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This paper is concernedwith the existence and uniqueness ofmild solution of some fractional impulsive equations. Firstly, we intro-
duce the fractional calculus, Gronwall inequality, and Leray-Schauder’s fixed point theorem. Secondly with the help of them, the
sufficient condition for the existence and uniqueness of solutions is presented. Finally we give an example to illustrate our main
results.

1. Introduction

In this paper, we study some fraction evolution with finite
impulsive:

𝑐

𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐼

1−𝛼

𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵 (𝑡) 𝑈 (𝑡) ,

𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝐼

𝑘
(𝑥 (𝑡

−

𝑘
)) 𝑘 = 1, 2, 3, . . . , 𝑛,

𝑥 (0) = 𝑥
0
,

(1)

where 𝑐

𝐷
𝛼

𝑡
is the standard Caputo fractional derivative of

order 𝛼, 𝑏 > 0, 0 < 𝛼 < 1, 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is a generator
of a 𝐶

0
semigroup {𝑇(𝑡), 𝑡 ≥ 0} defined on a complex Banach

space𝑋, let𝑓 : 𝐽×𝑋 → 𝑋 be a given function and satisfying
some assumptions that will be specified later, the function
𝐼
𝑘
: 𝑋 → 𝑋 is continous, and 0 = 𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
<

⋅ ⋅ ⋅ < 𝑡
𝑛
= 𝑇, Δ𝑥(𝑡

𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
), 𝑥(𝑡+

𝑘
) and 𝑥(𝑡−

𝑘
) denote

the right and the left limits of𝑥(𝑡) at 𝑡 = 𝑡
𝑘
(𝑘 = 1, 2, . . . , 𝑛), 𝑈

is a given control function in another Banach space 𝑌, and 𝐵
is a linear operator from 𝑌 to𝑋.

The fractional calculus and fractional difference equa-
tions have attracted lots of authors during the past years,
and they gave some outstanding work [1–4], because they
described many phenomena in engineering, physics, science,

and controllability. Delay evolution equation allows someone
to think after-effect, so it is a relative important equation.
There are some significant development; for example, Wang
et al. [5, 6] consider the following fractional delay nonlinear
integrodiffrential controlled system:

𝐷
𝑞

𝑡
𝑥 (𝑡) + 𝐴𝑥 (𝑡) = 𝑓(𝑡, 𝑥

𝑡
, ∫

𝑡

0

𝑔 (𝑡, 𝑠, 𝑥
𝑠
)) + 𝐵 (𝑡) 𝑢 (𝑡) ,

𝑡 ∈ 𝐼 = (0, 𝑇] , 𝑞 ∈ (0, 1) ,

𝑥 (𝑡) = 𝜙 (𝑡) 𝑡 ∈ [−𝑟, 0] ,

(2)

and they used laplace transform and probability density func-
tions to prove some sufficient conditions of some fractional
nonlinear finite time delay evolution equations. Shu et al. [7]
used the solution operator of semigroup to investigate the
system given by

𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡) , 𝛼 ∈ (0, 1) ,

𝑥 (0) = 𝑥
0
,

Δ𝑥|
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡

−

𝑘
)) .

(3)

Benchohra et al. [8] deal with existence of mild solutions of
some fractional functional evolution equations with infinite
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delay. Balachandran et al. [9] concerned the relative control-
lability of fractional dynamical with delays in control. Spe-
cially, Cuevas and Lizama [10] studied some sufficient condi-
tions for the existence and uniqueness of almost automorphic
mild solutions to the following semilinear fractional differen-
tial equation fractional differential equations:

𝐷
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐷
𝛼−1

𝑓 (𝑡, 𝑥 (𝑡)) , 𝛼 ∈ (1, 2) ,

𝑥 (0) = 𝑥
0
.

(4)

Bazhlekova [11] studied the fractional evolution equations
in Banach spaces. Xue andXiong [12] concerned the existence
and uniqueness of mild solutions for abstract differential
equations given by

𝐷
𝑞

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝐽

1−𝛼

𝑡
𝑓 (𝑡, 𝑢

𝑡
) 𝑡 ∈ 𝐼 = (0, 𝑇] , 𝛼 ∈ (0, 1) ,

𝑥 (𝑡) = 𝜙 (𝑡) 𝑡 ∈ [−𝑟, 0] .

(5)

Motivated by the abovementioned works, we study (1).
The rest of this paper is organized as follows. In Section 2,
some notation and preparation are given. In Section 3, some
mainly results of (1) are obtained. At last, an example is given
to demonstrate our results.

2. Preliminar

In this section, we will give some definitions and prelim-
inar which will be used in the paper. The norm of the
space 𝑋 will be defined by ‖ ⋅ ‖

𝑋
. Let 𝐶(𝐽,𝑋) denote the

Banach space of all 𝑋 value continuous functions from
𝐽 = [0, 𝑇] into 𝑋, the norm ‖ ⋅ ‖

𝑐
= sup ‖ ⋅ ‖

𝑋
. Let

the another banach space 𝑃𝐶(𝐽, 𝑋) = {𝑥 : 𝐽 → 𝑋, 𝑥 ∈

𝐶((𝑡
𝑘
, 𝑡

𝑘+1
], 𝑋), 𝑘 = 0, 1, 2, . . . , 𝑛, there exist 𝑥(𝑡−

𝑘
), 𝑥(𝑡+

𝑘
),

𝑘 = 1, 2, . . . , 𝑛, 𝑥(𝑡−
𝑘
) = 𝑥(𝑡

𝑘
)}, ‖𝑥‖

𝑃𝐶
= max{sup ‖𝑥(𝑡 +

0)‖, sup ‖𝑥(𝑡−0)‖}. We can use 𝐿𝑝

(𝐽, 𝑅) to denote the Banach
space of all Lebesgue measurable functions from 𝐽 to 𝑅 with
‖𝑓‖

𝐿
𝑝
(𝐽,𝑅)

= (∫
𝐽

|𝑓(𝑡)|
𝑝

𝑑𝑡)
1/𝑝, and 𝐿𝑝

(𝐽, 𝑋) denote the Banach
space of functions 𝑓 : 𝐽 → 𝑋 which are Bochner integrable
normed by ‖𝑓‖

𝐿
𝑝
(𝐽,𝑋)

, 𝑢 ∈ 𝐿𝑝

(𝐽, 𝑅).
Let us recall some known definitions; formore details, see

[2–4].
Let 𝛼, 𝛽 > 0 that 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 − 1 < 𝛽 < 𝑛, and 𝑓 is a

suitable function.

