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A generalized Caristi type coincidence point theorem and its equivalences in the setting of topological spaces by using a kind of
nonmetric type function are obtained. These results are used to establish variational principle and its equivalences in 𝑑-complete
spaces, bornological vector space, seven kinds of completed quasi-semimetric spaces equipped with 𝑄-functions, uniform spaces
with 𝑞-distance, generating spaces of quasimetric family, and fuzzy metric spaces.

1. Introduction

Caristi’s fixed-point theorem [1, 2] and its equivalences, Eke-
land variational principle [3, 4], and Takahashi minimization
theorem are forceful tools in nonlinear analysis, control
theory, and global analysis; see, for example, [3–5]. In the
last two decades, Caristi’s fixed-point theorem and Ekeland
variational principle have been generalized and extended in
several directions. About these, one can refer to, for example,
[1–32] and the references therein. In particular, in [25], a very
general Ekeland variational principle andCaristi’s fixed-point
theorem are presented, which give a unified approach to three
classes of Ekeland type variational principle: in the first class,
the underlying space is a sequentially complete uniform space
(or equivalently, a sequentially complete F-type topological
space), and the perturbation involves a family of topology
generating pseudometrics (or quasimetrics); in the second
class, the underlying space is a locally complete locally convex
space (resp., a locally complete locally 𝑝-convex space), and
the perturbation involves a family of topology generating
seminorms (resp., topology generating 𝑝-homogeneous 𝐹-
pseudonorms) or involves a single Minkowski functional; in
the third class, the underlying space is a complete metric
space, and the perturbation involves a 𝑤-distance or a 𝜏-
function. On the other hand, Banach fixed-point theorem
has been extended to large class of nonmetric spaces which
included 𝑑-complete topological spaces, symmetric spaces,
and quasimetric spaces (see, e.g., [33–35]). But to our

knowledge, neither Ekeland’s variational principle nor any
of its equivalents have been established in such 𝑑-complete
topological spaces.

Motivated by the aforementioned works, we attempt to
give a unified approach to the previous works. A generalized
Caristi type coincidence point theorem in the setting of
topological spaces by using a kind of nonmetric type function
is proved. As an application of this Caristi’s coincidence
point theorem, an Ekeland type variational principle and
its equivalences in the setting of topological spaces are
obtained. Also, these results present Caristi type coincidence
point theorem, variational principle, and its equivalences in
𝑑-complete topological spaces. Moreover, these results are
used to establish variational principle and its equivalences
in bornological vector space, seven kinds of completed
quasi-semimetric spaces equipped with 𝑄-functions, uni-
form spaceswith 𝑞-distance, generating spaces of quasimetric
family, and fuzzy metric spaces. The results of this paper
uniformly extend and generalize the corresponding results
appeared in the literature [1–4, 6–13, 15, 25, 26, 28, 30, 32].

2. Caristi Type Coincidence Point Theorem

The primary goal of this section is to establish two equivalent
generalized Caristi type coincidence point theorems in the
setting of topological spaces by using a kind of nonmetric
type function. As an application of these Caristi’s coincidence
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point theorems, equivalent generalized Caristi type common
fixed point theorem, Caristi type fixed point theorem for set
valued, Caristi type fixed point theorem for single-valued
map, Ekeland type variational principles and its equivalences
in the setting of topological spaces are obtained. To establish
our main results, we need the following definitions.

Definition 1 (see [15]). Let (𝑋, 𝜏) be a topological space. An
extended real-valued function 𝑓 : 𝑋 → (−∞, +∞] is said
to be sequentially lower monotone if for every sequence {𝑥

𝑛
}

converging to 𝑥 and satisfying

𝑓 (𝑥
1
) ≥ 𝑓 (𝑥

2
) ≥ ⋅ ⋅ ⋅ ≥ 𝑓 (𝑥

𝑛
) ≥ ⋅ ⋅ ⋅ (1)

we have 𝑓(𝑥) ≤ 𝑓(𝑥
𝑛
), for each 𝑛.

Definition 2. Let (𝑋, 𝜏) be a topological space and 𝑝 :

𝑋 × 𝑋 → [0, +∞] a function. A proper function 𝑓 :

𝑋 → (−∞, +∞] (i.e., 𝑓(𝑥) is not identically to +∞) is
said to be sequentially lower monotone with respect to 𝑝 (in
short, sequentially lower monotone with respect to 𝑝) if for
any sequence {𝑥

𝑛
} in 𝑋 satisfying ∑

∞

𝑛=1
𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) < +∞,
lim
𝑛→∞

𝑥
𝑛

= 𝑥 and 𝑓(𝑥
𝑛+1

) ≤ 𝑓(𝑥
𝑛
) for each 𝑛, we have

𝑓(𝑥) ≤ 𝑓(𝑥
𝑛
) for each 𝑛 ∈ 𝑁.

Definition 3. Let (𝑋, 𝜏) be a topological space and 𝑝 : 𝑋 ×

𝑋 → [0, +∞] a function.

(1) (𝑋, 𝜏) is said to be 𝑝-complete [33, 34] if any sequence
{𝑥
𝑛
} with ∑

∞

𝑛=1
𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) < +∞ implies that the
sequence {𝑥

𝑛
} is convergent to some 𝑥 ∈ 𝑋.

(2) (𝑋, 𝜏) is said to be sequentially lower complete
with respect to 𝑝, if any sequence {𝑥

𝑛
} with

∑
∞

𝑛=1
𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) < +∞ implies that the sequence {𝑥
𝑛
}

is convergent to some 𝑥 ∈ 𝑋, and

lim inf
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑦) ≤ 𝑝 (𝑥, 𝑦) , (2)

for any 𝑦 ∈ 𝑋.
(3) Let 𝑓 : 𝑋 → (−∞, +∞] be a proper function.

The topological space (𝑋, 𝜏) is said to be sequentially
lower complete with respect to 𝑝 and 𝑓 if any
sequence {𝑥

𝑛
} in 𝑋 satisfying ∑

∞

𝑛=1
𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) < +∞

and 𝑓(𝑥
𝑛+1

) ≤ 𝑓(𝑥
𝑛
) for all 𝑛 is convergent to some

𝑥 ∈ 𝑋, and (2) holds for any 𝑦 ∈ 𝑋.

Remark 4. It is clearly that if (𝑋, 𝜏) is sequentially lower
complete w.r.t. 𝑝, then for any proper function 𝑓 : 𝑋 →

(−∞, +∞], (𝑋, 𝜏) is sequentially lower complete w.r.t. 𝑝 and
𝑓.

Now, we can prove the following Caristi type coincidence
point theorem in the setting of topological spaces.

