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We obtain the general solution of Euler-Lagrange-Rassias quartic functional equation of the following 𝑓(𝑎𝑥 + 𝑏𝑦) + 𝑓(𝑏𝑥 + 𝑎𝑦) +
(1/2)𝑎𝑏(𝑎 − 𝑏)2𝑓(𝑥 − 𝑦) = (𝑎2 − 𝑏2)2[𝑓(𝑥) + 𝑓(𝑦)] + (1/2)𝑎𝑏(𝑎 + 𝑏)2𝑓(𝑥 + 𝑦). We also prove the Hyers-Ulam-Rassias stability in
various quasinormed spaces when 𝑏 = 1.

1. Introduction

One of the interesting questions concerning the stability
problems of functional equations is as follows: when is it
true that a mapping satisfying a functional equation approxi-
mately must be close to the solution of the given functional
equation? Such an idea was suggested in 1940 by Ulam [1]
as follows. Let 𝐺

1
be a group and let 𝐺

2
be a metric group

with the metric 𝑑(⋅, ⋅). Given 𝜀 > 0, does there exist a 𝛿 > 0
such that if a function ℎ : 𝐺

1
→ 𝐺

2
satisfies the inequality

𝑑(ℎ(𝑥𝑦), ℎ(𝑥)ℎ(𝑦)) < 𝛿 for all 𝑥, 𝑦 ∈ 𝐺
1
then there is

a homomorphism 𝐻 : 𝐺
1
→ 𝐺

2
with 𝑑(ℎ(𝑥),𝐻(𝑥)) <

𝜀 for all 𝑥 ∈ 𝐺
1
? In other words, we are looking for

situations when the homomorphisms are stable; that is, if a
mapping is almost a homomorphism, then there exists a true
homomorphismnear it. In 1941, Hyers [2] considered the case
of approximately additive mappings in Banach spaces and
satisfying the well-known weak Hyers inequality controlled
by a positive constant. The famous Hyers stability result that
appeared in [2] was generalized in the stability involving a
sum of powers of norms by Aoki [3]. In 1978, Rassias [4]
provided a generalization of Hyers Theorem which allows
the Cauchy difference to be unbounded. During the last
decades, stability problems of various functional equations
have been extensively studied and generalized by a number
of authors [5–10]. In particular, Rassias [11] introduced the
Euler-Lagrange type quadratic functional equation

𝑓 (𝑟𝑥 + 𝑠𝑦) + 𝑓 (𝑠𝑥 − 𝑟𝑦) = (𝑟2 + 𝑠2) [𝑓 (𝑥) + 𝑓 (𝑦)] , (1)

for fixed reals 𝑟, 𝑠 with 𝑟 ̸= 0, 𝑠 ̸= 0. Also, Jun and Kim [12]
proved the Hyers-Ulam-Rassias stability of a Euler-Lagrange
type cubic mapping as follows:

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑏𝑥 + 𝑎𝑦) = (𝑎 + 𝑏) (𝑎 − 𝑏)
2 [𝑓 (𝑥) + 𝑓 (𝑦)]

+ 𝑎𝑏 (𝑎 + 𝑏) 𝑓 (𝑥 + 𝑦) ,

(2)

where 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑎 ± 𝑏 ̸= 0, for all 𝑥, 𝑦 ∈ 𝑋. Several Euler-
Lagrange type functional equations have been investigated by
numerous mathematicians; c.f. for example, [13–15].

And Rassias [16] investigated stability properties of the
following quartic functional equation:

𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 2𝑦) + 6𝑓 (𝑥)

= 4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦) + 24𝑓 (𝑦) .
(3)

It is easy to see that𝑓(𝑥) = 𝑥4 is a solution of (3) by virtue
of the identity

(𝑥 + 2𝑦)
4

+ (𝑥 − 2𝑦)
4

+ 𝑥4

= 4(𝑥 + 𝑦)
4

+ 4(𝑥 − 𝑦)
4

+ 24𝑦4.
(4)

For this reason, (3) is called a quartic functional equation.
Also, Chung and Sahoo [17] determined the general solution
of (3) without assuming any regularity conditions on the
unknown function. In fact, they proved that the function
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𝑓 : R → R is a solution of (3) if and only if 𝑓(𝑥) =
𝐴(𝑥, 𝑥, 𝑥, 𝑥), where the function 𝐴 : R4 → R is symmetric
and additive in each variable. Lee and Chung [18] introduced
a quartic functional equation as follows:

𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦)

= 𝑎2𝑓 (𝑥 + 𝑦) + 𝑎2𝑓 (𝑥 − 𝑦)

+ 2𝑎2 (𝑎2 − 1)𝑓 (𝑥) − 2 (𝑎
2 − 1)𝑓 (𝑦) ,

(5)

for fixed integer 𝑎 with 𝑎 ̸= 0, ±1.
In this paper, we consider the following a generalized

quartic functional equation:

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑏𝑥 + 𝑎𝑦) +
1

2
𝑎𝑏(𝑎 − 𝑏)

2𝑓 (𝑥 − 𝑦)

= (𝑎2 − 𝑏2)
2

[𝑓 (𝑥) + 𝑓 (𝑦)]

+
1

2
𝑎𝑏(𝑎 + 𝑏)

2𝑓 (𝑥 + 𝑦) ,

(6)

for fixed integers 𝑎 and 𝑏 such that 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑎 ± 𝑏 ̸= 0,
for all 𝑥, 𝑦 ∈ 𝑋. In fact, the generalized quartic functional
equation (6) is following from the spirit of the pioneering
Euler-Lagrange quartic functional equation (3) as well as
Euler-Lagrange quadratic functional equation (1) introduced
by Rassias: see [16] and [11], respectively. For the same reason
as (1), (2), and (3), we call (6) a Euler-Lagrange-Rassias
quartic functional equation. First of all, we obtain the general
solution of Euler-Lagrange-Rassias quartic functional equa-
tion. To prove the stability problem for the Euler-Lagrange-
Rassias quartic functional equation on various quasi-normed
spaces, we may consider the following:

𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑥 + 𝑎𝑦) +
1

2
𝑎(𝑎 − 1)

2𝑓 (𝑥 − 𝑦)

= (𝑎2 − 1)
2

[𝑓 (𝑥) + 𝑓 (𝑦)] +
1

2
𝑎(𝑎 + 1)

2𝑓 (𝑥 + 𝑦) ,

(7)

for fixed integer 𝑎 with 𝑎 ̸= 0, 𝑎 ̸= ± 1, for all 𝑥, 𝑦 ∈ 𝑋.
We will use the following definitions to prove Hyers-

Ulam-Rassias stability for the Euler-Lagrange-Rassias quartic
functional equation in the quasi-𝛽-normed and quasi fuzzy
𝛽-normed spaces. Let 𝛽 be a real number with 0 < 𝛽 ≤ 1
and let K be either R or C.

Definition 1. Let 𝑋 be a linear space over a field K. A quasi
𝛽-norm ‖ ⋅ ‖ is a real-valued function on 𝑋 satisfying the
following statements:

(1) ‖𝑥‖ ≥ 0 for all 𝑥 ∈ 𝑋 and ‖𝑥‖ = 0 if and only if 𝑥 = 0,

(2) ‖𝜆𝑥‖ = |𝜆|𝛽 ⋅ ‖𝑥‖ for all 𝜆 ∈ K and all 𝑥 ∈ 𝑋,
(3) there is a constant𝐾 ≥ 1 such that ‖𝑥 + 𝑦‖ ≤ 𝐾(‖𝑥‖ +
‖𝑦‖) for all 𝑥, 𝑦 ∈ 𝑋.

The pair (𝑋, ‖ ⋅ ‖) is called a quasi-𝛽-normed space if
‖ ⋅ ‖ is a quasi-𝛽-norm on𝑋. The smallest possible𝐾 is called

the modulus of concavity of ‖ ⋅ ‖. A quasi-𝛽-Banach space is a
complete quasi-𝛽-normed space.

A quasi 𝛽-norm ‖ ⋅ ‖ is called a (𝛽, 𝑝)-norm (0 < 𝑝 ≤ 1)
if (3) takes the form ‖𝑥 + 𝑦‖𝑝 ≤ ‖𝑥‖𝑝 + ‖𝑦‖𝑝 for all 𝑥, 𝑦 ∈ 𝑋.
In this case, a quasi 𝛽-Banach space is called a (𝛽, 𝑝)-Banach
space; see [19, 20].

In 1984, Katsaras [21] and Wu and Fang [22] indepen-
dently introduced a notion of a fuzzy norm and they gave
the generalization of the Kolmogoroff normalized theorem
for a fuzzy topological linear space. Since then, some mathe-
maticians have defined fuzzy metrics and norms on a linear
space from various points of view; see [23–27]. In 2003,
Bag and Samanta [23] modified the definition of Cheng
and Mordeson [28]. Bag and Samanta [23] introduced the
following definition of fuzzy normed spaces. The notion of
fuzzy stability of functional equations was given in the paper
[29].

Definition 2. Let𝑋 be a real vector space. A function𝑁 : 𝑋×
R → [0, 1] is called a fuzzy norm on𝑋 if for all 𝑥, 𝑦 ∈ 𝑋 and
all 𝑠, 𝑡 ∈ R

(𝑁
1
) 𝑁(𝑥, 𝑡) = 0 for 𝑡 ≤ 0;

(𝑁
2
) 𝑥 = 0 if and only if𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0;

(𝑁
3
) 𝑁(𝑐𝑥, 𝑡) = 𝑁(𝑥, 𝑡/|𝑐| ) if 𝑐 ̸= 0;

(𝑁
4
) 𝑁(𝑥 + 𝑦, 𝑠 + 𝑡) ≥ min{𝑁(𝑥, 𝑠),𝑁(𝑦, 𝑡)};

(𝑁
5
) 𝑁(𝑥, ⋅) is a nondecreasing function of R and
lim
𝑡→∞

𝑁(𝑥, 𝑡) = 1;
(𝑁
6
) for 𝑥 ̸= 0, 𝑁(𝑥, ⋅) is continuous on R.

The pair (𝑋,𝑁) is called a fuzzy normed vector space.

Mirmostafaee [30] introduced a notion for a quasi fuzzy
𝑝-normed space as follows.

Definition 3. By a quasi fuzzy norm, one means a real vector
space𝑋, with a fuzzy subset𝑁 of𝑋×R and some𝐾 ≥ 1 such
that all axioms of fuzzy normed space in Definition 2 except
(𝑁
4
) and

(𝑁
4
)

𝑁(𝑥 + 𝑦,𝐾 (𝑠 + 𝑡)) ≥ min {𝑁 (𝑥, 𝑠) ,𝑁 (𝑦, 𝑡)}

(𝑥, 𝑦 ∈ 𝑋, 𝑠, 𝑡 > 0)
(8)

hold.
A quasi fuzzy normed space (𝑋,𝑁) which satisfies

(𝑁
4
)

𝑁(𝑥 + 𝑦,
𝑝√𝑠 + 𝑡) ≥ min {𝑁 (𝑥, 𝑝√𝑠) ,𝑁 (𝑦, 𝑝√𝑡)}

(𝑥, 𝑦 ∈ 𝑋, 𝑠, 𝑡 > 0) ,
(9)

for some 0 < 𝑝 ≤ 1, is called a quasi fuzzy 𝑝-norm.