Definition 1 (Riemann-Liouville fractional integral and deriv-
ative operators). The integral operator 𝐼𝛼

𝑎
is defined on 𝐿

1
[𝑎,

𝑏] by

𝐼
𝛼

𝑎
𝑓 (𝑥) =

1

Γ (𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, (𝑎 ≤ 𝑥 ≤ 𝑏) . (6)

The derivative operators are defined as 𝐷
𝛼

𝑎
𝑓(𝑥) =

𝐷
𝑛

𝑎
(𝐼

𝑛−𝛼

𝑎
)𝑓(𝑥), where𝐷𝑛

𝑎
= 𝑑

𝑛

/𝑑𝑡
𝑛 and

𝐼
𝛼

𝑎
𝐼
𝛽

𝑎
𝑓 (𝑥) = 𝐼

𝛼+𝛽

𝑎
𝑓 (𝑥) . (7)

Definition 2. Caputo fractional derivative of 𝑓(𝑥) of order 𝛼
is defined as

𝑐

𝐷
𝛼

𝑎
𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑡) 𝑑𝑡. (8)

If 𝑎 = 0, we can write the Caputo derivative of the function
𝑓(𝑡) ∈ 𝐶

𝑛

[0,∞), 𝑓 : [0,∞) → 𝑅 via the above Riemann-
Liouville fractional derivative as

𝑐

𝐷
𝛼

0
𝑓 (𝑥) =

𝐿

𝐷
𝛼

[𝑓 (𝑥) −

𝑛−1

∑

𝑘=0

𝑥
𝑘

𝑘!
𝑓

(𝑘)

(0)] . (9)

Let us recollect the generalized Gronwall inequality
which can be found in [13] andwill be used in ourmain result.

Lemma 3. Suppose 𝛽 > 0, 𝑎(𝑡) is a nonnegative function
locally integrable on [0, 𝑇], and 𝑏(𝑡) is a nonnegative, non-
decreasing continuous function defined on [0, 𝑇], 𝑏(𝑡) ≤ 𝑀

(constant), and 𝑦(𝑡) is nonnegative and locally integrable on
[0, 𝑇] with

𝑦 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] . (10)

Then

𝑦 (𝑡) ≤ 𝑎 (𝑡)

+ ∫

𝑡

0

[

∞

∑

𝑛=1

[𝑏 (𝑡) Γ (𝛽)]
𝑛

Γ (𝑛𝛽)
(𝑡 − 𝑠)

𝑛𝛽−1

𝑎 (𝑠)] 𝑑𝑠,

𝑡 ∈ [0, 𝑇] .

(11)

Remark 4. Under the hypothesis of Lemma 3, let 𝑎(𝑡) be a
nondecreasing function on [0, 𝑇]. Then

𝑦 (𝑡) ≤ 𝑎 (𝑡) 𝐸
𝛽
(𝑏 (𝑡) Γ (𝛽) 𝑡

𝛽

) , (12)

where 𝐸
𝛽
is the Mittag-Leffler function defined by

𝐸
𝛽
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛽 + 1)
. (13)

By Lemma 3 andRemark 4, we can establish a useful non-
linear impulsive Gronwall inequality which will be used in
calculating.

Lemma 5 (see [14]). Let 𝑥 ∈ 𝑃𝐶(𝐽, 𝑋) satisfy the following
inequality:

‖𝑥 (𝑡)‖ ≤ 𝑐
1
+ 𝑐

2
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

‖𝑥 (𝑠)‖ 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

ℎ
𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩 ,

(14)

where 𝑐
1
, 𝑐

2
, ℎ

𝑘
≥ 0 are constants. Then

‖𝑥 (𝑡)‖ ≤ 𝑐
1
(1 + 𝐻

∗

𝐸
𝛽
(𝑐

2
Γ (𝛽) 𝑡

𝛽

))
𝑘

× 𝐸
𝛽
(𝑐

2
Γ (𝛽) 𝑡

𝛽

) 𝑓𝑜𝑟 𝑡 ∈ (𝑡
𝑘
, 𝑡

𝑘+1
] ,

(15)

where𝐻∗

= max{ℎ
𝑘
: 𝑘 = 1, 2, . . . , 𝑚}.
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Specially, if 𝛽 = 1,

‖𝑥 (𝑡)‖ ≤ 𝑐
1
(1 + 𝐻

∗

𝐸
1
(𝑐

2
𝑡)

𝑘

)𝐸
1
(𝑐

2
𝑡) for 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
] .

(16)

We also introduce the following theorem that will be used
in our mainly result.

Theorem 6 (Hölder’s inequality). Assume that 𝑝 > 0, 𝑞 > 0,
and 1/𝑝 + 1/𝑞 = 1; if 𝑓 ∈ 𝐿

𝑝

(Ω) and 𝑔 ∈ 𝐿𝑞

(Ω) then 𝑓 ⋅ 𝑔 ∈
𝐿
1

(Ω) and ‖𝑓𝑔‖
𝐿
1
(Ω)

≤ ‖𝑓‖
𝐿
𝑝
(Ω)
‖𝑔‖

𝐿
𝑞
(Ω)

.

Theorem 7 (Arzela-Ascoli theorem). If a sequence (𝑓
𝑛
) in

𝐶(𝑥) is bounded and equicontinuous, then it has a uniformly
convergent subsequence.

Theorem 8 (Leray-Schauder’s fixed point theorem). If 𝐶 is a
closed bounded and convex subset of Banach space 𝑋 and 𝐹 :

𝐶 → 𝐶 is completely continuous, then the 𝐹 has a fixed point
in 𝐶.

3. Existence and Uniqueness of Mild Solution

In this section, we will investigate the existence and unique-
ness for impulsive fractional differential equations with the
help of the Leray-Schauder’s fixed point theorem and some-
one else. Without loss of generality, let 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
], 1 ≤ 𝑘 ≤

𝑛 − 1.
Firstly, we will make the following assumptions be satis-

fied on the data of our problem.

𝐻(1): {𝑇(𝑡), 𝑡 > 0} is a compact semigroup, and there
exists a constant 𝑀 > 0, such that 𝑀 =

sup
𝑡∈[0,∞)

‖𝑇(𝑡)‖
𝐿𝑏(𝑋)

< ∞.
𝐻(2): The function 𝑓 : 𝐽 × 𝑋 → 𝑋 satisfies the following:

(i) 𝑓 is measurable for all 𝑡 ∈ 𝐽;
(ii) there exists a constant 𝐿

𝑓
> 0 such that ‖𝑓(𝑡, 𝑥) −

𝑓(𝑡, 𝑦)‖ ≤ 𝐿
𝑓
‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝑋;

(iii) there exists a real function 𝜙(𝑡) ∈ 𝐿
1/𝛾

(𝐽, 𝑅
+

), 𝛾 ∈

(0, 𝛼), and a constant 𝜃 > 0, such that ‖𝑓(𝑡, 𝑥)‖ ≤

𝜙(𝑡) + 𝜃‖𝑥‖, for a.e. 𝑡 > 0 and all 𝑥 ∈ 𝑋.

