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A two-dimensional stochastic solver for the incompressible Navier-Stokes equations is developed. The vorticity-stream function
formulation is considered. The polynomial chaos expansion was integrated with an unstructured node-centered finite-volume
solver. A second-order upwind scheme is used in the convection term for numerical stability and higher-order discretization.
The resulting sparse linear system is solved efficiently by a direct parallel solver. The mean and variance simulations of the cavity
flow are done for random variation of the viscosity and the lid velocity. The solver was tested and compared with the Monte-
Carlo simulations and with previous research works. The developed solver is proved to be efficient in simulating the stochastic
two-dimensional incompressible flows.

1. Introduction

In engineering fields, most models are represented as par-
tial differential equations (PDEs), assuming all input data
is perfectly known. Unfortunately, geometry and material
characteristics for instance will present uncertainties. Under
those conditions, the output data become also uncertain.
To deal with propagation of the input data uncertainties to
the output data, probabilistic models are more appropriate
than deterministic ones. Several methods of solution are
developed to assess the response due to the uncertainties.
This response depends on two main factors: the first factor
is the geometric domain discretization and the second is the
discretization involved random process [1, 2]. The solution
methods may be classified according to the first factor to
meshless methods [3], stochastic finite difference methods
[4], and stochastic finite element methods [5]. On the other
hand, according to the second factor the methods of solution
may be classified into Monte-Carlo (MC) simulations [6],
perturbations [7], and Neumann series expansion method
[2]. Perturbation andNeumann series expansionmethods are
limited to small perturbations and some simple cases. MC
methods are simple and can be easily used in many fields.

But, usually, they are only used as the last resort since they are
inefficient and normally need lots of samples which consume
great computational resources. MC simulations should be of
order 104 or more for reliable comparisons [8].

In recent years, some analysis methods based on spec-
tral expansion were developed. Polynomial chaos expansion
(PCE) method is one of them. The basic theory of this
method was proposed by Wiener in 1938, where it is called
homogenous chaos. The pioneering development work of
this method was done by Ghanem and Spanos in the
solid mechanics field [9, 10]. They integrated the PCE with
the finite-element method which is known as the spectral
stochastic finite element methods (SSFEM). Recently, the
SSFEM is one of the most widely used methods [7]. In
recent years, the applications of SSFEM in computational
fluid dynamics (CFD) are expanded. In [11] a stochastic
finite-volume upwind technique is used to solve viscous
Burgers’ equation with stochastic viscosity over a wide range
of the mean viscosity. The stochastic developed solver has
higher performance compared with the MC simulations. In
[12], the PCE was implemented for the 2D incompressible
stochastic Navier-Stokes equations to simulate the stochastic
behavior of a lid-driven cavity flow under the influence
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of uncertainties. The driven velocity and fluid viscosity were
supposed, respectively, to be the uncertain variables which
have Gaussian probability distributions. It was found there
that the influence of the driven velocity uncertainty is larger
than that of viscosity. In [13, 14], the cavity flowwith stochastic
variation of the viscosity is also simulated. More applications
in CFD are given in [15] and the references herein.

In 2D, the incompressible laminar flow can be modeled
using the Navier-Stokes equations in different formulations.
The most famous formulations are the primitive variables
(velocity and pressure) formulation and the vorticity-stream
function formulation [16]. There are advantages in using the
vorticity-stream function formulation of the incompressible
Navier-Stokes equations to compute 2D flows: the continuity
equation is automatically satisfied, only one (vorticity equa-
tion) transport equation has to be solved, the streamlines of
the flow are given by level curves of the stream function,
the vorticity is a conserved quantity [17], and there is no
difficulty in matching a pressure to the velocity field [18].The
basic method and the treatment of the vorticity boundary
conditions are reviewed in [19]. There is no much research
work in the literature that uses the vorticity-stream function
formulation. This can be due to difficulties in extending this
formulation to 3D and also due to some difficulties in the
vorticity boundary treatment. Some research efforts using
the vorticity-stream function formulation are given in [16, 17,
20]. In [21], the vorticity-stream function formulation is dis-
cretized on unstructured grids with the upwind finite-volume
cell-centered technique, and it was applied successfully in
simulating the 2D incompressible flow in the cavity.