Definition 4. Let 𝑋 be a real vector space. A quasi fuzzy 𝑝-
norm𝑁 : 𝑋×R → [0, 1] is called a quasi fuzzy (𝛽, 𝑝)-norm
on𝑋 if (𝑁

3
) in Definition 2 takes the form
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(𝑁
3
)

𝑁 (𝑐𝑥, 𝑡) = 𝑁(𝑥,
𝑡

|𝑐|𝛽
) (𝑐 ̸= 0, 0 < 𝛽 ≤ 1) . (10)

Example 5. Let (𝑋, ‖ ⋅ ‖) be a real normed space. Define

𝑁(𝑥, 𝑡) =
{
{
{

𝑡

𝑡 + ‖𝑥‖
when 𝑡 > 0, 𝑡 ∈ R

0 when 𝑡 ≤ 0,
(11)

where 𝑥 ∈ 𝑋. Then (𝑋,𝑁) is a quasi fuzzy (𝛽, 𝑝)-normed
space.

Note that when 𝑝 = 1, we call the quasi fuzzy (𝛽, 𝑝)-norm
a quasi fuzzy 𝛽-norm.

Definition 6. Let (𝑋,𝑁) be a quasi fuzzy 𝛽-normed vector
space. A sequence {𝑥

𝑛
} in 𝑋 is said to be convergent or

converge if there exists an 𝑥 ∈ 𝑋 such that lim
𝑛→∞

𝑁(𝑥
𝑛
−

𝑥, 𝑡) = 1 for all 𝑡 > 0. In this case, 𝑥 is called the limit of the
sequence {𝑥

𝑛
} and one denotes it by 𝑁 − lim

𝑛→∞
𝑥
𝑛
= 𝑥.

Definition 7. Let (𝑋,𝑁) be a quasi fuzzy 𝛽-normed vector
space. A sequence {𝑥

𝑛
} in𝑋 is called Cauchy if for each 𝜀 > 0

and each 𝑡 > 0 there exists an 𝑛
0
∈ N such that, for all 𝑛 ≥ 𝑛

0

and all integer 𝑑 > 0, one has𝑁(𝑥
𝑛+𝑑
− 𝑥
𝑛
, 𝑡) > 1 − 𝜀.

It is well known that every convergent sequence in a
quasi fuzzy 𝛽-normed vector space is Cauchy. If each Cauchy
sequence is convergent, then the quasi fuzzy 𝛽-normed space
is said to be quasi fuzzy complete and the quasi fuzzy 𝛽-
normed vector space is called a quasi fuzzy Banach space.

2. Euler-Lagrange-Rassias Quartic
Functional Equations

Let 𝑋, 𝑌 be real vector spaces. In this section, we will
investigate that the functional equation (3) is equivalent to
the presented functional equation (6).

Lemma 8. A mapping 𝑓 : 𝑋 → 𝑌 satisfies the functional
equation (3) if and only if 𝑓 satisfies

𝑓 (2𝑥 + 𝑦) + 𝑓 (𝑥 + 2𝑦) = 9𝑓 (𝑥) + 9𝑓 (𝑦)

+ 9𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥 − 𝑦) ,
(12)

for all 𝑥, 𝑦 ∈ 𝑋.

Proof. It follows from [31, 32].

Theorem 9. A mapping 𝑓 : 𝑋 → 𝑌 satisfies the functional
equation (3) if and only if 𝑓 satisfies the functional equation
(7).

Proof. It is easy to verify that 𝑓(0) = 0 by letting 𝑥 = 𝑦 = 0 in
(3). We will show this induction on 𝑎. Lemma 8 implies that

it is true when 𝑎 = 2, and we may assume it holds for all 𝑎.
Now, letting 𝑥 = (𝑎 − 1)𝑥 + 𝑦 and 𝑦 = 𝑥 in (3), we have

𝑓 ((𝑎 + 1) 𝑥 + 𝑦) + 𝑓 ((𝑎 − 3) 𝑥 + 𝑦)

= 4𝑓 (𝑎𝑥 + 𝑦) + 4𝑓 ((𝑎 − 2) 𝑥 + 𝑦)

+ 24𝑓 (𝑥) − 6𝑓 ((𝑎 − 1) 𝑥 + 𝑦) ,

(13)

for all 𝑥, 𝑦 ∈ 𝑋. After the switching 𝑥 and 𝑦 in the previous
equation (13),

𝑓 (𝑥 + (𝑎 + 1) 𝑦) + 𝑓 (𝑥 + (𝑎 − 3) 𝑦)

= 4𝑓 (𝑥 + 𝑎𝑦) + 4𝑓 (𝑥 + (𝑎 − 2) 𝑦)

+ 24𝑓 (𝑦) − 6𝑓 (𝑥 + (𝑎 − 1) 𝑦) ,

(14)

for all 𝑥, 𝑦 ∈ 𝑋. Adding two equations (13) and (14), we have

𝑓 (𝑥 + (𝑎 + 1) 𝑦) + 𝑓 (𝑥 + (𝑎 + 1) 𝑦)

= − [𝑓 ((𝑎 − 3) 𝑥 + 𝑦) + 𝑓 (𝑥 + (𝑎 − 3) 𝑦)]

+ 4 [𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑥 + 𝑎𝑦)]

+ 4 [𝑓 ((𝑎 − 2) 𝑥 + 𝑦) + 𝑓 (𝑥 + (𝑎 − 2) 𝑦)]

− 6 [𝑓 ((𝑎 − 1) 𝑥 + 𝑦) + 𝑓 (𝑥 + (𝑎 − 1) 𝑦)]

+ 24 [𝑓 (𝑥) + 𝑓 (𝑦)] ,

(15)

for all 𝑥, 𝑦 ∈ 𝑋. The induction steps imply that

𝑓 (𝑥 + (𝑎 + 1) 𝑦) + 𝑓 (𝑥 + (𝑎 + 1) 𝑦)

