
ideals of two homomorphic hyperlattices. Based on this,
we obtain the corresponding relationships between rough
hyperideals of quotient hyperlattices of two homomorphic
hyperlattices.We hope that our work can broaden application
fields of the theory of rough sets and hyperlattices.
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