Solution of the stochastic Navier-Stokes equations in
vorticity-stream function formulation has only little attention
in the literature. In [14], the Wiener-chaos expansion (WCE)
is used to treat the vorticity-stream function formulation
driven by Gaussian Brownian motion. They introduced a
compression technique similar to the sparse tensor products
to handle the constant flux of new random variable due to the
Brownian motion. There is no consideration in the literature
for vorticity-stream function formulation with random vari-
ation of the parameters and/or boundary values. The current
work fills this gap. As we shall see in this work, the vorticity-
stream function formulation when extended in the stochastic
dimension has advantages in the storage and computational
complexity over the stochastic extension of the primitive
variables formulation. In the current work, a node-centered
finite-volume solver is developed and then extended in the
stochastic dimension by using PCE to simulate the 2D
incompressible flows with random variations in the viscosity
and/or the boundary conditions.

A rigorous theory of the stochastic Navier-Stokes equa-
tion has been a subject of several papers [22]. Most papers
rely onmartingale-typemethods and a direct theory of strong
solutions providing the stochastic analog of the well-known
Lions and Prodi [23] solvability theorem for the deterministic
Navier-Stokes equation. Proofs of the existence and unique-
ness of a strong local solution of stochastic Navier-Stokes
equations are given in [24]. Also, existence and uniqueness
of a global strong solution in 2D are established in [25].

The existence of a unique invariantmeasure is established and
the properties of this measure are described in [26].

This paper is organized as follows: the governing equa-
tions with the boundary conditions are outlined in Section 2.
The deterministic solver is derived in Section 3.The PCE and
the extension to the stochastic dimension are explained in
Section 4. The test cases, results, and discussions are given in
Section 5. Summary of the work and conclusions are outlined
in Section 6.

2. Governing Equations

The stream-function-vorticity formulation of the incom-
pressible Navier-Stokes equations in 2D Cartesian coordi-
nates, fixed boundaries, and neglected source terms are:

𝜔
𝑡
+ (𝑢⃗ ⋅ ∇) 𝜔 = ]∇2𝜔, (1)

∇
2
𝜓 = −𝜔, (2)

𝑢 = 𝜓
𝑥
, 𝜐 = −𝜓

𝑦
, (3)

where 𝜓(𝑥, 𝑦, 𝑡) is the stream function, the components of
𝑢⃗ ≡ (𝑢(𝑥, 𝑦, 𝑡), 𝜐(𝑥, 𝑦, 𝑡)) are the horizontal and vertical
velocities, respectively, of the flow field, and 𝜔(𝑥, 𝑦, 𝑡) =
𝜐
𝑥
(𝑥, 𝑦, 𝑡) − 𝑢

𝑦
(𝑥, 𝑦, 𝑡) is the scalar vorticity. The constant ]

is the kinematic viscosity. On the boundary of rigid bodies,
the stream function 𝜓must satisfy two boundary conditions:
one of Dirichlet type corresponding to a no-normal-flow
condition and one of Neumann type corresponding to a no-
slip condition. No boundary conditions are explicitly given
for the vorticity [17]. These equations are easily derived by
taking the curl of the Navier-Stokes equations in primitive
variables formulation and eliminating any dependence in the
third (𝑧) component.

3. Derivation of the Deterministic Solver

A 2D finite-volume node-centered unstructured solver is
considered. The control volume is taken around the nodes
by connecting the cell centroids surrounding each node 𝑖.
Figure 1(a) shows a part (shaded) from the control volume.
In case of the near-boundary nodes, the boundary faces
are considered as cells of zero area. The area of the control
volume around node 𝑖will be denoted as𝐴C.V.. Another quad
control volume, Figure 1(b), is used in obtaining the gradient
vector ∇𝜑 of any scalar variable 𝜑. The quad control volume
is consisting of the endpoints, 𝑖 and 𝑗, of the face and the
centroids of the two neighbor cells, nodes 1 and 2, as shown
in Figure 1(b). The area of the quad control volume will be
denoted as 𝐴

𝑖𝑗
.