𝐻(3): 𝐼
𝑖
: 𝑋 → 𝑋 (𝑖 = 1, 2, . . . , 𝑛) satisfies the following:

(i) 𝐼
𝑖
maps a bounded set to a bounded set;

(ii) there exist constants ℎ
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛) such that

󵄩󵄩󵄩󵄩𝐼𝑖 (𝑥) − 𝐼𝑖 (𝑦)
󵄩󵄩󵄩󵄩 ≤ ℎ𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝑋; (17)

(iii) ‖𝐼(0)‖ = max(‖𝐼
1
(0)‖, ‖𝐼

2
(0)‖, . . . , ‖𝐼

𝑛
(0)‖).

𝐻(4): Let 𝑌 be a separable reflexive Banach space. Operator
𝐵 ∈ 𝐿

∞

(𝐽, 𝐿(𝑌,𝑋)), ‖𝐵‖
∞
, stands for the norm of

operator 𝐵 on Banach space 𝐿∞

(𝐽, 𝐿(𝑌,𝑋)).
𝐻(5): The multivalued maps 𝑈 : 𝐽 → 𝑃

𝑓
(𝑌) (where 𝑃

𝑓
(𝑌)

is a class of nonempty closed and convex subsets of𝑌)
are measurable and 𝑈(⋅) ⊆ Ω where Ω are a bounded
set of 𝑌.

Set the admissible control set:

𝑈
𝑎𝑑
= 𝑆

𝑝

𝑈
= {𝑢 ∈ 𝐿

𝑝

(Ω) : 𝑢 (𝑡) ∈ 𝑈 (𝑡) a.e.} , 1 < 𝑝 < ∞.

(18)

Then,𝑈
𝑎𝑑

̸= 0 (see Proposition 2.1.7 andLemma 2.3.2 of [15]).
And it is obvious that 𝐵𝑢 ∈ 𝐿𝑝

(𝐽, 𝑋) for all 𝑢 ∈ 𝑈
𝑎𝑑
.

According to Definitions 1 and 2 and by comparison with
the fractional differential equations given in [5, 16, 17], then
we shall define the concept of mild solution for problem (1)
as follows.

Definition 9. A function 𝑥 ∈ 𝑃𝐶(𝐽, 𝑋) is said to be a solution
(mild solution) of the problem (1) if 𝑥(0) = 𝑥

0
such that

𝑥 (𝑡) = 𝑆
𝛼
(𝑡) 𝑥

0
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼
(𝑡 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

(19)

where

𝑆
𝛼
(𝑡) = ∫

∞

0

𝜉
𝛼
(𝜃) 𝑇 (𝑡

𝛼

𝜃) 𝑑𝜃,

𝑇
𝛼
(𝑡) = 𝛼∫

∞

0

𝜃𝜉
𝛼
(𝜃) 𝑇 (𝑡

𝛼

𝜃) 𝑑𝜃,

𝜉
𝛼
(𝜃) =

1

𝛼
𝜃
−1−1/𝛼

𝜛
𝛼
(𝜃

−1/𝛼

) ≥ 0,

𝜛
𝛼
(𝜃) =

1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1

𝜃
−𝑛𝛼−1

Γ (𝑛𝛼 + 1)

𝑛!
sin (𝑛𝜋𝛼) ,

𝜃 ∈ (0,∞) ,

(20)

where 𝜉
𝛼
is a probability density function defined on (0,∞),

that is

𝜉
𝛼
(𝜃) ≥ 0, 𝜃 ∈ (0,∞) , ∫

∞

0

𝜉
𝛼
(𝜃) = 1. (21)

Lemma 10 (see [17]). The operators 𝑆
𝛼
(𝑡) and 𝑇

𝛼
(𝑡) have the

following properties and there exists𝑀 as described in𝐻(1).

(i) For any fixed 𝑡 ≥ 0, 𝑆
𝛼
(𝑡) and 𝑇

𝛼
(𝑡) are linear and

bounded operators; that is, for any 𝑥 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥
󵄩󵄩󵄩󵄩 ≤ 𝑀‖𝑥‖ ,

󵄩󵄩󵄩󵄩𝑇𝛼
(𝑡) 𝑥

󵄩󵄩󵄩󵄩 ≤
𝑀

Γ (𝛼)
‖𝑥‖ . (22)

(ii) {𝑆
𝛼
(𝑡), 𝑡 ≥ 0} and {𝑇

𝛼
(𝑡), 𝑡 ≥ 0} are strongly continu-

ous.
(iii) For any 𝑡 ≥ 0, 𝑆

𝛼
(𝑡) and 𝑇

𝛼
(𝑡) are also compact opera-

tors if 𝑇(𝑡) is compact.

Lemma 11. If the assumptions𝐻(1)–𝐻(4) are satisfied and (1)
is mildly solvable on [0, 𝑏], then there exists a constant 𝜔 > 0

such that ‖𝑥(𝑡)‖ ≤ 𝜔.
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Proof. If (1) can be solvable on [0, 𝑏], we may suppose 𝑥(𝑡) is
the mild solution of it, so 𝑥(𝑡)must satisfy (19) as follows:

𝑥 (𝑡) = 𝑆
𝛼
(𝑡) 𝑥

0
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼
(𝑡 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠.

(23)

For 𝑡 ∈ (𝑡
𝑘
, 𝑡

𝑘+1
], 1 ≤ 𝑘 ≤ 𝑛 − 1, through calculating, we can

get that

‖𝑥 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥0

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑇𝛼

(𝑡 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +𝑀

𝑛

∑

𝑖=1

ℎ
𝑖

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑖
)
󵄩󵄩󵄩󵄩 +𝑀𝑛 ‖𝐼 (0)‖

+ 𝑀∫

𝑡

0

[𝜙 (𝑠) + 𝜃 ‖𝑥 (𝑠)‖] 𝑑𝑠

+
𝑀‖𝐵‖

∞

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖𝑢 (𝑠)‖ 𝑑𝑠

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +𝑀

𝑛

∑

𝑖=1

ℎ
𝑖

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑖
)
󵄩󵄩󵄩󵄩

+𝑀𝑛 ‖𝐼 (0)‖ + 𝑀𝑏
1−𝑟󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩𝐿1/𝛾

+𝑀𝜃∫

𝑡

0

‖𝑥 (𝑠)‖ 𝑑𝑠

+
𝑀‖𝐵‖

∞

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

𝑏
𝛼−1/𝑝

‖𝑢‖
𝐿
𝑝 .