Theorem 5. Let (𝑋, 𝜏) be a topological space, 𝑝 : 𝑋 × 𝑋 →

[0, +∞] a function, 𝑓 : 𝑋 → (−∞, +∞] a proper, bounded
from below, sequentially lower monotone function with respect
to 𝑝, and 𝜑 : (−∞, +∞) → (0, +∞) a nondecreasing
function. Assume that (𝑋, 𝜏) is sequentially lower complete
with respect to 𝑝 and 𝑓. Let 𝐷 be a nonempty subset of 𝑋,

𝑔 : 𝐷 → 𝑋 a surjective function, 𝐼 an index set, and, for each
𝑖 ∈ 𝐼, 𝑇

𝑖
: 𝐷 → 2

𝑋 a multivalued map. Then the following
conclusions hold and are equivalent.

(1) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥),

there exists 𝑦 ∈ 𝑋, such that

𝑒𝑖𝑡ℎ𝑒𝑟 0 = 𝑝 (𝑔 (𝑥) , 𝑦) < 𝜑 (𝑓 (𝑔 (𝑥))) (𝑓 (𝑔 (𝑥)) − 𝑓 (𝑦)) ,

𝑜𝑟 0 < 𝑝 (𝑔 (𝑥) , 𝑦) ≤ 𝜑 (𝑓 (𝑔 (𝑥))) (𝑓 (𝑔 (𝑥)) − 𝑓 (𝑦)) .

(3)

Then for any 𝑥
0
∈ 𝑋, there exists a coincidence point

𝑢 ∈ 𝐷 of 𝑔 and {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such

that

𝑓 (𝑔 (𝑢)) ≤ 𝑓 (𝑥
0
) . (4)

(2) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥),

there exists an 𝑖
0

∈ 𝐼 and 𝑦 ∈ 𝑇
𝑖0
(𝑥), such that (3)

holds. Then for any 𝑥
0
∈ 𝑋, there exists a coincidence

point 𝑢 ∈ 𝐷 of 𝑔 and {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢),

such that (4) holds.

Proof. (1) We take an 𝑥
0

∈ 𝑋, since 𝑓 ̸≡ +∞; without
loss of generality, we can assume that 𝑓(𝑥

0
) < +∞. Since

𝑔 : 𝐷 → 𝑋 is a surjective function, there exists 𝑢
0
∈ 𝐷, such

that 𝑔(𝑢
0
) = 𝑥

0
. If 𝑔(𝑢

0
) ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢
0
), then the conclusion

holds. Otherwise, by the supposition, there exists 𝑦 ∈ 𝑋, such
that
either 0=𝑝 (𝑔 (𝑢

0
) , 𝑦)<𝜑 (𝑓 (𝑔 (𝑢

0
))) (𝑓 (𝑔 (𝑢

0
))−𝑓 (𝑦)) ,

or 0 < 𝑝 (𝑔 (𝑢
0
) , 𝑦) ≤ 𝜑 (𝑓 (𝑔 (𝑢

0
))) (𝑓 (𝑔 (𝑢

0
))−𝑓 (𝑦)) .

(5)

Thus,
𝑝 (𝑥
0
, 𝑦) = 𝑝 (𝑔 (𝑢

0
) , 𝑦)

< 2𝜑 (𝑓 (𝑔 (𝑢
0
))) (𝑓 (𝑔 (𝑢

0
)) − 𝑓 (𝑦))

= 2𝜑 (𝑓 (𝑥
0
)) (𝑓 (𝑥

0
) − 𝑓 (𝑦)) .

(6)

Hence,

𝑆
1
= {𝑦 ∈ 𝑋 : 𝑝 (𝑥

0
, 𝑦) < 2𝜑 (𝑓 (𝑥

0
)) (𝑓 (𝑥

0
) − 𝑓 (𝑦))} ̸= 0.

(7)

Obviously, for any 𝑦 ∈ 𝑆
1
, 𝑓(𝑥
0
) > 𝑓(𝑦). Thus, we can take

𝑦
1
∈ 𝑆
1
such that

𝑓 (𝑦
1
) <

1

2
(𝑓 (𝑥

0
) + inf
𝑥∈𝑆1

𝑓 (𝑥)) < 𝑓 (𝑥
0
) . (8)

Assume that 𝑦
𝑛
has been taken, and 𝑦

𝑛
= 𝑔(𝑢

𝑛
) for 𝑢

𝑛
∈ 𝐷. If

𝑔(𝑢
𝑛
) ∈ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑢
𝑛
), then the conclusion holds. Otherwise,

𝑆
𝑛+1

= {𝑦 ∈ 𝑋 : 𝑝 (𝑦
𝑛
, 𝑦)<2𝜑 (𝑓 (𝑦

𝑛
)) (𝑓 (𝑦

𝑛
)−𝑓 (𝑦))} ̸= 0.

(9)

Note that for any 𝑦 ∈ 𝑆
𝑛+1

, we have 𝑓(𝑦
𝑛
) > 𝑓(𝑦). Thus, we

can take 𝑦
𝑛+1

∈ 𝑆
𝑛+1

such that

𝑓 (𝑦
𝑛+1

) <
1

2
(𝑓 (𝑦

𝑛
) + inf
𝑥∈𝑆𝑛+1

𝑓 (𝑥)) < 𝑓 (𝑦
𝑛
) , (10)

𝑝 (𝑦
𝑛
, 𝑦
𝑛+1

) < 2𝜑 (𝑓 (𝑦
𝑛
)) (𝑓 (𝑦

𝑛
) − 𝑓 (𝑦

𝑛+1
)) . (11)
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It remains to consider the case that there is an infinite
sequence {𝑦

𝑛
} which satisfies (10) and (11). From (10), we

know that {𝑓(𝑦
𝑛
)} is a decreasing sequence. Since 𝜑 is

nondecreasing, it follows from (11) that

∞

∑

𝑛=1

𝑝 (𝑦
𝑛
, 𝑦
𝑛+1

) ≤

∞

∑

𝑛=1

2𝜑 (𝑓 (𝑦
𝑛
)) (𝑓 (𝑦

𝑛
) − 𝑓 (𝑦

𝑛+1
))

≤ 2𝜑 (𝑓 (𝑥
0
))

∞

∑

𝑛=1

(𝑓 (𝑦
𝑛
) − 𝑓 (𝑦

𝑛+1
))

≤ 2𝜑 (𝑓 (𝑥
0
)) (𝑓 (𝑥

0
) − inf
𝑥∈𝑋

𝑓 (𝑥))

< +∞.