The components of a gradient vector ∇𝜑 of a scalar
quantity 𝜑 are needed at the face centroids 𝑓. For any scalar
variable 𝜑, a second-order midpoint approximation of the
horizontal component is obtained by integrating 𝜑

𝑥
over the

quad control volume, Figure 1(b), and after applying Green’s
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Figure 1: (a) Shaded part of the control volume used in the node-centered solver. (b) Control-volume used for face-centered gradient
calculations.

theorem. The same procedure can be done for the vertical
component of the gradient vector. This will give

𝜑
𝑥

󵄨
󵄨
󵄨
󵄨𝑓
≃

1

𝐴
𝑖𝑗

[(𝜑
𝑖
− 𝜑
𝑗
) Δ𝑦
21
+ (𝜑
2
− 𝜑
1
) Δ𝑦
𝑖𝑗
] ,

𝜑
𝑦

󵄨
󵄨
󵄨
󵄨
󵄨𝑓
≃

−1

𝐴
𝑖𝑗

[(𝜑
𝑖
− 𝜑
𝑗
) Δ𝑥
21
+ (𝜑
2
− 𝜑
1
) Δ𝑥
𝑖𝑗
] ,

(4)

where (Δ𝑥
𝑖𝑗
, Δ𝑦
𝑖𝑗
) is the vector connecting the face endpoints,

𝑖 and 𝑗. The vector (Δ𝑥
21
, Δ𝑦
21
) is the vector connecting

the centroids (nodes 1 and 2) of the two neighbor cells
surrounding the face. The gradient vector ∇𝜑 will be needed
also at the nodes. This can be done by integrating ∇𝜑 over
any control volume around the node, for example, the control
volume in Figure 1(a). At the cell centroids, the gradient
vector can be approximated by averaging it from the cell
nodes.

The integration over the control volume 𝐴C.V. of the
Laplacian operator ∇2𝜑 of any scalar variable 𝜑 around node
𝑖 is obtained, after applying Green’s theorem and using (4), as

∫

C.V.
∇
2
𝜑𝑑𝐴C.V. = 𝐶𝑖𝜑𝑖 +

𝑁𝑖

∑

𝑗=1

𝐶
𝑗
𝜑
𝑗
+

𝑁𝑒

∑

𝑒=1

𝐶
𝑒
𝜑
𝑒
, (5)

where 𝜑
𝑖
is the value at node 𝑖,𝑁

𝑖
is the number of neighbor

nodes around 𝑖, 𝜑
𝑗
is the value at each neighbor node 𝑗, 𝑁

𝑒

is the number of neighbor cells around 𝑖, and 𝜑
𝑒
is the value

of the neighbor cell centroid 𝑒. The coefficients 𝐶
𝑖
, 𝐶
𝑗
, and 𝐶

𝑒

are

𝐶
𝑗
=

1

2𝐴
𝑖𝑗

((Δ𝑥
21
)
2

+ (Δ𝑦
21
)
2

) ,

𝐶
𝑖
= −

𝑁𝑖

∑

𝑗=1

𝐶
𝑗
, for nonboundary nodes 𝑗,

𝐶
𝑒
=

1

2𝐴
𝑗

(Δ𝑦
𝑖𝑗
Δ𝑦
21
+ Δ𝑥
𝑖𝑗
Δ𝑥
21
) .

(6)

The nonboundary nodal values will be treated implicitly
(from the current time level) and the cell-centered values
will be treated explicitly (from the previous time level) by
averaging them from the nodal values from the previous time
level.

The convective term in the vorticity transport equation is
integrated over the control volume 𝐴C.V.. The discretization
of this integration will be equal to the summation of the exit
fluxes∑𝑁𝑠

𝑠=1
𝑚
∘

𝑠
𝜑
𝑠
from all𝑁

𝑠
surrounding faces of the control

volume 𝐴C.V.; see Figure 1(a). The variable 𝜑
𝑠
is the value

of 𝜑 at the centroid, 𝑠, of the face and 𝑚∘
𝑠
is the mass flow

rate across the face and in the direction of the face outer
normal vector. The exit flux 𝑚∘

𝑠
𝜑
𝑠
across each surrounding

face can be approximated using a second-order upwind
scheme as

𝑚
∘

𝑠
𝜑
𝑠
= 𝑚
∘+

𝑠
(𝜑
𝑖
+ ∇𝜑
𝑖
⋅ ⃗𝑟
𝑖𝑠
) + 𝑚
∘−

𝑠
(𝜑
𝑗
+ ∇𝜑
𝑗
⋅ ⃗𝑟
𝑗𝑠
) , (7)

where𝑚∘+
𝑠
= max(𝑚∘

𝑠
, 0) and𝑚∘−

𝑠
= min(𝑚∘

𝑠
, 0).The gradient

vectors ∇𝜑
𝑖
and ∇𝜑

𝑗
are computed at nodes 𝑖 and 𝑗, and they

will be obtained from the previous time level. The vectors ⃗𝑟
𝑖𝑠

and ⃗𝑟
𝑗𝑠
are connecting the face 𝑠 centroid with the nodes 𝑖 and

𝑗, respectively.
Integration of the time derivative term over the control

volume 𝐴C.V. around node 𝑖 can be computed with the first-
order forward difference after assuming it constant over the
control volume. This will give