= −
1

2
𝑎3𝑓 (𝑥 − 𝑦) −

1

2
𝑎2𝑓 (𝑥 − 𝑦)

+
1

2
𝑎3𝑓 (𝑥 + 𝑦) +

5

2
𝑎2𝑓 (𝑥 + 𝑦)

+ 4𝑎𝑓 (𝑥 + 𝑦) + 2𝑓 (𝑥 + 𝑦)

+ (𝑎4 + 4𝑎3 + 4𝑎2) [𝑓 (𝑥) + 𝑓 (𝑦)]

= −
1

2
(𝑎 + 1) ((𝑎 + 1) − 1)

2𝑓 (𝑥 − 𝑦)

+
1

2
(𝑎 + 1) ((𝑎 + 1) + 1)

2𝑓 (𝑥 + 𝑦)

+ ((𝑎 + 1)2 − 1)
2

[𝑓 (𝑥) + 𝑓 (𝑦)] ,

(16)

for all 𝑥, 𝑦 ∈ 𝑋. Hence we have

𝑓 ((𝑎 + 1) 𝑥 + 𝑦) + 𝑓 (𝑥 + (𝑎 + 1) 𝑦)

+
1

2
(𝑎 + 1) ((𝑎 + 1) − 1)

2𝑓 (𝑥 − 𝑦)

= ((𝑎 + 1)2 − 1)
2

[𝑓 (𝑥) + 𝑓 (𝑦)]

+
1

2
(𝑎 + 1) ((𝑎 + 1) + 1)

2𝑓 (𝑥 + 𝑦) ,

(17)

for all 𝑥, 𝑦 ∈ 𝑋, as desired.
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Note that 𝑓(𝑎𝑥) = 𝑎4𝑓(𝑥) by letting 𝑦 = 0 in (7).

Lemma 10. A mapping 𝑓 : 𝑋 → 𝑌 satisfies the functional
equation (7) if and only if 𝑓 satisfies the functional equation
(6).

Proof. It is easy to show that 𝑓(0) = 0 and 𝑓(𝑎𝑥) = 𝑎4𝑓(𝑥)
by putting 𝑥 = 𝑦 = 0 and 𝑦 = 0 in (7), respectively. By letting
𝑦 = 𝑏𝑦 in (7), we have

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑥 + 𝑎𝑏𝑦) +
1

2
𝑎(𝑎 − 1)

2𝑓 (𝑥 − 𝑏𝑦)

= (𝑎2 − 1)
2

[𝑓 (𝑥) + 𝑓 (𝑏𝑦)] +
1

2
𝑎(𝑎 + 1)

2𝑓 (𝑥 + 𝑏𝑦) .

(18)

Also, switching 𝑥 and 𝑦 in the above equation and then
adding two equations, we get

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑏𝑥 + 𝑎𝑦)

= − [𝑓 (𝑎𝑏𝑥 + 𝑦) + 𝑓 (𝑥 + 𝑎𝑏𝑦)] + (𝑎2 − 1)
2

× [𝑓 (𝑥) + 𝑓 (𝑦) + 𝑏
4𝑓 (𝑥) + 𝑏

4𝑓 (𝑦)]

+
1

2
𝑎(𝑎 + 1)

2 [𝑓 (𝑏𝑥 + 𝑦) + 𝑓 (𝑥 + 𝑏𝑦)]

−
1

2
𝑎(𝑎 − 1)

2 [𝑓 (𝑏𝑥 − 𝑦) + 𝑓 (𝑥 − 𝑏𝑦)] .

(19)

Then (7) implies that

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑏𝑥 + 𝑎𝑦) +
1

2
𝑎𝑏(𝑎 − 𝑏)

2𝑓 (𝑥 − 𝑦)

= (𝑎2 − 𝑏2)
2

[𝑓 (𝑥) + 𝑓 (𝑦)] +
1

2
𝑎𝑏(𝑎 + 𝑏)

2𝑓 (𝑥 + 𝑦) .

(20)

Corollary 11. A mapping 𝑓 : 𝑋 → 𝑌 satisfies the functional
equation (3) if and only if 𝑓 satisfies the functional equation
(6).

3. Stability in Quasi-𝛽-Normed Spaces

Throughout this section, let 𝑋 be a quasi-𝛽-normed space
and let 𝑌 be a quasi 𝛽-Banach space with a quasi 𝛽-norm
‖ ⋅ ‖
𝑌
. Let 𝐾 be the modulus of concavity of ‖ ⋅ ‖

𝑌
. We will

investigate the Hyers-Ulam-Rassias stability problem for the
functional equation (7). For a givenmapping𝑓 : 𝑋 → 𝑌 and
all fixed integers 𝑎 with 𝑎 ̸= 0, 𝑎 ̸= ± 1, let

𝐷
𝑎
𝑓 (𝑥, 𝑦) := 𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑥 + 𝑎𝑦)

+
1

2
𝑎(𝑎 − 1)

2𝑓 (𝑥 − 𝑦)

− (𝑎2 − 1)
2

[𝑓 (𝑥) + 𝑓 (𝑦)]

−
1

2
𝑎(𝑎 + 1)

2𝑓 (𝑥 + 𝑦) ,

(21)

for 𝑥 and 𝑦 in𝑋.