(12)

Since (𝑋, 𝜏) is sequentially lower complete w.r.t. 𝑝 and
𝑓, there exists V ∈ 𝑋 such that lim

𝑛→∞
𝑦
𝑛

= V and
lim inf

𝑛→∞
𝑝(𝑦
𝑛
, 𝑥) ≤ 𝑝(V, 𝑥) for any 𝑥 ∈ 𝑋. Assume that

V = 𝑔(𝑢), 𝑢 ∈ 𝐷. We claim that the conclusion holds for 𝑢.
Since 𝑓 is sequentially lower monotone, we have

𝑓 (𝑔 (𝑢)) = 𝑓 (V) ≤ 𝑓 (𝑦
𝑛
) < 𝑓 (𝑥

0
) . (13)

That is (4) holds. If𝑔(𝑢) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑢), then there exists𝑦 ∈ 𝑋,

such that

𝑝 (V, 𝑦) = 𝑝 (𝑔 (𝑢) , 𝑦


)

< 2𝜑 (𝑓 (𝑔 (𝑢))) (𝑓 (𝑔 (𝑢)) − 𝑓 (𝑦


))

= 2𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑦


)) .

(14)

It follows from lim inf
𝑛→∞

𝑝(𝑦
𝑛
, 𝑦


) ≤ 𝑝(V, 𝑦) that there
exists a subsequence {𝑦

𝑛𝑘
} ⊂ {𝑦

𝑛
} such that

lim
𝑘→∞

𝑝 (𝑦
𝑛𝑘
, 𝑦


) = lim inf
𝑛→∞

𝑝 (𝑦
𝑛
, 𝑦


) . (15)

From this and (14) we know that there exists an 𝑚 such that
for all 𝑘 ≥ 𝑚,

𝑝 (𝑦
𝑛𝑘
, 𝑦


) < 2𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑦


)) . (16)

From (13) we have

𝑝 (𝑦
𝑛𝑘
, 𝑦


) < 2𝜑 (𝑓 (𝑦
𝑛𝑘
)) (𝑓 (𝑦

𝑛𝑘
) − 𝑓 (𝑦



)) , (17)

that is, 𝑦 ∈ 𝑆
𝑛𝑘+1

, 𝑘 ≥ 𝑚. From (10) we have

2𝑓 (𝑦
𝑛𝑘+1

) − 𝑓 (𝑦
𝑛𝑘
) ≤ inf
𝑦∈𝑆𝑛
𝑘
+1

𝑓 (𝑦) ≤ 𝑓 (𝑦


) . (18)

By letting 𝑘 → +∞, we get that

lim
𝑘→∞

𝑓 (𝑦
𝑛𝑘
) = lim
𝑛→∞

𝑓 (𝑦
𝑛
) ≤ 𝑓 (𝑦



) . (19)

Combing with (13) we have 𝑓(V) ≤ 𝑓(𝑦


) which contradicts
(14). Thus the conclusion of Theorem 5(1) holds.

(2) It is clear that Theorem 5(1) ⇒ Theorem 5(2). Now,
we prove that Theorem 5(2) ⇒ Theorem 5(1). Assume that

the conditions of Theorem 5(1) are satisfied; then, for each
𝑥 ∈ 𝐷, if 𝑔(𝑥) ∉ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑥), there exists 𝑦 ∈ 𝑋, such that (3)

holds. Then we get that

𝐺 (𝑥) = {𝑦 ∈ 𝑋 : 𝑔 (𝑥) , 𝑦 satisfy (3)} ̸= 0 (20)

and 𝑔(𝑥) ∉ 𝐺(𝑥). For each 𝑖 ∈ 𝐼, we define �̃�
𝑖
: 𝐷 → 2

𝑋 by

�̃�
𝑖
(𝑥) =

{{

{{

{

𝑇
𝑖
(𝑥) , if 𝑔 (𝑥) ∈ ⋂

𝑖∈𝐼

𝑇
𝑖
(𝑥) ;

𝑇
𝑖
(𝑥) ∪ 𝐺 (𝑥) , if 𝑔 (𝑥) ∉ ⋂

𝑖∈𝐼

𝑇
𝑖
(𝑥) .

(21)

It is clear that 𝑔(𝑥) ∈ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥) if and only if 𝑔(𝑥) ∈

⋂
𝑖∈𝐼

�̃�
𝑖
(𝑥). Also, {�̃�

𝑖
} satisfies the condition of Theorem 5(2).

Then by the conclusion of Theorem 5(2), there exists a
coincidence point 𝑢 ∈ 𝐷 of 𝑔 and {�̃�

𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈

⋂
𝑖∈𝐼

�̃�
𝑖
(𝑢), such that (4) holds. Therefore, there exists a

coincidence point 𝑢 ∈ 𝐷 of 𝑔 and {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈

⋂
𝑖∈𝐼

𝑇
𝑖
(𝑢), such that (4) holds. That is Theorem 5(1) holds.

The proof is completed.

Remark 6. If for any 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦 implies that
𝑝(𝑥, 𝑦) > 0, then the conclusion (1) of Theorem 5 can be
rewritten as: for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑥) there

exists 𝑦 ∈ 𝑋, such that

0 < 𝑝 (𝑔 (𝑥) , 𝑦) ≤ 𝜑 (𝑓 (𝑔 (𝑥))) (𝑓 (𝑔 (𝑥)) − 𝑓 (𝑦)) . (22)

In particular, if 𝐷 = 𝑋 and 𝑔 : 𝐷 → 𝑋 is the identity
map in Theorem 5, then we obtain the following generalized
Caristi type common fixed point theorem, Caristi type fixed
point theorem for set-valued, and single-valued map.

Theorem 7. Let (𝑋, 𝜏) be a topological space, 𝑝 : 𝑋 × 𝑋 →

[0, +∞] a function, 𝑓 : 𝑋 → (−∞, +∞] a proper, bounded
from below, sequentially lower monotone function with respect
to 𝑝, and 𝜑 : (−∞, +∞) → (0, +∞) a nondecreasing
function. Assume that (𝑋, 𝜏) is sequentially lower complete
w.r.t. 𝑝 and 𝑓. Then the following conclusions hold and are all
equivalent to Theorem 5.