∫

C.V.
𝜑
𝑡
𝑑𝐴C.V. =

𝜑
(𝑛+1)

𝑖
− 𝜑
(𝑛)

𝑖

Δ𝑡

𝐴C.V.. (8)

Assembly of the stream function (2) at each node 𝑖 yields

𝐶
𝑖
𝜓
(𝑛+1)

𝑖
+

𝑁𝑖

∑

𝑗=1

𝐶
𝑗
𝜑
(𝑛+1)

𝑗
= −𝜔C.V.𝐴C.V. −

𝑁𝑒

∑

𝑒=1

𝐶
𝑒
𝜓
(𝑛)

𝑒
, (9)
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where 𝜔C.V. is the average vorticity over the control volume
𝐴C.V.. Assembly of the vorticity transport equation at each
node 𝑖 yields

𝜑
(𝑛+1)

𝑖
[

[

𝐴C.V.
Δ𝑡

− ]𝐶
𝑛
+

𝑁𝑖

∑

𝑗=1

𝑚
∘+

𝑗
]

]

+

𝑁𝑖

∑

𝑗=1

(−]𝐶
𝑗
+ 𝑚
∘−

𝑗
) 𝜑
(𝑛+1)

𝑗

=

𝐴C.V.
Δ𝑡

𝜑
(𝑛)

𝑖
+ ]
𝑁𝑒

∑

𝑒=1

𝐶
𝑒
𝜑
(𝑛)

𝑒
−

𝑁𝑖

∑

𝑗=1

𝑚
∘+

𝑗
∇𝜑
(𝑛)

𝑖
⋅ ⃗𝑟
𝑖𝑓

−

𝑁𝑖

∑

𝑗=1

𝑚
∘−

𝑗
∇𝜑
(𝑛)

𝑗
⋅ ⃗𝑟
𝑗𝑓
.

(10)

The superscript (𝑛+1)denotes the current time level while
(𝑛) denotes the previous time level. Equation (9) is solved
for the stream function and then the velocities are obtained
from the gradient components of the Stream function, (3).
The outlet velocities will be updated before they are used
with the other boundary velocities to get the vorticity at
all boundaries. The boundary vorticities are then used with
the vorticity gradients from the previous time level to solve
(10) and get the vorticity at the nonboundary nodes. Time
iterations are done until the required convergence to the
steady state is satisfied.

4. Random Discretization Using PCE

Polynomial chaos expansion (PCE) provides orthogonal basis
for the space of second-order random variables, where the
stochastic quantities are uniquely identified in terms of their
coordinates with respect to the basis. Ghanem and Spanos
[9] evaluate the stochastic system response as a summation of
nonlinear functional of a set of centered, normalized, mutu-
ally orthogonal, and Gaussian random variables {𝜉

𝑖
(𝜃)}
∞

𝑖=1

multiplied by deterministic coefficients. PCE has advantages
in evaluating both statistical moments of any order 𝑃 and
the probability distribution function (p.d.f) of the stochastic
system response.

There are two significant numbers to define in the PCE;
so-called order (𝑃) and dimension (𝑀). The order depicts
the maximum power used in the basis and the dimension
describes the number of the used basis in the expansion.Thus,
PCE of order 𝑃 and dimension𝑀 consists of all polynomials
of order 𝑃, involving all possible combinations of the 𝑀
random variables {𝜉

𝑖
(𝜃)}
𝑀

𝑖=1
.

The system variable 𝜑 in terms of PCE is written, after
truncation at order 𝑃 and𝑀 random variables {𝜉

𝑖
(𝜃)}
𝑀

𝑖=1
, in

the form:

𝜑 (𝜃) =

𝑛𝑃𝑇

∑

𝑗=0

𝜑
𝑗
Ψ
𝑗
[{𝜉
𝑖
(𝜃)}
𝑀

𝑖=1
] , (11)

where 𝜑
𝑗
are deterministic kernels and 𝑛𝑃𝑇 is the number of

orthogonal polynomials {Ψ
𝑗
}
𝑛𝑃𝑇

𝑗=0
of the PCE of order 𝑃 and

dimension𝑀. This number is computed as [9]:

𝑛𝑃𝑇 =

𝑃

∑

𝑠=1

1

𝑠!