(24)

Let 𝜌 = 𝑀‖𝑥
0
‖ + 𝑀𝑛‖𝐼(0)‖ + 𝑀𝑏

1−𝑟

‖𝜙‖
𝐿
1/𝛾 + (𝑀‖𝐵‖

∞
/

Γ(𝛼))(𝑝 − 1/𝑝𝛼 − 1)
(𝑝−1)/𝑝

𝑏
𝛼−1/𝑝

‖𝑢‖
𝐿
𝑝 , then

‖𝑥 (𝑡)‖ ≤ 𝜌 +𝑀

𝑛

∑

𝑖=1

ℎ
𝑖

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑖
)
󵄩󵄩󵄩󵄩 +𝑀𝜃∫

𝑡

0

‖𝑥 (𝑠)‖ 𝑑𝑠, (25)

so it follows from Lemma 5,

‖𝑥 (𝑡)‖ ≤ 𝜌(1 + 𝐻
∗

𝐸
1
(𝑀𝜃𝑏))

𝑘

𝐸
1
(𝑀𝜃𝑏) = 𝜔, (26)

where

𝐻
∗

= max {𝑀ℎ
𝑖
: 𝑖 = 1, 2, . . . , 𝑛} . (27)

The proof is completed.

Theorem 12. Assume that the hypotheses 𝐻(1)–𝐻(4) are
satisfied, and then the problem (1) has an unique mild solution
on 𝐽 provided that

(

𝑛

∑

𝑖=1

ℎ
𝑖
+ 𝜃𝑏)𝑀 < 1. (28)

Proof. Transform the problem (1) into a fixed point theorem.
Consider the operator 𝐹 : 𝑃𝐶(𝐽, 𝑋) → 𝑃𝐶(𝐽,𝑋) defined by

(𝐹𝑥) (𝑡) = 𝑆
𝛼
(𝑡) 𝑥

0
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼
(𝑡 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠.

(29)

Clearly, the problem of finding mild solutions of (1) is
reduced to find the fixed points of the 𝐹, the proof base on
Theorem 8. Now we prove that the operator 𝐹 satisfies all the
conditions of theTheorem 8.

Firstly, choose

𝑀[
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝑛 ‖𝐼 (0)‖ + 𝑏
1−𝑟󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩𝐿1/𝛾

+
‖𝐵‖

∞

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

𝑏
𝛼−1/𝑝

‖𝑢‖
𝐿
𝑝]

× (1 −𝑀

𝑛

∑

𝑖=1

ℎ
𝑖
−𝑀𝑏𝜃)

−1

≤ 𝑟,

(30)

and consider the bounded set 𝐵
𝑟
= {𝑥 ∈ 𝑃𝐶 : ‖𝑥‖ ≤ 𝑟}.

Next, for the sake of convenient, we divide the proof into
several steps.

Step 1.We prove that 𝐹𝐵
𝑟
⊆ 𝐵

𝑟
.

In fact, for each 𝑥 ∈ 𝐵
𝑟
, 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
], 1 ≤ 𝑘 ≤ 𝑛 − 1, we

have

‖(𝐹𝑥) (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) 𝑥0

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄩󵄩󵄩󵄩𝑇𝛼

(𝑡 − 𝑠) 𝐵 (𝑠) 𝑢 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +𝑀

𝑛

∑

𝑖=1

ℎ
𝑖

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑖
)
󵄩󵄩󵄩󵄩 +𝑀𝑛 ‖𝐼 (0)‖

+ 𝑀∫

𝑡

0

[𝜙 (𝑠) + 𝜃 ‖𝑥 (𝑠)‖] 𝑑𝑠

+
𝑀‖𝐵‖

∞

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖𝑢 (𝑠)‖ 𝑑𝑠
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≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +𝑀

𝑛

∑

𝑖=1

ℎ
𝑖

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑖
)
󵄩󵄩󵄩󵄩

+𝑀𝑛 ‖𝐼 (0)‖ + 𝑀𝑏
1−𝛾󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩𝐿1/𝛾

+𝑀𝜃∫

𝑡

0

‖𝑥 (𝑠)‖ 𝑑𝑠

+
𝑀‖𝐵‖

∞

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

𝑏
𝛼−(1/𝑝)

‖𝑢‖
𝐿
𝑝

≤ 𝑀
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +𝑀𝑛 ‖𝐼 (0)‖

+ 𝑀𝑏
1−𝛾󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩𝐿1/𝛾
+
𝑀‖𝐵‖

∞

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

× 𝑏
𝛼−(1/𝑝)

‖𝑢‖
𝐿
𝑝

+ (𝑀

𝑛

∑

𝑖=1

ℎ
𝑖
+𝑀𝑏𝜃) 𝑟

≤ 𝑟.

(31)

Hence, we can deduce that 𝐹𝐵
𝑟
⊆ 𝐵

𝑟
.

Step 2.We show that 𝐹 is continuous.
Let {𝑥

𝑛
} be a sequence such that 𝑥

𝑛
→ 𝑥 in 𝑃𝐶(𝐽, 𝑋) as

𝑛 → ∞.Then, for each 𝑡 ∈ (𝑡
𝑘
, 𝑡

𝑘+1
], 1 ≤ 𝑘 ≤ 𝑛−1, we obtain

󵄩󵄩󵄩󵄩(𝐹𝑥𝑛
) (𝑡) − (𝐹𝑥) (𝑡)

󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) [𝐼

𝑖
(𝑥

𝑛
(𝑡

−

𝑖
)) − 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑠) [𝑓 (𝑠, 𝑥𝑛
(𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))]

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑀

𝑛

∑

𝑖=1

ℎ
𝑖

󵄩󵄩󵄩󵄩𝑥𝑛
− 𝑥

󵄩󵄩󵄩󵄩 +𝑀𝐿
𝑓
∫

𝑡

0

󵄩󵄩󵄩󵄩𝑥𝑛
(𝑠) − 𝑥 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ [𝑀

𝑛

∑

𝑖=1

ℎ
𝑖
+𝑀𝐿

𝑓
𝑏]

󵄩󵄩󵄩󵄩𝑥𝑛
− 𝑥

󵄩󵄩󵄩󵄩 ,

(32)

as 𝑥
𝑛
→ 𝑥, and it is easy to see that

󵄩󵄩󵄩󵄩𝐹𝑥𝑛
− 𝐹𝑥

󵄩󵄩󵄩󵄩 󳨀→ as 𝑛 󳨀→ ∞; (33)

that is, 𝐹 is continuous.