Theorem 12. Suppose that there exists a mapping 𝜙 : 𝑋2 →
R+ := [0,∞) for which a mapping 𝑓 : 𝑋 → 𝑌 satisfies 𝑓(0) =
0 and

𝐷𝑎𝑓 (𝑥, 𝑦)
𝑌 ≤ 𝜙 (𝑥, 𝑦) , (22)

and the series ∑∞
𝑗=0
(𝐾/|𝑎|4𝛽)

𝑗

𝜙(𝑎𝑗𝑥, 𝑎𝑗𝑦) converges for all
𝑥, 𝑦 ∈ 𝑋. Then there exists a unique Euler-Lagrange-Rassias
quartic mapping 𝑄 : 𝑋 → 𝑌 which satisfies (7) and the
inequality

𝑓 (𝑥) − 𝑄 (𝑥)
𝑌 ≤

𝐾

|𝑎|4𝛽

∞

∑
𝑗=0

(
𝐾

|𝑎|4𝛽
)

𝑗

𝜙 (𝑎𝑗𝑥, 0) , (23)

for all 𝑥 ∈ 𝑋.

Proof. By letting 𝑦 = 0 in (22) and 𝑓(0) = 0, we have

𝑓 (𝑎𝑥) + 𝑓 (𝑥) +

1

2
𝑎(𝑎 − 1)

2𝑓 (𝑥) −
1

2
𝑎(𝑎 + 1)

2

−(𝑎2 − 1)
2

𝑓 (𝑥)
𝑌

=
𝑓 (𝑎𝑥) − 𝑎

4𝑓 (𝑥)
𝑌

= |𝑎|
4𝛽

𝑓 (𝑥) −

1

𝑎4
𝑓 (𝑎𝑥)

𝑌
≤ 𝜙 (𝑥, 0) ,

(24)

that is,

𝑓 (𝑥) −

1

𝑎4
𝑓 (𝑎𝑥)

𝑌
≤

1

|𝑎|4𝛽
𝜙 (𝑥, 0) , (25)

for all 𝑥 ∈ 𝑋. For any positive integer𝑚, we have

(
1

𝑎4
)
𝑚

𝑓 (𝑎𝑚𝑥) − (
1

𝑎4
)
𝑚+1

𝑓 (𝑎𝑚+1𝑥)
𝑌

≤
1

|𝑎|4𝛽
(
1

|𝑎|4𝛽
)
𝑚

𝜙 (𝑎𝑚𝑥, 0) ,

(26)

for all 𝑥 ∈ 𝑋. For any positive integers 𝑛 and𝑚 with𝑚 < 𝑛,

(
1

𝑎4
)
𝑚

𝑓 (𝑎𝑚𝑥) − (
1

𝑎4
)
𝑛

𝑓 (𝑎𝑛𝑥)
𝑌

≤
1

𝐾𝑚−1
1

|𝑎|4𝛽

𝑛−1

∑
𝑗=𝑚

(
𝐾

|𝑎|4𝛽
)

𝑗

𝜙 (𝑎𝑗𝑥, 0) ,

(27)

for all 𝑥 ∈ 𝑋. By letting𝑚 = 0, we have

𝑓 (𝑥) − (

1

𝑎4
)
𝑛

𝑓 (𝑎𝑛𝑥)
𝑌

≤
𝐾

|𝑎|4𝛽

𝑛−1

∑
𝑗=0

(
𝐾

|𝑎|4𝛽
)

𝑗

𝜙 (𝑎𝑗𝑥, 0) ,

(28)

for all 𝑥 ∈ 𝑋 and 𝑛 ∈ N. Since the right-hand side of the
previous inequality tends to 0 as 𝑛 → ∞, {(1/𝑎4)𝑛𝑓(𝑎𝑛𝑥)} is
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a Cauchy sequence in the quasi 𝛽-Banach space 𝑌. Thus we
may define

𝑄 (𝑥) = lim
𝑛→∞

(
1

𝑎4
)
𝑛

𝑓 (𝑎𝑛𝑥) , (29)

for all 𝑥 ∈ 𝑋. Hence we have the inequality (23). Since𝐾 ≥ 1,
replacing 𝑥 and 𝑦 by 𝑎𝑛𝑥 and 𝑎𝑛𝑦, respectively, and dividing
by |𝑎|4𝛽𝑛 in (22), we have

(
1

|𝑎|4𝛽
)

𝑛

𝐷𝑎𝑓 (𝑎
𝑛𝑥, 𝑎𝑛𝑦)

𝑌 ≤ (
𝐾

|𝑎|4𝛽
)

𝑛

𝜙 (𝑎𝑛𝑥, 𝑎𝑛𝑦) ,

(30)

for all𝑥, 𝑦 ∈ 𝑋. By taking 𝑛 → ∞, the definition of𝑄 implies
that 𝑄 satisfies (7) for all 𝑥, 𝑦 ∈ 𝑋; that is, 𝑄 is the Euler-
Lagrange-Rassias quartic mapping. It is left to show that the
quadratic mapping 𝑄 is unique. Assume that there exists 𝑇 :
𝑋 → 𝑌 satisfying (7) and (23). Then

‖𝑇 (𝑥) − 𝑄 (𝑥)‖𝑌 = (
1

|𝑎|4𝛽
)

𝑛

𝑇 (𝑎
𝑛𝑥) − 𝑄 (𝑎𝑛𝑥)

𝑌

≤ (
1

|𝑎|4𝛽
)

𝑛

𝐾(
𝑇 (𝑎
𝑛𝑥) − 𝑓 (𝑎𝑛𝑥)

𝑌

+
𝑓 (𝑎
𝑛𝑥) − 𝑄 (𝑎𝑛𝑥)

𝑌)

≤
2

|𝑎|4𝛽𝑛

∞

∑
𝑗=𝑛

(
𝐾

|𝑎|4𝛽
)

𝑗

𝜙 (𝑎𝑗𝑥, 0) ,

(31)

for all 𝑥 ∈ 𝑋. By letting 𝑛 → ∞, we immediately have the
uniqueness of 𝑄.