(1) Let 𝐼 be an index set, and, for each 𝑖 ∈ 𝐼, let 𝑇
𝑖

:

𝑋 → 2
𝑋 be a multivalued map. Suppose further that

for each 𝑥 ∈ 𝑋 with 𝑥 ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥), there exists 𝑦 ∈ 𝑋,

such that

𝑒𝑖𝑡ℎ𝑒𝑟 0 = 𝑝 (𝑥, 𝑦) < 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) ,

𝑜𝑟 0 < 𝑝 (𝑥, 𝑦) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) .
(23)

Then for any 𝑥
0
∈ 𝑋, there exists a common fixed point

𝑢 ∈ 𝑋 of {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑢 ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such that

𝑓 (𝑢) ≤ 𝑓 (𝑥
0
) . (24)

(2) Let 𝑇 : 𝑋 → 2
𝑋 be a multivalued map. Suppose

further that for each 𝑥 ∈ 𝑋 with 𝑥 ∉ 𝑇(𝑥), there exists
𝑦 ∈ 𝑋, such that (23) holds. Then for any 𝑥

0
∈ 𝑋, 𝑇

has a fixed point 𝑢 ∈ 𝑋, such that (24) holds.
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(3) Let 𝑇 : 𝑋 → 𝑋 be a map. Suppose further that for
each 𝑥 ∈ 𝑋with 𝑥 ̸= 𝑇(𝑥), there exists 𝑦 ∈ 𝑋, such that
(23) holds. Then for any 𝑥

0
∈ 𝑋, 𝑇 has a fixed point

𝑢 ∈ 𝑋, such that (24) holds.

Proof. It is clear that the following implications hold: Theo-
rem 5(1)⇒Theorem 7(1)⇒Theorem 7(2)⇒Theorem 7(3).

Now, we prove that Theorem 7(3) ⇒ Theorem 5(1).
Assume that the conditions of Theorem 5 hold. It is similar
to the proof of Lemma 2.1 in [36] that, by using the axiom of
choice, we can prove that there exists a subset 𝐸 ⊆ 𝐷 such
that 𝑔(𝐸) = 𝑔(𝐷) = 𝑋 and 𝑔 : 𝐸 → 𝑋 is one-to-one. Define
a map 𝑇 : 𝑋 → 𝑋 by

𝑇 (𝑥) =

{{

{{

{

𝑥, if 𝑔 (𝑢) = 𝑥 ∈ ⋂

𝑖∈𝐼

𝑇
𝑖
(𝑢) , 𝑢 ∈ 𝐸;

𝑦, if 𝑔 (𝑢) = 𝑥 ∉ ⋂

𝑖∈𝐼

𝑇
𝑖
(𝑢) , 𝑢 ∈ 𝐸,

(25)

where 𝑦 ∈ 𝑋 such that either

0 = 𝑝 (𝑔 (𝑢) , 𝑦) = 𝑝 (𝑥, 𝑦)

< 𝜑 (𝑓 (𝑔 (𝑢))) (𝑓 (𝑔 (𝑢)) − 𝑓 (𝑦))

= 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) ,

(26)

or

0 < 𝑝 (𝑔 (𝑢) , 𝑦) = 𝑝 (𝑥, 𝑦)

≤ 𝜑 (𝑓 (𝑔 (𝑢))) (𝑓 (𝑔 (𝑢)) − 𝑓 (𝑦))

= 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) .

(27)

Then 𝑇 satisfies the condition of Theorem 7(3); thus for any
𝑥
0
∈ 𝑋, 𝑇 has a fixed point V ∈ 𝑋, such that 𝑓(V) ≤ 𝑓(𝑥

0
)

holds. Since 𝑔(𝐸) = 𝑋, there exists 𝑢 ∈ 𝐸 ⊂ 𝐷, such that
𝑔(𝑢) = V. Then by the definition of 𝑇, we get that 𝑔(𝑢) = V ∈

⋂
𝑖∈𝐼

𝑇
𝑖
(𝑢). That is, the conclusion of Theorem 5 holds. The

proof is completed.

The following corollary is an extension of the results in
[19, 20]. In Corollary 8, we remove the condition that 𝜂 is
nondecreasing, which is used in [19, 20].

Corollary 8. Let (𝑋, 𝑑) be a completed metric space. Suppose
that 𝜂 : [0, +∞) → (−∞, +∞) satisfies 𝜂(0) = 0 and that
𝑓 : 𝑋 → (−∞, +∞) is lower semicontinuous on𝑋, and there
exist 𝑥

0
∈ 𝑋 and two real numbers 𝑎, 𝑏 ∈ (−∞, +∞), such

that

𝑓 (𝑥) ≥ 𝑎𝑑 (𝑥, 𝑥
0
) + 𝑏, (28)

and one of the following conditions is satisfied:

(i) 𝑎 ≥ 0, 𝜂 is nonnegative on 𝑊 = {𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑋},
and there exist 𝑐 > 0 and 𝜀 > 0 such that

𝜂 (𝑡) ≥ 𝑐𝑡, ∀𝑡 ∈ {𝑡 ≥ 0 : 𝜂 (𝑡) ≤ 𝜀} ∩ 𝑊; (29)

(ii) 𝑎 < 0, 𝜂(𝑡) + 𝑎𝑡 is nonnegative on 𝑊, and there exist
𝑐 > 0 and 𝜀 > 0 such that

𝜂 (𝑡) + 𝑎𝑡 ≥ 𝑐𝑡, ∀𝑡 ∈ {𝑡 ≥ 0 : 𝜂 (𝑡) + 𝑎𝑡 ≤ 𝜀} ∩ 𝑊. (30)

Then each Caristi type mapping 𝑇 : 𝑋 → 𝑋 (i.e.,
satisfying 𝜂(𝑑(𝑥, 𝑇𝑥)) ≤ 𝑓(𝑥) − 𝑓(𝑇𝑥), ∀𝑥 ∈ 𝑋) has
a fixed point V ∈ 𝑋.

Proof.

Case (i). It follows from 𝑎 ≥ 0 and (28) that 𝑓 is a bounded
from below, lower semicontinuous function on𝑋. Let

𝛼 = inf
𝑥∈𝑋

𝑓 (𝑥) , 𝑄 = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) ≤ 𝛼 + 𝜀} . (31)

Then, as in the proof of the Theorem 1 in [20] that (𝑄, 𝑑) is a
complete metric space, 𝑇𝑄 ⊂ 𝑄, and

0 ≤ 𝜂 (𝑑 (𝑥, 𝑇𝑥)) ≤ 𝑓 (𝑥) − 𝑓 (𝑇𝑥) ≤ 𝜀, ∀𝑥 ∈ 𝑄. (32)

Thus we have, by (29),

𝑐𝑑 (𝑥, 𝑇𝑥) ≤ 𝜂 (𝑑 (𝑥, 𝑇𝑥)) ≤ 𝑓 (𝑥) − 𝑓 (𝑇𝑥) ≤ 𝜀, ∀𝑥 ∈ 𝑄.