𝑠−1

∏

𝑟=0

(𝑀 + 𝑟) . (12)

ThepolynomialΨ
𝑗
of order𝑃 and dimension𝑀 is defined

as [9]:

Ψ
𝑃
(𝜉
𝑖1
, 𝜉
𝑖2
, . . . , 𝜉

𝑖𝑀
)

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑃

∑

𝑟=𝑀
𝑟=even

(−1)
𝑟
∑

𝜋(𝑖1 ,𝑖2,.....𝑖𝑛)

𝑟

∏

𝑘=1

𝜉
𝑖𝑘

𝑀

∏

𝑙=𝑟+1

𝜉
𝑖𝑙
, 𝑛 even

𝑃

∑

𝑟=𝑀
𝑟=even

(−1)
𝑟−1

∑

𝜋(𝑖1 ,𝑖2,.....𝑖𝑛)

𝑟

∏

𝑘=1

𝜉
𝑖𝑘

𝑀

∏

𝑙=𝑟+1

𝜉
𝑖𝑙
, 𝑛 odd.

(13)

Stochastic variation of any variable, parameter, and/or
boundary conditions will cause all other variables to be
stochastic and hence are expanded as in (11) using PCE.

Assuming that the current system ((1)–(3)) has one or
more parameters and/or boundary conditions that have
stochastic variations, this will lead to a stochastic system.
Following the procedure given in [9, 11, 15] by expanding all
variables and parameters using PCE, (11), substituting in (1),
(2), and (3) and taking the ensemble average aftermultiplying
by Ψ
𝑘
; 0 ≤ 𝑘 ≤ 𝑛𝑃𝑇 to get the following stochastic system:

∇
2
𝜓
𝑘
= −𝜔
𝑘
,

𝜕𝜔
𝑘

𝜕𝑡

+

𝑛𝑃𝑇

∑

𝑖=0

𝑛𝑃𝑇

∑

𝑗=0

𝑐
𝑖𝑗𝑘
(𝑢
𝑗

𝜕𝜔
𝑖

𝜕𝑥

+ 𝜐
𝑗

𝜕𝜔
𝑖

𝜕𝑦

− ]
𝑗
∇
2
𝜔
𝑖
) = 0,

0 ≤ 𝑘 ≤ 𝑛𝑃𝑇,

𝑢
𝑘
=

𝜕𝜓
𝑘

𝜕𝑦

, 𝜐
𝑘
=

−𝜕𝜓
𝑘

𝜕𝑥

,

(14)

where the stochastic multiplication tensor 𝑐
𝑖𝑗𝑘

is the ratio
between the ensemble average of the three polynomials Ψ

𝑖
,

Ψ
𝑗
, and Ψ

𝑘
and the variance of Ψ

𝑘
[15], that is,

𝑐
𝑖𝑗𝑘
=

⟨Ψ
𝑖
Ψ
𝑗
Ψ
𝑘
⟩

⟨Ψ
𝑘
Ψ
𝑘
⟩

. (15)

As it is clear in (14), the stochastic stream function
equation is decomposed into 𝑛𝑃𝑇 + 1 independent linear
systems with the same coefficient matrix resulting from the
deterministic solver. This coefficient matrix is fixed (only
dependent on the geometry) and diagonally dominant sym-
metric positive definite that can be solved efficiently using a
conjugate gradient solver or by the SSOR. This means that
we shall have only one linear system with multiple right hand
sides. The storage cost will be 𝑂(𝑁) and the computational
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Figure 2: Sparsity pattern for the global matrix, cavity 500 cells.
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Figure 3: Solver convergence (log-log scale) for different values of mean viscosity with 𝑃 = 2 and𝑀 = 2, cavity 500, (a) and cavity 1900 (b).

cost will be 𝑂(𝑁𝑀𝑃), where 𝑁 is the number of degrees of
freedom (number of nonboundary nodes in our case) and 𝑃
and𝑀 are the order and dimension, respectively.