Theorem 13. Suppose that there exists a mapping 𝜙 : 𝑋2 →
R+ := [0,∞) for which a mapping 𝑓 : 𝑋 → 𝑌 satisfies 𝑓(0) =
0 and

𝐷𝑎𝑓 (𝑥, 𝑦)
𝑌 ≤ 𝜙 (𝑥, 𝑦) , (32)

and the series ∑∞
𝑗=1
(|𝑎|4𝛽𝐾)𝑗𝜙(𝑎−𝑗𝑥, 𝑎−𝑗𝑦) converges for all

𝑥, 𝑦 ∈ 𝑋. Then there exists a unique Euler-Lagrange-Rassias
quartic mapping 𝑄 : 𝑋 → 𝑌 which satisfies (7) and the
inequality

𝑓 (𝑥) − 𝑄 (𝑥)
𝑌 ≤

∞

∑
𝑗=1

(|𝑎|
4𝛽𝐾)
𝑗

𝜙 (𝑎−𝑗𝑥, 0) , (33)

for all 𝑥 ∈ 𝑋.

Proof. If 𝑥 is replaced by (1/𝑎)𝑥 in inequality (25), we have


𝑓 (𝑥) − 𝑎

4𝑓(
1

𝑎
𝑥)
𝑌
≤ 𝜙 (𝑥, 0) , (34)

for all 𝑥 ∈ 𝑋. The remains of the proof follow from the proof
of Theorem 12.

4. Stability in Quasi Fuzzy 𝛽-Normed Spaces

Let us fix some notations which will be used throughout this
section. We assume 𝑋 is a vector space and (𝑌,𝑁) is a quasi
fuzzy𝛽-Banach space.Wewill prove theHyers-Ulam-Rassias
stability of the functional equation satisfying equation (7) in
quasi fuzzy 𝛽-Banach space.

Theorem 14. Let 𝜙 : 𝑋2 → [0,∞) be a function such that for
some 0 < |𝛼| < |𝑎|4

𝑁 (𝜙 (𝑎𝑥, 0) , 𝑡) ≥ 𝑁
 (𝛼𝜙 (𝑥, 0) , 𝑡) ,

lim
𝑛→∞

𝑁 (𝜙 (𝑎𝑛𝑥, 𝑎𝑛𝑦) , |𝑎|
4𝑛𝛽𝑡) = 1,

(35)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Let 𝑓 : 𝑋 → 𝑌 be a mapping
satisfying 𝑓(0) = 0 and

𝑁(𝐷
𝑎
𝑓 (𝑥, 𝑦) , 𝑡) ≥ 𝑁 (𝜙 (𝑥, 𝑦) , 𝑡) , (36)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0.
Then 𝑄(𝑥) := 𝑁 − lim

𝑛→∞
(1/𝑎4𝑛)𝑓(𝑎𝑛𝑥) exists for each

𝑥 ∈ 𝑋 and defines a unique Euler-Lagrange-Rassias quartic
mapping 𝑄 : 𝑋 → 𝑌 such that

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
 (𝜙 (𝑥, 0) ,

|𝑎|4𝛽 − |𝛼|𝛽

2
𝑡) , (37)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.

Proof. Let 𝑦 = 0 in inequality (36). Since 𝑓(0) = 0, we have

𝑁(𝐷
𝑎
𝑓 (𝑥, 0) , 𝑡)

= 𝑁(
1

𝑎4
𝑓 (𝑎𝑥) − 𝑓 (𝑥) ,

𝑡

|𝑎|4𝛽
) ≥ 𝑁 (𝜙 (𝑥, 0) , 𝑡) ,

(38)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Replacing 𝑥 by 𝑎𝑛𝑥 in inequality
(38),

𝑁(
1

𝑎4
𝑓 (𝑎𝑛+1𝑥) − 𝑓 (𝑎𝑛𝑥) ,

𝑡

|𝑎|4𝛽
) ≥ 𝑁 (𝜙 (𝑎𝑛𝑥, 0) , 𝑡) ,

(39)

that is,

𝑁((
1

𝑎4
)
𝑛+1

𝑓 (𝑎𝑛+1𝑥) − (
1

𝑎4
)
𝑛

𝑓 (𝑎𝑛𝑥) ,
𝑡

|𝑎|4𝛽
1

|𝑎|4𝑛𝛽
)

≥ 𝑁 (𝜙 (𝑎𝑛𝑥, 0) , 𝑡) ,

(40)

for all 𝑥 ∈ 𝑋, 𝑡 > 0 and 𝑛 ≥ 0. Since 𝑁(𝜙(𝑎𝑛𝑥, 0), 𝑡) ≥
𝑁(𝜙(𝑥, 0), (𝑡/|𝛼|𝑛𝛽)),

𝑁((
1

𝑎4
)
𝑛+1

𝑓 (𝑎𝑛+1𝑥) − (
1

𝑎4
)
𝑛

𝑓 (𝑎𝑛𝑥) ,
𝑡

|𝑎|4𝛽
1

|𝑎|4𝑛𝛽
)

≥ 𝑁 (𝜙 (𝑥, 0) ,
𝑡

|𝛼|𝑛𝛽
) .