(33)

Define a function 𝑝 : 𝑄 × 𝑄 → [0, +∞] by 𝑝(𝑥, 𝑦) =

𝑐𝑑(𝑥, 𝑦). Let {𝑥
𝑛
} be a sequence in 𝑄, such that

∞

∑

𝑛=1

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) =

∞

∑

𝑛=1

𝑐𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) < +∞. (34)

This implies that {𝑥
𝑛
} is a Cauchy sequence in𝑄. Since (𝑄, 𝑑)

is a complete metric space, {𝑥
𝑛
} is a convergent sequence in

𝑄. If lim
𝑛→∞

𝑥
𝑛
= 𝑥, then for any 𝑦 ∈ 𝑄, lim

𝑛→∞
𝑝(𝑥
𝑛
, 𝑦) =

lim
𝑛→∞

𝑐𝑑(𝑥
𝑛
, 𝑦) = 𝑐𝑑(𝑥, 𝑦) = 𝑝(𝑥, 𝑦). Thus, (𝑄, 𝑑) is

sequentially lower complete w.r.t. 𝑝. Clearly, all conditions of
Theorem 7 are satisfied. Therefore, 𝑇 has a fixed point in 𝑄.

Case (ii). Let

𝜓 (𝑥) = 𝑓 (𝑥) − 𝑎𝑑 (𝑥, 𝑥
0
) , ∀𝑥 ∈ 𝑋,

𝜂
1
(𝑡) = 𝜂 (𝑡) + 𝑎𝑡, ∀𝑡 ∈ [0, +∞) .

(35)

Then we have

𝜂
1
(𝑑 (𝑥, 𝑇𝑥)) ≤ 𝜓 (𝑥) − 𝜓 (𝑇𝑥) , ∀𝑥 ∈ 𝑋. (36)

Thus, the conclusion can be deduced by Case (i). The proof is
completed.

In Theorem 9, by using Theorem 5, we present a gener-
alized Ekeland type variational principle, maximal element
theorem for a family of multivalued maps, equilibrium
theorem, and a generalized Takahashi minimization theorem
in topological spaces and prove the equivalence among these
results.

Theorem 9. Let (𝑋, 𝜏) be a topological space, 𝑝 : 𝑋 × 𝑋 →

[0, +∞] a function, 𝑓 : 𝑋 → (−∞, +∞] a proper, bounded
from below, sequentially lower monotone function with respect
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to 𝑝, and 𝜑 : (−∞, +∞) → (0, +∞) a nondecreasing
function. Assume that (𝑋, 𝜏) is sequentially lower complete
with respect to 𝑝 and 𝑓. Then for any 𝑥

0
∈ 𝑋, the following

conclusions hold, and they are equivalent to Theorem 5.

(I) (Ekeland type variational principle in topological
spaces) There exists V ∈ 𝑋, such that 𝑓(V) ≤ 𝑓(𝑥

0
)

and

𝑝 (V, 𝑥) = 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) ,

∀𝑥 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑝 (V, 𝑥) = 0,

𝑝 (V, 𝑥) > 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) ,

∀𝑥 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑝 (V, 𝑥) > 0.

(37)

(II) (Maximal element for a family of multivalued maps in
topological spaces) Let 𝐼 be any index set, and, for each
𝑖 ∈ 𝐼, let 𝑇

𝑖
: 𝑋 → 2

𝑋 be a multivalued map. Assume
that for each (𝑥, 𝑖) ∈ 𝑋 × 𝐼 with 𝑇

𝑖
(𝑥) ̸= 0, there exists

𝑦 = 𝑦(𝑥, 𝑖) ∈ 𝑋, such that (23) holds. Then there exists
V ∈ 𝑋, such that 𝑓(V) ≤ 𝑓(𝑥

0
) and 𝑇

𝑖
(V) = 0 for each

𝑖 ∈ 𝐼.
(III) (Equilibrium theorem in topological spaces) Let 𝐹 :

𝑋 × 𝑋 → (−∞, +∞] be a proper, bounded from
below, sequentially lowermonotone function in the first
argument. Suppose that there exists𝑤 ∈ 𝑋 such that for
each 𝑥 with

{𝑢 ∈ 𝑋 : 𝐹 (𝑥, 𝑢) > 0} ̸= 0, (38)

there exists 𝑦 = 𝑦(𝑥) ∈ 𝑋 such that

𝑒𝑖𝑡ℎ𝑒𝑟 0 = 𝑝 (𝑥, 𝑦) < 𝜑 (𝐹 (𝑥, 𝑤)) (𝐹 (𝑥, 𝑤) − 𝐹 (𝑦, 𝑤)) ,

𝑜𝑟 0 < 𝑝 (𝑥, 𝑦) ≤ 𝜑 (𝐹 (𝑥, 𝑤)) (𝐹 (𝑥, 𝑤) − 𝐹 (𝑦, 𝑤)) .

(39)

If (𝑋, 𝜏) is sequentially lower complete w.r.t. 𝑝 and
𝐹(⋅, 𝑤), then there exists V ∈ 𝑋, such that 𝐹(V, 𝑤) ≤

𝐹(𝑥
0
, 𝑤) and 𝐹(V, 𝑦) ≤ 0, for all 𝑦 ∈ 𝑋.

(IV) (Generalized Takahashi minimization theorem in
topological spaces) Suppose that for any 𝑥 with 𝑓(𝑥) >

inf
𝑥∈𝑋

𝑓(𝑥), there exists 𝑦 ∈ 𝑋 such that (23) holds.
Then there exists V ∈ 𝑋, such that 𝑓(V) ≤ 𝑓(𝑥

0
) and

𝑓(V) = inf
𝑥∈𝑋

𝑓(𝑥).

Proof. “Theorem 5(1) ⇒Theorem 9(II).” If the conclusion of
(II) does not hold, then for any 𝑥 ∈ 𝑋, there exists 𝑖, such that
𝑇
𝑖
(𝑥) ̸= 0. By the hypotheses of (II), there exists 𝑦 = 𝑦(𝑥, 𝑖) ∈

𝑋, such that (23) holds; thus, 𝑦 ̸= 𝑥. Let 𝐷 = 𝑋, 𝑔 = 𝐼
𝑑
(the

identical map of𝑋),

𝐻
𝑖
(𝑥) = {

(𝑇
𝑖
(𝑥) ∪ {𝑦 (𝑥, 𝑖)}) \ {𝑥} , if 𝑇

𝑖
(𝑥) ̸= 0,

{𝑥} , if 𝑇
𝑖
(𝑥) = 0.