The stochastic vorticity transport equation should be
handled carefully as we have the velocities (𝑢

𝑗
, 𝜐
𝑗
), and

the vorticity gradients (𝜕𝜔
𝑖
/𝜕𝑥, 𝜕𝜔

𝑖
/𝜕𝑦) are from different

stochastic levels (levels 𝑗 and 𝑖). Note that we have 𝑛𝑃𝑇 + 1
stochastic levels. In the current work, the developed deter-
ministic solver, described in Section 3, is modified to handle
variables from different stochastic levels. The deterministic
solver will be called with two indices, 𝑖 and 𝑗, that represent
two stochastic levels. A local matrix is then returned and

will be multiplied by the multiplication tensor element 𝑐
𝑖𝑗𝑘

before it will be inserted in the global matrix. The sparsity of
the global matrix is preserved by mapping only nonzeros of
the local matrices to the global matrix. This is important for
saving storage memory and in enhancing the performance of
the algebraic solver.

As in [13], when using the PCE with a 2D transport
equation, the storage cost grows polynomially as 𝑂(𝑁𝑀𝑃)
and the computational cost grows as 𝑂((𝑁𝑀𝑃)2). In the
vorticity-stream function formulation, only the vorticity
transport equation has these expensive storage and computa-
tional costs. When using the primitive variables formulation,
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Figure 4: Comparison of the horizontal velocity component mean at viscosity of 0.01 (a) and 0.001 (b) with the benchmark solution in [27].
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Figure 5: Relative error for horizontal (a) and vertical (b) velocity mean values using the stochastic solver and MC simulations for viscosity
= 0.01.

we shall have two expensive transport equations. This is an
advantage in using the vorticity-stream function formulation
over using the primitive variables formulation when consid-
ering 2D incompressible flow with random variations.

Figure 2 shows the sparsity patterns of two global matri-
ces using different order 𝑃 and dimension 𝑀 using a unit
cavity grid with 500 triangular elements. As we can notice,

the sparsity ratio (ratio of nonzero entries) decreases with
the increase of the stochastic order 𝑃 and/or dimension
𝑀.

The linear system resulting from the discretized stochastic
vorticity transport equation will be a large sparse system.
A suitable efficient solver should be chosen. The PARDISO
solver [28, 29] is used in the current work. PARDISO is
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Figure 6: p.d.f of vorticity (a) and stream function (b) at 𝑥 = 0.1698 and 𝑦 = 0.7767 using the current solver and the MC simulations, mean
viscosity = 0.01 and 500 elements cavity mesh.
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Figure 7: p.d.f of the horizontal velocity component (a) and the vertical component (b) at 𝑥 = 0.3522 and 𝑦 = 0.6494 using the current
stochastic solver and MC simulations mean viscosity = 0.01 and 500 elements cavity mesh.

a direct sparse solver that runs in parallel by automatically
utilizing the multicore architecture of the used workstation.
Other conjugate gradient solvers, such as BiCGSTAB, are
also tested but PARDISO was found to be robust and more
efficient in our work. More comparisons between different
algebraic sparse solvers for the vorticity transport equation

are given in [16] for the deterministic solver.The same results
are also held for the stochastic solver.

TheMCsimulations are used in comparing and validating
the stochastic solver. MC simulations are done also in parallel
using the multithreading to exploit the available multicore
architecture of the recent workstations.
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Figure 8: Mean values of vorticity ((a) and (c)) and stream function ((b) and (d)) for 𝑃 = 2 and𝑀 = 2.

5. Results and Discussion

The stochastic solver, described in Section 4, was tested and
applied to the cavity flow. A unit lid velocity is considered
with zero horizontal and vertical velocities on other bound-
aries.The stream function will be zero for all boundaries.The
boundary vorticity is computed from the curl of the velocity.
The stochastic variation of the viscosity is chosen to be in the
form:

] = ]
0
(1 +

𝑛𝑃𝑇

∑

𝑛=1

(0.1)
𝑛
Ψ
𝑛
) , (16)

where ]
0
is the mean viscosity. This means that, for first

order (𝑃 = 1) and first dimension (𝑀 = 1), the viscosity
standard deviation is 10% of the mean value ]

0
. Unstructured

triangular grid of 500 elements is used in the simulations.
More finer unstructured triangular grids of 1900 and 3000
elements are also used in the simulations and in testing the
developed solver. Figure 3 shows the convergence history of
the stochastic solver on different grid sizes (500 and 1900
elements) with different values of the mean viscosity ]

0
. As it

is expected, the number of iterations to reach a certain error
is increased as the mean viscosity ]

0
decreases. Also, more
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Figure 9: Mean values of horizontal ((a) and (c)) and vertical ((b) and (d)) velocities for 𝑃 = 2 and𝑀 = 2.

iterations are required to reach a certain error as the grid size
increases.