(41)



6 Abstract and Applied Analysis

By letting 𝑡 = |𝛼|𝑛𝛽𝑡 in the previous inequality,

𝑁((
1

𝑎4
)
𝑛+1

𝑓 (𝑎𝑛+1𝑥) − (
1

𝑎4
)
𝑛

𝑓 (𝑎𝑛𝑥) ,
𝑡

|𝑎|4𝛽
⋅ (
|𝛼|

|𝑎|4
)
𝑛𝛽

)

≥ 𝑁 (𝜙 (𝑥, 0) , 𝑡) ,

(42)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Hence we get

𝑁((
1

𝑎4
)
𝑛

𝑓 (𝑎𝑛𝑥) − 𝑓 (𝑥) ,
𝑛−1

∑
𝑗=0

𝑡

|𝑎|4𝛽
⋅ (
|𝛼|

|𝑎|4
)
𝑗𝛽

)

≥ min
𝑛−1

⋃
𝑗=0

[

[

𝑁((
1

𝑎4
)
𝑗+1

𝑓 (𝑎𝑗+1𝑥)

− (
1

𝑎4
)
𝑗

𝑓 (𝑎𝑗𝑥),
𝑡

|𝑎|4𝛽
⋅ (
|𝛼|

|𝑎|4
)
𝑗𝛽

)]

]

≥ 𝑁 (𝜙 (𝑥, 0) , 𝑡) ,

(43)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Letting 𝑥 = 𝑎𝑚𝑥 in the previous
inequality, we have

𝑁((
1

𝑎4
)
𝑛

𝑓 (𝑎𝑛+𝑚𝑥) − 𝑓 (𝑎𝑚𝑥) ,
𝑛−1

∑
𝑗=0

𝑡

|𝑎|4𝛽
⋅ (
|𝛼|

|𝑎|4
)
𝑗𝛽

)

≥ 𝑁 (𝜙 (𝑎𝑚𝑥, 0) , 𝑡) ≥ 𝑁 (𝜙 (𝑥, 0) ,
𝑡

|𝛼|𝑚𝛽
) ,

(44)

that is,

𝑁((
1

𝑎4
)
𝑛+𝑚

𝑓 (𝑎𝑛+𝑚𝑥) − (
1

𝑎4
)
𝑚

𝑓 (𝑎𝑚𝑥) ,

𝑡

|𝑎|4𝑚𝛽

𝑛−1

∑
𝑗=0

1

|𝑎|4𝛽
⋅ (
|𝛼|

|𝑎|4
)
𝑗𝛽

)

≥ 𝑁 (𝜙 (𝑥, 0) ,
𝑡

|𝛼|𝑚𝛽
) ,

(45)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Letting 𝑡 = |𝛼|𝑚𝛽𝑡, we have

𝑁((
1

𝑎4
)
𝑛+𝑚

𝑓 (𝑎𝑛+𝑚𝑥) − (
1

𝑎4
)
𝑚

𝑓 (𝑎𝑚𝑥) ,

𝑡

|𝑎|4𝛽

𝑛+𝑚−1

∑
𝑗=𝑚

(
|𝛼|

|𝑎|4
)
𝑗𝛽

)

≥ 𝑁 (𝜙 (𝑥, 0) , 𝑡) ,

(46)

for all 𝑥 ∈ 𝑋, 𝑡 > 0 and 𝑛,𝑚 ≥ 0. Hence {(1/𝑎4𝑛)𝑓(𝑎𝑛𝑥)} is
a Cauchy sequence in the quasi fuzzy 𝛽-Banach space (𝑌,𝑁).
Thus, we may define

𝑄 (𝑥) = 𝑁 − lim
𝑛→∞

1

𝑎4𝑛
𝑓 (𝑎𝑛𝑥) , (47)

for all 𝑥 ∈ 𝑋. Hence inequality (43) implies that

𝑁(𝑄 (𝑥) − 𝑓 (𝑥) , 𝑡)

≥ min{𝑁(𝑄 (𝑥) − ( 1
𝑎4
)
𝑛

𝑓 (𝑎𝑛𝑥) ,
𝑡

2
) ,

𝑁((
1

𝑎4
)
𝑛

𝑓 (𝑎𝑛𝑥) − 𝑓 (𝑥) ,
𝑡

2
)}

≥ 𝑁(𝜙 (𝑥, 0) ,
𝑡

(2/|𝑎|4𝛽)∑
𝑛−1

𝑗=0
(|𝛼| /|𝑎|4)

𝑗𝛽
) ,

(48)

for 𝑛 large enough and all 𝑥 ∈ 𝑋. Taking the limit as 𝑛 → ∞
and using (𝑁

6
), we have

𝑁(𝑄 (𝑥) − 𝑓 (𝑥) , 𝑡) ≥ 𝑁
 (𝜙 (𝑥, 0) ,

|𝑎|4𝛽 − |𝛼|𝛽

2
𝑡) , (49)

for all 𝑥 ∈ 𝑋. Hence it satisfies inequality (37). Now letting
𝑥 = 𝑎𝑛𝑥 and 𝑦 = 𝑎𝑛𝑦 in (36),

𝑁(𝐷
𝑎
𝑓 (𝑎𝑛𝑥 , 𝑎𝑛𝑦) , 𝑡) ≥ 𝑁 (𝜙 (𝑎𝑛𝑛, 𝑎𝑛𝑦) , 𝑡) , (50)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. This implies that

𝑁((
1

𝑎4
)
𝑛

𝐷
𝑎
𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦) , 𝑡) ≥ 𝑁 (𝜙 (𝑎𝑛𝑛, 𝑎𝑛𝑦) , |𝑎|

4𝛽𝑡) ,

(51)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Since𝑁(𝜙(𝑎𝑛𝑛, 𝑎𝑛𝑦), |𝑎|4𝛽𝑡) = 1,
we may conclude that the mapping𝑄 satisfies (7); that is,𝑄 is
the Euler-Lagrange-Rassias quartic mapping. It is left to show
that the quarticmapping𝑄 is unique.Assume there is another
𝑇 : 𝑋 → 𝑌 satisfying (7) and inequality (37). For each𝑥 ∈ 𝑋,
clearly𝑄(𝑎𝑛𝑥) = 𝑎4𝑛𝑄(𝑥) and𝑇(𝑎𝑛𝑥) = 𝑎4𝑛𝑇(𝑥) for all 𝑛 ∈ N.