(40)

Then the conditions of Theorem 5(1) are satisfied for {𝐻
𝑖
}
𝑖∈𝐼
,

𝐷 = 𝑋 and 𝑔 = 𝐼
𝑑
. Thus, from Theorem 5(1) there exists

V ∈ 𝑋 such that V ∈ ⋂
𝑙∈𝐼

𝐻
𝑙
(V). This is a contradiction with

the definition of𝐻
𝑖
. Therefore, there exists V ∈ 𝑋with 𝑓(V) ≤

𝑓(𝑥
0
) such that 𝑇

𝑖
(V) = 0 for any 𝑖 ∈ 𝐼.

“(II)⇒ (III)” Let

𝑇
𝑦
(𝑥) = {

{𝑥} , if 𝐹 (𝑥, 𝑦) > 0,

0, if 𝐹 (𝑥, 𝑦) ≤ 0.
(41)

From this we know that if 𝑇
𝑦
(𝑥) ̸= 0, then 𝐹(𝑥, 𝑦) > 0. By the

hypotheses of (III) there exists 𝑧 = 𝑧(𝑥) ∈ 𝑋, such that

either 0 = 𝑝 (𝑥, 𝑧) < 𝜑 (𝐹 (𝑥, 𝑤)) (𝐹 (𝑥, 𝑤) − 𝐹 (𝑧, 𝑤)) ,

or 0 < 𝑝 (𝑥, 𝑧) ≤ 𝜑 (𝐹 (𝑥, 𝑤)) (𝐹 (𝑥, 𝑤) − 𝐹 (𝑧, 𝑤)) .

(42)

By using (II) for 𝑓(𝑥) = 𝐹(𝑥, 𝑤), there exists V ∈ 𝑋, such
that 𝐹(V, 𝑤) ≤ 𝐹(𝑥

0
, 𝑤) and 𝑇

𝑦
(V) = 0 for any 𝑦 ∈ 𝑋; that is

𝐹(V, 𝑦) ≤ 0, for any 𝑦 ∈ 𝑋.
“(III)⇒ (IV)” Let 𝐹(𝑥, 𝑦) = 𝑓(𝑥) − inf

𝑥∈𝑋
𝑓(𝑥). If

{𝑢 ∈ 𝑋 : 𝐹 (𝑥, 𝑢) > 0} ̸= 0, (43)

then 𝑓(𝑥) > inf
𝑥∈𝑋

𝑓(𝑥). Fix 𝑤 ∈ 𝑋; then 𝐹(𝑥, 𝑤) ≤ 𝐹(𝑥
0
, 𝑤)

if and only if 𝑓(𝑥) ≤ 𝑓(𝑥
0
). By the hypothesis of (IV), there

exists 𝑦 = 𝑦(𝑥) ∈ 𝑋, such that either

0 = 𝑝 (𝑥, 𝑦) < 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦))

= 𝜑 (𝑓 (𝑥)) (𝐹 (𝑥, 𝑤) − 𝐹 (𝑦, 𝑤)) ,

(44)

or

0 < 𝑝 (𝑥, 𝑦) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦))

= 𝜑 (𝑓 (𝑥)) (𝐹 (𝑥, 𝑤) − 𝐹 (𝑦, 𝑤)) .

(45)

Define 𝜓 : (−∞, +∞] → (0, +∞) by 𝜓(𝑡) = 𝜑(𝑡 +

inf
𝑥∈𝑋

𝑓(𝑥)). Then 𝜓(𝐹(𝑥, 𝑦)) = 𝜑(𝑓(𝑥)); thus, the hypothe-
ses of (III) are satisfied for 𝜓 and 𝐹. It follows from (III)
that there exists V ∈ 𝑋, such that 𝐹(V, 𝑤) ≤ 𝐹(𝑥

0
, 𝑤) and

𝐹(V, 𝑦) ≤ 0, for any 𝑦 ∈ 𝑋. This implies that 𝑓(V) ≤ 𝑓(𝑥
0
)

and 𝑓(V) ≤ inf
𝑥∈𝑋

𝑓(𝑥), that is, 𝑓(V) = inf
𝑥∈𝑋

𝑓(𝑥).
“(IV)⇒ (I)” If (I) does not hold, then for any 𝑥 ∈ 𝑋 with

𝑓(𝑥) ≤ 𝑓(𝑥
0
), there exists 𝑦 = 𝑦(𝑥), such that

either 0 = 𝑝 (𝑥, 𝑦) < 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) ,

or 0 < 𝑝 (𝑥, 𝑦) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) .
(46)

This implies that condition of (IV) holds on 𝑋
1
= {𝑥 ∈ 𝑋 :

𝑓(𝑥) ≤ 𝑓(𝑥
0
)}. Then, by (IV) there exists V ∈ 𝑋

1
, such that

𝑓(V) ≤ 𝑓(𝑥
0
) and 𝑓(V) = inf

𝑥∈𝑋1
𝑓(𝑥) = inf

𝑥∈𝑋
𝑓(𝑥). This is

a contradiction with (46). Thus, (I) holds.
“(I) ⇒ Theorem 5(1)” From (I), there exists V ∈ 𝑋, such

that 𝑓(V) ≤ 𝑓(𝑥
0
) and (37) holds. Since 𝑔 is a surjective

mapping, there exists a 𝑢 ∈ 𝐷, such that 𝑔(𝑢) = V. We claim
that 𝑔(𝑢) ∈ ⋂

𝑙∈𝐼
𝑇
𝑙
(𝑢). If 𝑔(𝑢) ∉ ⋂

𝑙∈𝐼
𝑇
𝑙
(𝑢), by the hypotheses

of Theorem 5(1), there exists 𝑦 ∈ 𝑋, such that (3) holds.
This is a contradiction with (37). Thus, 𝑔(𝑢) ∈ ⋂

𝑙∈𝐼
𝑇
𝑙
(𝑢) and

𝑓(𝑔(𝑢)) ≤ 𝑓(𝑥
0
). That is, Theorem 5(1) holds.

The proof is completed.
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Remark 10. Theorem 5–Theorem 9 also present Caristi type
coincidence point theorem, Ekeland type variational princi-
ple, and their equivalences in 𝑝-complete topological spaces.
Moreover, from [34] we know that 𝑑-complete topological
spaces include 𝑑-complete symmetric (semimetric) spaces
and complete quasimetric spaces.

3. Applications to Some Non-Metric Spaces

In this section, we show that our results in section two can be
usedwithmanynonmetric spaces.The readermay refer to the
references [6, 13, 15, 25, 28, 37] for the notions and symbols in
this section.

In [6], the authors introduce the concept of 𝑄-function
in quasimetric spaces which generalizes the notion of the
𝜏-function and 𝑤-distance, and they also prove an Ekeland
variational principle as well as its equivalences in such spaces.