The mean of the horizontal velocity component is tested
and compared with the known benchmark solution in [27].
Good agreements are obtainedwhen comparing the horizon-
tal velocity component at the vertical midline (𝑥 = 0.5) for
mean viscosity of 0.01 and 0.001 as shown in Figure 4.

The stochastic solver is tested and validated against the
MC simulations. For a fair comparison between the two
approaches, the deterministic solver used in the MC simu-
lations is taken to be the same stochastic solver but with zero

order and zero dimension, that is, 𝑃 = 𝑀 = 0. The standard
deviation relative error between the stochastic solver and
the MC simulations for the horizontal and vertical velocity
componentswasmeasured over thewhole solution domain as
shown in Figure 5. At a mean viscosity of 0.01, the maximum
relative error in themean is 0.035% for the horizontal velocity
component and is 0.014% for the vertical velocity component.
The figure shows also that the relative errors are larger in the
regions with small values of the velocity components.

The p.d.f of the velocity components, vorticity, and
the stream function are simulated and compared between
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Figure 10: Standard deviation of the vorticity ((a) and (c)) and the stream function ((b) and (d)) for 𝑃 = 2 and𝑀 = 2.

the stochastic solver (with 𝑃 = 2 and 𝑀 = 2) and the
MC simulations as shown in Figures 6 and 7. The p.d.f
comparisons of the vorticity and stream function are done
at 𝑥 = 0.1698 and 𝑦 = 0.7767. As it is shown in the
figures, the distributions are near from the standard Gaussian
distribution. Good agreements are obtained for both the
mean and variance even with 100MC simulations. Increasing
the MC simulations enhances the agreement but it will be
very expensive both in time and storage. In the current work,
the MC simulations are done in parallel (multithreading) to
exploit the current available multicore architecture.

Simulations of the vorticity and stream function mean
values for a mean viscosity of 0.01 and 0.001 are shown
in Figure 8. Figure 9 shows the mean values of the two
velocity components and formean viscosity of 0.01 and 0.001,
respectively. The standard deviations of the vorticity and the
stream function using the current stochastic solver and for
mean viscosity of 0.01 and 0.001 are shown in Figure 10.
Figure 11 shows the standard deviations of the two velocity
components formean viscosity of 0.01 and 0.001, respectively.
Qualitatively, there is a good agreement with the previous
work in [12]. The quantitative comparison for the mean
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Figure 11: Standard deviation of horizontal ((a) and (c)) and vertical ((b) and (d)) velocity components for 𝑃 = 2 and𝑀 = 2.

horizontal velocity was shown in Figure 4. Comparisons of
the standard deviations are given in Tables 1, 2, and 3 and
Figure 12.

It is worth to note that Figures 8–11 are identical in case
of MC simulations. The quantitative comparisons between
using PCE and MC computations are shown Figures 5–7.

Table 1 shows good agreement in the standard deviation
of the horizontal velocity component specially with the
results in [14]. Table 2 is for the standard deviation of the
vertical velocity component. Table 3 compares the standard

deviation of the horizontal velocity component in case of
(𝑃 = 1,𝑀 = 1) and (𝑃 = 2,𝑀 = 2). As we can notice only
small changes occurred.

Also, random variation of the lid velocity is considered
and compared with [12]. The standard deviation of the lid
velocity was taken to be 10%of themean lid velocity. Figure 13
shows good agreements with the solution in [12]. The mixed
random variation of both the viscosity and the lid velocity is
evaluated. Comparison between the standard deviation of the
horizontal velocity component and 10% standard deviation



12 Journal of Applied Mathematics

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.2 0.4 0.6 0.8 1

Current work
Lacor [14]

𝜎
u

y

(a)

0

0.001

0.002

0.003

0.004

0.005

0.006

0 0.2 0.4 0.6 0.8 1

Current work
Lacor [14]

𝜎
�

y

(b)

Figure 12: Standard deviation comparison of the horizontal velocity component (a) and vertical velocity component (b) along the vertical
midline (𝑥 = 0.5).

Table 1: Standard deviation of horizontal velocity component (peaks from left to right).