𝑁(𝑇 (𝑥) − 𝑄 (𝑥) , 𝑡) = 𝑁(
1

𝑎4𝑛
𝑇 (𝑎𝑛𝑥) −

1

𝑎4𝑛
𝑄 (𝑎𝑛𝑥) , 𝑡)

= 𝑁(𝑇 (𝑎𝑛𝑥) − 𝑄 (𝑎𝑛𝑥) , |𝑎|
4𝑛𝛽𝑡)
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≥min{𝑁(𝑇 (𝑎𝑛𝑥) − 𝑓 (𝑎𝑛𝑥) , |𝑎|
4𝑛𝛽𝑡

2
),

𝑁(𝑓 (𝑎𝑛𝑥) − 𝑄 (𝑎𝑛𝑥) ,

|𝑎|4𝑛𝛽𝑡

2
)}

≥𝑁(𝜙 (𝑎𝑛𝑥, 0) ,
|𝑎|4𝛽 − |𝛼|𝛽

2
⋅
|𝑎|4𝑛𝛽𝑡

2
)

≥ 𝑁(𝜙 (𝑥, 0) ,

(
|𝑎|4

|𝛼|
)

𝑛𝛽

⋅
|𝑎|4𝛽 − |𝛼|𝛽

4
𝑡) ,

(52)

for all 𝑥 ∈ 𝑋 and 𝑡 > 0. Since 0 < |𝛼| < |𝑎|4, we have
lim
𝑛→∞

(|𝑎|4/|𝛼|)
𝑛𝛽

= ∞. Hence𝑁(𝑇(𝑥) − 𝑄(𝑥), 𝑡) = 1; that
is, the mapping 𝑄 is unique, as desired.

Theorem 15. Let 𝜙 : 𝑋2 → [0,∞) be a function such that for
some |𝛼| > |𝑎|4

𝑁 (𝜙(
1

𝑎
𝑥, 0) , 𝑡) ≥ 𝑁 (𝛼𝜙 (𝑥, 0) , 𝑡) ,

lim
𝑛→∞

𝑁 (𝜙 (𝑎−𝑛𝑥, 𝑎−𝑛𝑦) ,
1

|𝑎|4𝑛𝛽
𝑡) = 1,

(53)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Let 𝑓 : 𝑋 → 𝑌 be a mapping
satisfying 𝑓(0) = 0 and

𝑁(𝐷
𝑎
𝑓 (𝑥, 𝑦) , 𝑡) ≥ 𝑁 (𝜙 (𝑥, 𝑦) , 𝑡) , (54)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0.
Then 𝑄(𝑥) := 𝑁 − lim

𝑛→∞
𝑎4𝑛𝑓((1/𝑎𝑛)𝑥) exists for each

𝑥 ∈ 𝑋 and defines a unique Euler-Lagrange-Rassias quartic
mapping 𝑄 : 𝑋 → 𝑌 such that

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
 (𝜙 (𝑥, 0) ,

|𝛼|𝛽 − |𝑎|4𝛽

2|𝛼|2𝛽
𝑡) , (55)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.

Proof. The techniques are completely similar to the proof of
Theorem 14. Hence we present some key idea of this proof.
Let 𝑦 = 0 in inequality (54). Since 𝑓(0) = 0, we have
𝑁(𝐷
𝑎
𝑓 (𝑥, 0) , 𝑡)

= 𝑁 (𝑓 (𝑎𝑥) − 𝑎
4𝑓 (𝑥) , 𝑡) ≥ 𝑁

 (𝜙 (𝑥, 0) , 𝑡) ,
(56)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Replacing 𝑥 by (1/𝑎)𝑥 in inequality
(56), we have

𝑁(𝑓 (𝑥) − 𝑎
4𝑓(

1

𝑎
𝑥) , 𝑡)

≥ 𝑁 (𝜙(
1

𝑎
𝑥, 0) , 𝑡) ≥ 𝑁 (𝜙 (𝑥, 0) ,

1

|𝛼|𝛽
𝑡)

(57)

or

𝑁(𝑓 (𝑥) − 𝑎
4𝑓(

1

𝑎
𝑥) , |𝛼|

𝛽𝑡) ≥ 𝑁 (𝜙 (𝑥, 0) , 𝑡) , (58)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. For positive integers 𝑛 and𝑚,

𝑁(𝑎4(𝑛+𝑚)𝑓(
1

𝑎𝑛+𝑚
𝑥) − 𝑎4𝑚𝑓(

1

𝑎𝑚
𝑥) ,

|𝛼|
𝛽

𝑛+𝑚−1

∑
𝑗=𝑚

(
|𝑎|4

|𝛼|
)

𝑗𝛽

𝑡) ≥ 𝑁 (𝜙 (𝑥, 0) , 𝑡) ,

(59)

for all 𝑥 ∈ 𝑋 and 𝑡 > 0. Hence we may conclude that
{𝑎4𝑛𝑓((1/𝑎𝑛)𝑥)} is a Cauchy sequence in the quasi fuzzy 𝛽-
Banach space (𝑌,𝑁). Thus we may define

𝑄 (𝑥) = 𝑁 − lim
𝑛→∞

𝑎4𝑛 𝑓(
1

𝑎𝑛
𝑥) , (60)

for all 𝑥 ∈ 𝑋. Also, for any positive integer 𝑛, we get

𝑁(𝑎4𝑛𝑓(
1

𝑎𝑛
𝑥) − 𝑓 (𝑥) , 𝑡)

≥ 𝑁(𝜙 (𝑥, 0) ,
𝑡

|𝛼|𝛽∑
𝑛−1

𝑗=0
(|𝑎|4/ |𝛼|)

𝑗𝛽
) ,

(61)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. This implies inequality (55).
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