Step 3. 𝐹 is equicontinuous on 𝐵
𝑟
.

Let 0 ≤ 𝜏
1
< 𝜏

2
≤ 𝑏; then, for each 𝑥 ∈ 𝐵

𝑟
, we obtain

󵄩󵄩󵄩󵄩(𝐹𝑥) (𝜏2) − (𝐹𝑥) (𝜏1)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩[𝑆𝛼 (𝜏2) − 𝑆𝛼 (𝜏1)] 𝑥0

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

𝑘

∑

𝑖=1

𝑆
𝛼
(𝜏

2
− 𝑡

𝑖
) −

𝑘

∑

𝑖=1

𝑆
𝛼
(𝜏

1
− 𝑡

𝑖
)] 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏2

0

𝑆
𝛼
(𝜏

2
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− ∫

𝜏1

0

𝑆
𝛼
(𝜏

1
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏2

0

(𝜏
2
− 𝑠)

𝛼−1

𝑇
𝛼
(𝜏

2
− 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠

− ∫

𝜏1

0

(𝜏
1
− 𝑠)

𝛼−1

𝑇
𝛼
(𝜏

1
− 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝛼 (𝜏2) − 𝑆𝛼 (𝜏1)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩

+

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑆𝛼 (𝜏2 − 𝑡𝑖) − 𝑆𝛼 (𝜏1 − 𝑡𝑖)
󵄩󵄩󵄩󵄩

× (ℎ
𝑖

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑖
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐼𝑖 (0)
󵄩󵄩󵄩󵄩)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏1

0

(𝑆
𝛼
(𝜏

2
− 𝑠) − 𝑆

𝛼
(𝜏

1
− 𝑠)) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏2

𝜏1

𝑆
𝛼
(𝜏

2
− 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

denoted by 𝑄
1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏2

𝜏1

(𝜏
2
− 𝑠)

𝛼−1

𝑇
𝛼
(𝜏

2
− 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

denoted by 𝑄
2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏1

0

[(𝜏
2
− 𝑠)

𝛼−1

− (𝜏
1
− 𝑠)

𝛼−1

]

×𝑇
𝛼
(𝜏

2
− 𝑠) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

denoted by 𝑄
3

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏1

0

(𝜏
1
− 𝑠)

𝛼−1

[𝑇
𝛼
(𝜏

2
− 𝑠) − 𝑇

𝛼
(𝜏

1
− 𝑠)]

× 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

denoted by 𝑄
4
.

(34)

Let

Λ =
󵄩󵄩󵄩󵄩𝑆𝛼 (𝜏2) − 𝑆𝛼 (𝜏1)

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝑁)

+

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑆𝛼 (𝜏2 − 𝑡𝑖) − 𝑆𝛼 (𝜏1 − 𝑡𝑖)
󵄩󵄩󵄩󵄩 (ℎ𝑖

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑖
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐼𝑖 (0)
󵄩󵄩󵄩󵄩)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏1

0

(𝑆
𝛼
(𝜏

2
− 𝑠) − 𝑆

𝛼
(𝜏

1
− 𝑠)) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(35)

By (ii) of Lemma 10, we have

lim
𝜏2→𝜏1

Λ = 0. (36)
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By the assumption𝐻(2), we obtain

𝑄
1
≤ 𝑀(

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐿1/𝛾

+ 𝜃𝑏
𝛾

𝑟) (𝜏
2
− 𝜏

1
)
1−𝛾

, (37)

and we get

𝑄
2
≤
𝑀‖𝐵‖

∞

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

‖𝑢‖
𝐿
𝑝(𝜏

2
− 𝜏

1
)
𝛼−(1/𝑝)

,

𝑄
3
≤
2𝑀‖𝐵‖

∞

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

‖𝑢‖
𝐿
𝑝(𝜏

2
− 𝜏

1
)
𝛼−(1/𝑝)

,

𝑄
4
≤ sup

𝑠∈[0,𝜏1−𝜀]

󵄩󵄩󵄩󵄩𝑇𝛼
(𝜏

2
− 𝑠) − 𝑇

𝛼
(𝜏

1
− 𝑠)

󵄩󵄩󵄩󵄩

× (
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

(𝜏
(𝑝𝛼−1)/(𝑝−1)

1
− 𝜀

(𝑝𝛼−1)/(𝑝−1)

)
(𝑝−1)/𝑝

× ‖𝐵‖
∞
‖𝑢‖

𝐿
𝑝

+
2𝑀‖𝐵‖

∞

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

‖𝑢‖
𝐿
𝑝𝜀

𝛼−(1/𝑝)

.

(38)

Combining the estimations for Λ, 𝑄
𝑖
(𝑖 = 1, . . . , 4), let

𝜏
2

→ 𝜏
1
and 𝜀 → 0, and we know that ‖(𝐹𝑥)(𝜏

2
) −

(𝐹𝑥)(𝜏
1
)‖ → 0, which implies that 𝐹 is equicontinuous.

Step 4. Now we show that 𝐹 is compact.
Let 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
], 1 ≤ 𝑘 ≤ 𝑛 − 1 be fixed, and we show that

the set Π(𝑡) = {(𝐹𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟
} is relatively compact in𝑋.

Clearly, Π(0) = {𝑥
0
− 𝑔(𝑥)} is compact, so it is only

necessary to consider 𝑡 > 0. For each 𝜖 ∈ (0, 𝑡), 𝑡 ∈ (0, 𝑏],
𝑥 ∈ 𝐵

𝑟
and any 𝛿 > 0, we define

Π
𝜖,𝛿
(𝑡) = {𝐹

𝜖,𝛿
(𝑥) (𝑡) : 𝑥 ∈ 𝐵

𝑟
} , (39)

where

𝐹
𝜖,𝛿
(𝑥) (𝑡) = 𝑆

𝛼
(𝑡) 𝑥

0
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))

+ ∫

𝑡−𝜖

0

∫

∞

𝛿

𝜉
𝛼
(𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼

𝜃) 𝑓 (𝑠) 𝑑𝜃 𝑑𝑠

+ 𝛼∫

𝑡−𝜖

0

(𝑡 − 𝑠)
𝛼−1

× ∫

∞

𝛿

𝜃𝜉
𝛼
(𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼

𝜃) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝜃 𝑑𝑠

= 𝑆
𝛼
(𝑡) 𝑥

0
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼

𝑖
(𝑥 (𝑡

−

𝑖
))

+ 𝑇 (𝜖
𝛼

𝛿)

× ∫

𝑡−𝜖

0

∫

∞

𝛿

𝜉
𝛼
(𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼

𝜃 − 𝜖
𝛼

𝛿) 𝑓 (𝑠) 𝑑𝜃 𝑑𝑠

+ 𝛼𝑇 (𝜖
𝛼

𝛿)∫

𝑡−𝜖

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼
(𝜃) 𝑇

× ((𝑡 − 𝑠)
𝛼

𝜃 − 𝜖
𝛼

𝛿)

× 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝜃 𝑑𝑠.