For the convenience of the reader we present the main
concept of quasimetric space in the following (refer to [38]).

Let 𝑋 be a nonempty set. A real valued function 𝑑 : 𝑋 ×

𝑋 → [0, +∞) is said to be a quasi-semimetric on 𝑋 if the
following conditions are satisfied:

(QM1) 𝑑(𝑥, 𝑦) ≥ 0 and 𝑑(𝑥, 𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝑋;
(QM2) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

If further

(QM3) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 0 implies 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ 𝑋,
then 𝑑 : 𝑋×𝑋 → [0, +∞) is said to be a quasimetric
on𝑋. A nonempty set𝑋 togetherwith a quasimetric𝑑
(or quasi-semimetric 𝑑) is called a quasimetric space
(or quasi-semimetric space), and it is denoted by
(𝑋, 𝑑). If (𝑋, 𝑑) is a quasi-semimetric space, for 𝑥 ∈ 𝑋

and 𝑟 > 0, we define the balls in𝑋 by the formula
𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝑟}—the open ball, and
𝐵[𝑥, 𝑟] = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝑟}—the closed ball.

The topology 𝜏 of a quasi-semimetric (𝑋, 𝑑) can be
defined starting from the family 𝑉(𝑥) of neighborhoods of
an arbitrary point 𝑥 ∈ 𝑋:

𝑉 ∈ 𝑉(𝑥) ⇔ ∃𝑟 > 0 such that 𝐵(𝑥, 𝑟) ⊂ 𝑉 ⇔ ∃𝑟


> 0

such that 𝐵[𝑥, 𝑟] ⊂ 𝑉.

The convergence of a sequence {𝑥
𝑛
} to 𝑥 with respect to 𝜏

can be characterized by 𝑑(𝑥, 𝑥
𝑛
) → 0.

Definition 11. Let (𝑋, 𝑑) be a quasi-semimetric space. A
sequence {𝑥

𝑛
} in𝑋 is said to be

(i) left 𝑑-Cauchy if for each 𝜀 > 0 there is a point 𝑥 in 𝑋

and an integer 𝑘 such that 𝑑(𝑥, 𝑥
𝑚
) < 𝜀 for all𝑚 ≥ 𝑘;

(ii) right 𝑑-Cauchy if for each 𝜀 > 0 there is a point 𝑥 in𝑋

and an integer 𝑘 such that 𝑑(𝑥
𝑚
, 𝑥) < 𝜀 for all𝑚 ≥ 𝑘;

(iii) 𝑑-Cauchy if for each 𝜀 > 0 there is an integer 𝑘 such
that 𝑑(𝑥

𝑟
, 𝑥
𝑠
) < 𝜀 for all 𝑟, 𝑠 ≥ 𝑘;

(iv) right 𝐾-Cauchy if for each 𝜀 > 0 there is an integer 𝑘
such that 𝑑(𝑥

𝑟
, 𝑥
𝑠
) < 𝜀 for all 𝑟 ≥ 𝑠 ≥ 𝑘;

(v) left 𝐾-Cauchy if for each 𝜀 > 0 there is an integer 𝑘

such that 𝑑(𝑥
𝑟
, 𝑥
𝑠
) < 𝜀 for all 𝑠 ≥ 𝑟 ≥ 𝑘;

(vi) weakly left (right) 𝐾-Cauchy if for each 𝜀 > 0 there is
an integer 𝑘 such that 𝑑(𝑥

𝑘
, 𝑥
𝑚
) < 𝜀 (𝑑(𝑥

𝑚
, 𝑥
𝑘
) < 𝜀)

for all𝑚 ≥ 𝑘;
(vii) corresponding to the seven definitions of Cauchy

sequence in a quasi-semimetric space, we have seven
notions of completeness: 𝑋 is said to be left (right)
𝑑-, [weakly] left (right)𝐾-, or𝑑-sequentially complete
if every left (right) 𝑑-, [weakly] left (right) 𝐾-, or 𝑑-
(resp.) Cauchy sequence in𝑋 converges to some point
in 𝑋 (with respect to the topology 𝜏 induced on 𝑋

by 𝑑).

Remark 12. The implications between the seven notions of
Cauchyness (refer to [38]) are as follows:𝑑-Cauchy⇒ left and
right 𝐾-Cauchy, left (right) 𝐾-Cauchy ⇒ weakly left (right)
𝐾-Cauchy⇒ left (right) 𝑑-Cauchy.

Definition 13 (see [6]). Let (𝑋, 𝑑) be a quasi-semimetric
space. A function 𝑞 : 𝑋 ×𝑋 → [0, +∞) is called a𝑄-function
on𝑋 if the following conditions are satisfied:
(Q1) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑞(𝑥, 𝑧) ≤ 𝑞(𝑥, 𝑦) + 𝑞(𝑦, 𝑧);
(Q2) if 𝑥 ∈ 𝑋, {𝑦

𝑛
}
𝑛∈𝑁

is a sequence in 𝑋 such that it
converges to a point 𝑦 (with respect to the quasi-
semimetric) and 𝑞(𝑥, 𝑦

𝑛
) ≤ 𝑀 for some𝑀 = 𝑀(𝑥) >

0, then 𝑞(𝑥, 𝑦) ≤ 𝑀;
(Q3) for any 𝜀 > 0, there exists 𝛿 > 0 such that 𝑞(𝑥, 𝑦) ≤ 𝛿

and 𝑞(𝑥, 𝑧) ≤ 𝛿 imply 𝑑(𝑦, 𝑧) ≤ 𝜀.

Lemma 14. Let (𝑋, 𝑑) be a quasi-semimetric space with one
of seven completeness defined in Definition 11(vii). If 𝑞 is a 𝑄-
function on 𝑋, then (𝑋, 𝑑) is sequentially lower complete w.r.t.
𝑞.