1st peak 2nd peak 3rd peak Rest of domain
Value Location Value Location Value Location Value

Current work 0.013 (0.24, 0.95) 0.013 (0.62, 0.71) 0.009 (0.71, 0.44) 0.001
Wang and Shun [12] 0.013 (0.25, 0.95) 0.012 (0.62, 0.72) 0.008 (0.73, 0.43) 0.003
Lacor [14] 0.013 (0.25, 0.95) 0.012 (0.61, 0.71) 0.009 (0.72, 0.43) 0.001
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Figure 13: Comparison of the horizontal velocity standard deviation
at the horizontal midline (𝑦 = 0.5) for random lid velocity with 10%
standard deviation.

in the viscosity, 10% standard deviation in the lid velocity,
and mixed effect of 10% standard deviation of both viscosity
and the lid velocity is shown in Figure 14. As it is clear, the
mixed effect is less than the unique variation in the lid velocity
but greater than the unique effect of the random viscosity
variation. We may notice that for 𝑥 < 0.5 the mixed effect
is the superposition of both unique effects, while, for 𝑥 ≥ 0.5,
the mixed effect is the difference between the two unique
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Figure 14: Comparison of the horizontal velocity standard deviation
at the horizontal midline (𝑦 = 0.5) for different random variations.

effects. Also, the effect of different values of the standard
deviation of the lid velocity is tested; 2.5%, 5%, and 10% of
the mean lid velocity, as shown in Figure 15. The maximum
value of the standard deviation of the horizontal velocity
component was 0.0076, 0.0152, and 0.0304, respectively, and
occurs at 𝑥 = 0.7 in all cases. Figure 16 shows a comparison of
the standard deviation of the vertical velocity component for
different values of the viscosity standard deviation; 2.5%, 5%,
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Table 2: Standard deviation of vertical velocity component (peaks from left to right).

1st peak 2nd peak 3rd peak Rest of domain
Value Location Value Location Value Location Value

Current work 0.008 (0.066, 0.88) 0.007 (0.72, 0.77) 0.016 (0.93, 0.72) 0.001
Wang and Shun [12] 0.008 (0.066, 0.89) 0.007 (0.74, 0.78) 0.015 (0.92, 0.68) 0.003
Lacor [14] 0.008 (0.059, 0.89) 0.007 (0.74, 0.78) 0.016 (0.93, 0.73) 0.001

Table 3: Standard deviation of horizontal velocity component for different order (𝑃) and dimension (𝑀) (peaks from left to right).

1st peak 2nd peak 3rd peak Rest of domain
Value Location Value Location Value Location Value

Current work 𝑃 = 1,𝑀 = 1 0.0129 (0.24, 0.95) 0.0129 (0.62, 0.71) 0.0092 (0.71, 0.44) 0.001
Current work 𝑃 = 2,𝑀 = 2 0.0133 (0.23, 0.95) 0.0133 (0.61, 0.70) 0.0094 (0.71, 0.44) 0.001
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Figure 15: Comparison of the horizontal velocity standard deviation
at the horizontal midline (𝑦 = 0.5) for different values of lid velocity
standard deviation.

and 10% of a mean viscosity of 0.01. We can notice that the
stochastic response at the midline only scales up and down
but does not change its profile.

6. Summary and Conclusions

The vorticity-stream function formulation of the 2D incom-
pressible Navier-Stokes equations with random variation in
the viscosity and/or the boundary conditions is considered.
A node-centered finite-volume stochastic solver is developed
and tested on the cavity flow. The results are compared
with the MC simulations and with previous research works
with good agreements. The effect of different stochastic
variations of flow viscosity and/or lid velocity is quantified.
The developed solver was shown to be efficient in simulating
the stochastic 2D incompressible flow.
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Figure 16: Comparison of the horizontal velocity standard deviation
at the horizontal midline (𝑦 = 0.5) for different values of viscosity
standard deviation.

Acknowledgments

The authors thank Prof. M. A. El-Tawil (passed away) for the
continuous support and motivation for this work.Thanks are
due also to Prof. E. F. Abdel-Gawad and Dr. O. H. Galal for
the continuing support.

References

[1] O. H. Galal, W. El-Tahan, M. A. El-Tawil, and A. A. Mahmoud,
“Spectral SFEM analysis of structures with stochastic param-
eters under stochastic excitation,” Structural Engineering and
Mechanics, vol. 28, no. 3, pp. 281–294, 2008.

[2] O. Galal, The solution of stochastic linear partial differential
equation using SFEM through neumann and homogeneous chaos
expansions [Ph.D. thesis], Cairo University, Cairo, Egypt, 2005.

[3] S. Rahman and H. Xu, “A meshless method for computational
structure mechanics,” International Journal for Computational



14 Journal of Applied Mathematics

Methods in Engineering Science andMechanics, vol. 6, pp. 41–58,
2005.
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