(40)

From the compactness of 𝑇 (𝜖𝛼𝛿) (𝜖𝛿 > 0), we obtain that the
set Π

𝜖,𝛿
(𝑡) = {𝐹

𝜖,𝛿
(𝑥)(𝑡) : 𝑥 ∈ 𝐵

𝑟
} is relatively compact set in

𝑋 for each 𝜖 ∈ (0, 𝑡) and 𝛿 > 0. Moreover, we have

󵄩󵄩󵄩󵄩𝐹 (𝑥) (𝑡) − 𝐹𝜖,𝛿 (𝑥) (𝑡)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫

∞

0

𝜉
𝛼
(𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼

𝜃) 𝑓 (𝑠) 𝑑𝜃 𝑑𝑠

− ∫

𝑡−𝜖

0

∫

∞

𝛿

𝜉
𝛼
(𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼

𝜃) 𝑓 (𝑠) 𝑑𝜃 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼∫

𝑡

0

∫

∞

0

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼
(𝜃)

× 𝑇 ((𝑡 − 𝑠)
𝛼

𝜃) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝜃 𝑑𝑠

− 𝛼∫

𝑡−𝜖

0

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼
(𝜃) 𝑇 ((𝑡 − 𝑠)

𝛼

𝜃)

× 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝜃 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫

𝛿

0

𝜉
𝛼
(𝜃) 𝑇 (𝑠

𝛼

𝜃) 𝑓 (𝑠) 𝑑𝜃 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡−𝜖

∫

∞

𝛿

𝜉
𝛼
(𝜃) 𝑇 (𝑠

𝛼

𝜃) 𝑓 (𝑠) 𝑑𝜃 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫

𝛿

0

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼
(𝜃)

× 𝑇 ((𝑡 − 𝑠)
𝛼

𝜃) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝜃 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡−𝜖

∫

∞

𝛿

𝜃(𝑡 − 𝑠)
𝛼−1

𝜉
𝛼
(𝜃)

× 𝑇 ((𝑡 − 𝑠)
𝛼

𝜃) 𝐵 (𝑠) 𝑢 (𝑠) 𝑑𝜃 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀(
󵄩󵄩󵄩󵄩󵄩
𝑏
1−𝛾

𝜙
󵄩󵄩󵄩󵄩󵄩𝐿(1/𝛾)

+ 𝜃𝑟𝑏)∫

𝛿

0

𝜉
𝛼
(𝜃) 𝑑𝜃

+𝑀(𝜖
1−𝛾󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩𝐿(1/𝛾)
+ 𝜃𝑟𝜖)∫

∞

𝛿

𝜉
𝛼
(𝜃) 𝑑𝜃

+
𝛼𝑀‖𝐵‖

∞

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

‖𝑢‖
𝐿
𝑝𝑏

𝛼−1/𝑝

× ∫

𝛿

0

𝜃𝜉
𝛼
(𝜃) 𝑑𝜃
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+
𝛼𝑀‖𝐵‖

∞

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

‖𝑢‖
𝐿
𝑝𝜖

𝛼−1/𝑝

× ∫

∞

𝛿

𝜃𝜉
𝛼
(𝜃) 𝑑𝜃,

(41)

when 𝜖 → 0 and 𝛿 → 0, we can easily find (1) → 0,
(2) → 0, (3) → 0, (4) → 0. Therefore, there are relatively
compact sets arbitrarily close to the set Π(𝑡), 𝑡 > 0. Hence
the set Π(𝑡), 𝑡 > 0 is also relatively compact in𝑋.

As a result, by the conclusion ofTheorem 8,we obtain that
𝐹 has a fixed point 𝑥 on 𝐵

𝑟
. So system (1) has a unique mild

solution on 𝐽. The proof is completed.

4. Optimal Control Results

In the following, we will consider the Lagrange problem (P).
Find a control pair (𝑥0

, 𝑢
0

) ∈ 𝑃𝐶(𝐽, 𝑋) × 𝑈
𝑎𝑑

such that

J (𝑥
0

, 𝑢
0

) ≤ 𝐽 (𝑥
𝑢

, 𝑢) , ∀ (𝑥, 𝑢) ∈ 𝑃𝐶 (𝐽, 𝑋) × 𝑈
𝑎𝑑
, (42)

where

J (𝑥
𝑢

, 𝑢) := ∫

𝑏

0

L (𝑡, 𝑥
𝑢

(𝑡) , 𝑢 (𝑡)) 𝑑𝑡, (43)

and 𝑥𝑢 denotes the mild solution of system (1) corresponding
to the control 𝑢 ∈ 𝑈

𝑎𝑑
.

For the existence of solution for problem (P), we shall
introduce the following assumption.

𝐻(6): The functionL : 𝐽 × 𝑋 × 𝑌 → 𝑅 ∪ {∞} satisfies the
following.

(i) The function L : 𝐽 × 𝑋 × 𝑌 → 𝑅 ∪ {∞} is Borel
measurable;

(ii) L(𝑡, ⋅, ⋅) is sequentially lower semicontinuous on𝑋×

𝑌 for almost all 𝑡 ∈ 𝐽;
(iii) L(𝑡, 𝑥, ⋅) is convex on𝑌 for each 𝑥 ∈ 𝑋 and almost all

𝑡 ∈ 𝐽;
(iv) there exist constants 𝑐 ≥ 0, 𝑑 > 0, 𝜑 is nonnegative,

and 𝜑 ∈ 𝐿1

(𝐽, 𝑅) such that

L (𝑡, 𝑥, 𝑢) ≥ 𝜑 (𝑡) + 𝑐‖𝑥‖
𝑋
+ 𝑑‖𝑢‖

𝑝

𝑌
. (44)

Next, we can give the following result on existence of
optimal controls for problem (P).

Theorem 13. Let the assumptions of Theorem 12 and 𝐻(6)

hold. Suppose that 𝐵 is a strongly continuous operator. Then
Lagrange problem (𝑃) admits at least one optimal pair; that is,
there exists an admissible control pair (𝑥0

, 𝑢
0

) ∈ 𝑃𝐶(𝐽, 𝑋) ×

𝑈
𝑎𝑑

such that

J (𝑥
0

, 𝑢
0

) = ∫

𝑏

0

L (𝑡, 𝑥
0

(𝑡) , 𝑢
0

(𝑡)) 𝑑𝑡 ≤ J (𝑥
𝑢

, 𝑢) ,

∀ (𝑥
𝑢

, 𝑢) ∈ 𝑃𝐶 (𝐽, 𝑋) × 𝑈
𝑎𝑑
.

(45)

Proof. If inf{J(𝑥𝑢

, 𝑢) : (𝑥
𝑢

, 𝑢) ∈ 𝑃𝐶(𝐽, 𝑋) × 𝑈
𝑎𝑑
} = +∞,

there is nothing to prove.
Without loss of generality, we assume that inf{𝐽(𝑥𝑢

, 𝑢) :

(𝑥
𝑢

, 𝑢) ∈ 𝑃𝐶(𝐽, 𝑋) × 𝑈
𝑎𝑑
} = 𝜌 < +∞. Using 𝐻(6), we have

𝜌 > −∞. By definition of infimum, there exists a minimizing
sequence feasible pair {(𝑥𝑚

, 𝑢
𝑚

)} ⊂ P
𝑎𝑑

≡ {(𝑥, 𝑢) : 𝑥 is a
mild solution of system (31) corresponding to 𝑢 ∈ 𝑈

𝑎𝑑
}, such

that 𝐽(𝑥𝑚

, 𝑢
𝑚

) → 𝜌 as 𝑚 → +∞. Since {𝑢𝑚

} ⊆ 𝑈
𝑎𝑑
, 𝑚 =

1, 2, . . . , {𝑢
𝑚

} is a bounded subset of the separable reflexive
Banach space 𝐿𝑝

(𝐽, 𝑌), there exists a subsequence, relabeled
as {𝑢𝑚

}, and 𝑢0

∈ 𝐿
𝑝

(𝐽, 𝑌) such that

𝑢
𝑚

𝑤

󳨀→ 𝑢
0 in 𝐿𝑝

(𝐽, 𝑌) . (46)

Since 𝑈
𝑎𝑑

is closed and convex, due to Marzur lemma,
𝑢
0
∈ 𝑈

𝑎𝑑
. Let {𝑥𝑚

} denote the sequence of solutions of the
system (1) corresponding to {𝑢𝑚

}, 𝑥0 is the mild solution of
the system (1) corresponding to 𝑢

0. 𝑥𝑚 and 𝑥
0 satisfy the

following integral equation, respectively:

𝑥
𝑚

(𝑡) = 𝑆
𝛼
(𝑡) 𝑥

0
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼

𝑖
(𝑥

𝑚

(𝑡
−

𝑖
))

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥

𝑚

(𝑠)) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼
(𝑡 − 𝑠) 𝐵 (𝑠) 𝑢

𝑚

(𝑠) 𝑑𝑠,

𝑥
0

(𝑡) = 𝑆
𝛼
(𝑡) 𝑥

0
+

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) 𝐼

𝑖
(𝑥

0

(𝑡
−

𝑖
))

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥

0

(𝑠)) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑇
𝛼
(𝑡 − 𝑠) 𝐵 (𝑠) 𝑢

0

(𝑠) 𝑑𝑠.

(47)

It follows the boundedness of {𝑢𝑚

}, {𝑢0

} and Lemma 11,
one can check that there exists a positive number 𝜔 such that
‖𝑥

𝑚

‖ ≤ 𝜔, ‖𝑥0

‖ ≤ 𝜔.
For 𝑡 ∈ 𝐽, we obtain
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚

(𝑡) − 𝑥
0

(𝑡)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) [𝐼

𝑖
(𝑥

𝑚

(𝑡
−

𝑖
)) −𝐼

𝑖
(𝑥

0

(𝑡
−

𝑖
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

denoted by 𝜂
1
(𝑡)

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
(𝑡 − 𝑠) [[𝑓 (𝑠, 𝑥

𝑚

(𝑠)) − 𝑓 (𝑠, 𝑥
0

(𝑠))]
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

denoted by 𝜂
2
(𝑡)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

×
󵄩󵄩󵄩󵄩𝑇𝛼

(𝑡 − 𝑠) [𝐵 (𝑠) 𝑢
𝑚

(𝑠) − 𝐵 (𝑠) 𝑢
0

(𝑠)]
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠,

denote by 𝜂
3
(𝑡) .

(48)
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By𝐻(3)(ii), we have

𝜂
1
(𝑡) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘

∑

𝑖=1

𝑆
𝛼
(𝑡 − 𝑡

𝑖
) [𝐼

𝑖
(𝑥

𝑚

(𝑡
−

𝑖
)) − 𝐼

𝑖
(𝑥

0

(𝑡
−

𝑖
))]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀

𝑛

∑

𝑖=1

ℎ
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚

− 𝑥
0
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, as 𝑚 󳨀→ ∞.

(49)

Using Lemma 10(i) and by𝐻(2)(ii), one can obtain

𝜂
2
(𝑡) = ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼
(𝑡 − 𝑠) [𝑓 (𝑠, 𝑥

𝑚

(𝑠)) − 𝑓 (𝑠, 𝑥
0

(𝑠))]
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤ 𝑀𝐿
𝑓
∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚

(𝑠) − 𝑥
0

(𝑠)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠.

(50)

Similarly, one has

𝜂
3
(𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

×
󵄩󵄩󵄩󵄩󵄩
𝑇
𝛼
(𝑡 − 𝑠) [𝐵 (𝑠) 𝑢

𝑚

(𝑠) − 𝐵 (𝑠) 𝑢
0

(𝑠)]
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤
𝑀

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

𝑡
𝛼−(1/𝑝)

×(∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑠) 𝑢

𝑚

(𝑠) − 𝐵 (𝑠) 𝑢
0

(𝑠)
󵄩󵄩󵄩󵄩󵄩

𝑝

𝑑𝑠)

1/𝑝

≤
𝑀

Γ (𝛼)
(
𝑝 − 1

𝑝𝛼 − 1
)

(𝑝−1)/𝑝

𝑏
𝛼−(1/𝑝)

󵄩󵄩󵄩󵄩󵄩
𝐵𝑢

𝑚

− 𝐵𝑢
0
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝐽,𝑌)

.

(51)

Since 𝐵 is strongly continuous, we have

󵄩󵄩󵄩󵄩󵄩
𝐵𝑢

𝑚

− 𝐵𝑢
0
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝐽,𝑌)

𝑠

󳨀→ 0 as 𝑚 󳨀→ ∞, (52)

which implies

𝜂
3
(𝑡) 󳨀→ 0 as 𝑚 󳨀→ ∞. (53)

Thus
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚

(𝑡) − 𝑥
0

(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜂

1
(𝑡) + 𝜂

3
(𝑡)

+ 𝑀𝐿
𝑓
∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚

(𝑠) − 𝑥
0

(𝑠)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠;

(54)

by virtue of singular versionGronwall inequality (i.e., Lemma
5), we obtain

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚

(𝑡) − 𝑥
0

(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ [𝜂

1
(𝑡) + 𝜂

3
(𝑡)] 𝐸

1
(𝑀𝐿

𝑓
𝑏) . (55)

This yields that

𝑥
𝑚

𝑆

󳨀→ 𝑥
0 in𝑃𝐶 (𝐽, 𝑋) as 𝑚 󳨀→ ∞. (56)

Note that 𝐻(6) implies all of the assumptions of Balder
(see [18], Theorem 2.1) are satisfied. Hence, by Balders the-
orem, we can conclude that (𝑥, 𝑢) → ∫

𝑏

0

L(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

is sequentially lower semicontinuous in the strong topology
of 𝐿1

(𝐽, 𝑋). Since 𝐿𝑝

(𝐽, 𝑌) ⊂ 𝐿
1

(𝐽, 𝑌), J is weakly lower
semicontinuous on 𝐿

𝑝

(𝐽, 𝑌), and since, by 𝐻(6)(iv), J >

−∞,J attains its infimum at 𝑢
0
∈ 𝑈

𝑎𝑑
; that is,

𝜌 = lim
𝑚→∞

∫

𝑏

0

L (𝑡, 𝑥
𝑚

(𝑡) , 𝑢
𝑚

(𝑡)) 𝑑𝑡

≥ ∫

𝑏

0

L (𝑡, 𝑥
0

(𝑡) , 𝑢
0

(𝑡)) 𝑑𝑡 = 𝐽 (𝑥
0

, 𝑢
0

) ≥ 𝜌.

(57)

The proof is completed.

5. An Example

Consider the following initial-boundary value problem of
fractional impulsive parabolic control system

𝜕
𝛼

𝜕𝑡𝛼
𝑥 (𝑡, 𝑦)

=
𝜕
2

𝜕𝑦2
𝑥 (𝑡, 𝑦) + 𝐼

1−𝛼

(𝑒
−𝑡

+
1

(𝑡 + 10)
𝑥 (𝑡, 𝑦))

+ ∫

1

0

𝑞 (𝑦, 𝜏) 𝑢 (𝜏, 𝑡) 𝑑𝜏, 𝑡 ∈ 𝐽
󸀠

=
[0, 1]

{1/2}
, 𝑦 ∈ [0, 𝜋] ,

Δ𝑥 (
1

2
, 𝑦) =

󵄨󵄨󵄨󵄨𝑥 (𝑦)
󵄨󵄨󵄨󵄨

5 +
󵄨󵄨󵄨󵄨𝑥 (𝑦)

󵄨󵄨󵄨󵄨

, 𝑦 ∈ [0, 𝜋] ,

𝑥 (𝑡, 0) = 𝑥 (𝑡, 𝜋) = 0, 𝑡 ∈ 𝐽 = [0, 1] ,

𝑥 (0, 𝑦) = 𝑥
0
(𝑦) , 𝑦 ∈ [0, 𝜋]

(58)

with the cost function

J (𝑥, 𝑢) = ∫

1

0

∫

𝜋

0

󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨

2

𝑑𝑦𝑑𝑡 + ∫

1

0

∫

𝜋

0

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨

2

𝑑𝑦𝑑𝑡,

(59)

where 𝛼 = 1/2, 𝑞 : [0, 1] × [0, 1] → 𝑅 is continuous, 𝑢 ∈

𝐿
2

(𝐽, [0, 1]), 𝑏
𝑖
∈ 𝐿

2

(𝐽).
Take 𝑋 = 𝑌 = 𝐿

2

[0, 𝜋] and the operator 𝐴 : 𝐷(𝐴) ⊂

𝑋 → 𝑋 is defined by

𝐴𝜔 = 𝜔
󸀠󸀠

, (60)

where the domain𝐷(𝐴) is given by

{𝜔 ∈ 𝑋 : 𝜔, 𝜔
󸀠 are absolutely continuous,

𝜔
󸀠󸀠

∈ 𝑋, 𝜔 (0) = 𝜔 (𝜋) = 0} .

(61)

Then 𝐴 can be written as

𝐴𝜔 =

∞

∑

𝑛=1

𝑛
2

(𝜔, 𝜔
𝑛
) 𝜔

𝑛
, 𝜔 ∈ 𝐷 (𝐴) , (62)

where 𝜔
𝑛
(𝑥) = √2/𝜋 sin 𝑛𝑥 (𝑛 = 1, 2, . . .) is an orthonormal

basis of 𝑋. It is well known that 𝐴 is the infinitesimal
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generator of a compact semigroup 𝑇(𝑡) (𝑡 > 0) in 𝑋 given
by

𝑇 (𝑡) 𝑥 =

∞

∑

𝑛=1

exp−𝑛
2
𝑡

(𝑥, 𝑥
𝑛
) 𝑥

𝑛
, 𝑥 ∈ 𝑋,

‖𝑇 (𝑡)‖ ≤ 𝑒
−1

≤ 1 = 𝑀,

𝑓 (𝑡, 𝑥 (𝑡, 𝑦)) = 𝑒
−𝑡

+
1

(𝑡 + 10)
𝑥 (𝑡, 𝑦) ,

𝐼
𝑘
(𝑥 (𝑡, 𝑦)) =

󵄨󵄨󵄨󵄨𝑥 (𝑦)
󵄨󵄨󵄨󵄨

5 +
󵄨󵄨󵄨󵄨𝑥 (𝑦)

󵄨󵄨󵄨󵄨

,

𝐵 (𝑡, 𝑦) = [∫

1

0

𝑞 (𝑦, 𝜏) 𝑢 (𝜏, 𝑡) 𝑑𝜏] .

(63)

It is easy to see that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡))
󵄩󵄩󵄩󵄩 ≤

√𝜋𝑒
−𝑡

+
1

10
‖𝑥 (𝑡)‖ ,

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥 (𝑡))
󵄩󵄩󵄩󵄩 ≤

‖𝑥 (𝑡)‖

5
,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))
󵄩󵄩󵄩󵄩 ≤

1

10

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝐼1 (𝑥 (𝑡)) − 𝐼1 (𝑦 (𝑡))
󵄩󵄩󵄩󵄩 ≤

1

5

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

(64)

and then

(

1

∑

𝑖=1

ℎ
𝑖
+ 𝜃𝑏)𝑀 = (

1

5
+
1

10
× 1) × 1 < 1. (65)

Hence, all the conditions of Theorem 12 are satisfied, and
system (58) has a unique optimal solution.
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