Proof. Assume that {𝑥
𝑛
} is a sequence in 𝑋 and

∑
∞

𝑛=1
𝑞(𝑥
𝑛
, 𝑥
𝑛+1

) < +∞. Let 𝜆
𝑛

= ∑
∞

𝑘=𝑛+1
𝑞(𝑥
𝑛
, 𝑥
𝑛+1

), then
we have lim

𝑛→∞
𝜆
𝑛
= 0 and for any𝑚 > 𝑛,

𝑞 (𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝜆
𝑛
. (47)

By (Q3), for any 𝜀 > 0, there exists 𝛿 > 0 such that 𝑞(𝑥, 𝑦) ≤ 𝛿

and 𝑞(𝑥, 𝑧) ≤ 𝛿 imply 𝑑(𝑦, 𝑧) ≤ 𝜀. For the 𝛿 > 0, there exists
𝐾 > 0, such that 𝜆

𝑛
< 𝛿 for any 𝑛 ≥ 𝐾. It follows from (47)

that for any 𝑟, 𝑠 ≥ 𝑛 > 𝐾, we have

𝑞 (𝑥
𝑛
, 𝑥
𝑟
) ≤ 𝜆
𝑛
< 𝛿, 𝑞 (𝑥

𝑛
, 𝑥
𝑠
) ≤ 𝜆
𝑛
< 𝛿. (48)

Thus (Q3) implies that 𝑑(𝑥
𝑟
, 𝑥
𝑠
) < 𝜀. That is, {𝑥

𝑛
} is a 𝑑-

Cauchy sequence.Therefore, by Remark 12, {𝑥
𝑛
} is any one of

sevenCauchy sequences inDefinition 11.Thus, {𝑥
𝑛
} converges

to some 𝑥 ∈ 𝑋. Equation (47) and (Q2) imply that 𝑞(𝑥
𝑛
, 𝑥) ≤

𝜆
𝑛
. This shows that lim

𝑛→∞
𝑞(𝑥
𝑛
, 𝑥) = 0. For any 𝑦 ∈ 𝑋, it

follows from (Q1) that

𝑞 (𝑥
𝑛
, 𝑦) ≤ 𝑞 (𝑥

𝑛
, 𝑥) + 𝑞 (𝑥, 𝑦) . (49)

Therefore
lim inf
𝑛→∞

𝑞 (𝑥
𝑛
, 𝑦) ≤ lim

𝑛→∞

𝑞 (𝑥
𝑛
, 𝑥) + 𝑞 (𝑥, 𝑦) = 𝑞 (𝑥, 𝑦) .

(50)
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Thus, (𝑋, 𝑑) is sequentially lower complete w.r.t. 𝑞. The proof
is completed.

From Lemma 14 and Theorems 5, 7, and 9, we can
get the following Ekeland type variational principle and its
equivalences in quasi-semimetric spaces equipped with 𝑄-
functions, which also generalize the results in [6, 12].

Theorem 15. Let (𝑋, 𝑑) be a complete quasi-semimetric space
with one of seven completeness defined in Definition 11(vii) and
𝑞 : 𝑋 × 𝑋 → [0, +∞) a 𝑄-function on 𝑋. Let 𝑓 : 𝑋 →

(−∞, +∞] be a proper, bounded from below, sequentially lower
monotone function and 𝜑 : (−∞, +∞) → (0, +∞) a non-
decreasing function. Let𝐷 be a nonempty subset of𝑋,𝑔 : 𝐷 →

𝑋 a surjective function, 𝐼 an index set and for each 𝑖 ∈ 𝐼, 𝑇
𝑖
:

𝐷 → 2
𝑋 a multivalued map. Then the following conclusions

hold and are equivalent.
(1) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑥),

there exists 𝑦 ∈ 𝑋, such that

𝑒𝑖𝑡ℎ𝑒𝑟 0 = 𝑞 (𝑔 (𝑥) , 𝑦) < 𝜑 (𝑓 (𝑔 (𝑥))) (𝑓 (𝑔 (𝑥)) − 𝑓 (𝑦)) ,

𝑜𝑟 0 < 𝑞 (𝑔 (𝑥) , 𝑦) ≤ 𝜑 (𝑓 (𝑔 (𝑥))) (𝑓 (𝑔 (𝑥)) − 𝑓 (𝑦)) .

(51)

Then for any 𝑥
0
∈ 𝑋, there exists a coincidence point

𝑢 ∈ 𝐷 of 𝑔 and {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such

that

𝑓 (𝑔 (𝑢)) ≤ 𝑓 (𝑥
0
) . (52)

(2) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥),

there exists an 𝑖
0

∈ 𝐼 and 𝑦 ∈ 𝑇
𝑖0
(𝑥), such that (51)

holds. Then for any 𝑥
0
∈ 𝑋, there exists a coincidence

point 𝑢 ∈ 𝐷 of 𝑔 and {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢),

such that (52) holds.
(3) Let 𝐼 be an index set, and for each 𝑖 ∈ 𝐼, let 𝑇

𝑖
:

𝑋 → 2
𝑋 be a multivalued map. Suppose further that

for each 𝑥 ∈ 𝑋 with 𝑥 ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥), there exists 𝑦 ∈ 𝑋,

such that
either 0 = 𝑞 (𝑥, 𝑦) < 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) ,

or 0 < 𝑞 (𝑥, 𝑦) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) .

(53)

Then for any 𝑥
0
∈ 𝑋, there exists a common fixed point

𝑢 ∈ 𝑋 of {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑢 ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such that

𝑓 (𝑢) ≤ 𝑓 (𝑥
0
) . (54)

(4) (Ekeland type variational principle in quasi-semimetric
spaces) For any 𝑥

0
∈ 𝑋, there exists V ∈ 𝑋, such that

𝑓(V) ≤ 𝑓(𝑥
0
) and

𝑞 (V, 𝑥) = 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) ,

∀𝑥 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑞 (V, 𝑥) = 0,

𝑞 (V, 𝑥) > 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) ,

∀𝑥 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑞 (V, 𝑥) > 0.

(55)

Moreover, the rest of corresponding equivalent princi-
ples in Theorem 9 hold.

In particularly, if (𝑋, 𝑑) is a complete quasi-metric space,
then fromTheorem 15, we have the following results.

Theorem 16. Let (𝑋, 𝑑) be a complete quasimetric space with
one of seven completeness defined in Definition 11(vii) and
𝑞 : 𝑋 × 𝑋 → [0, +∞) a 𝑄-function on 𝑋. Let 𝑓 : 𝑋 →

(−∞, +∞] be a proper, bounded from below, sequentially lower
monotone function and 𝜑 : (−∞, +∞) → (0, +∞) a non-
decreasing function. Let 𝐷 be a nonempty subset of 𝑋, 𝑔 :

𝐷 → 𝑋 a surjective function, 𝐼 an index set and for each
𝑖 ∈ 𝐼, 𝑇

𝑖
: 𝐷 → 2

𝑋 a multivalued map. Then the following
conclusions hold and are equivalent.

(1) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥),

there exists 𝑦 ∈ 𝑋 \ {𝑔(𝑥)}, such that

𝑞 (𝑔 (𝑥) , 𝑦) ≤ 𝜑 (𝑓 (𝑔 (𝑥))) (𝑓 (𝑔 (𝑥)) − 𝑓 (𝑦)) . (56)

Then for any 𝑥
0
∈ 𝑋, there exists a coincidence point

𝑢 ∈ 𝐷 of 𝑔 and {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such

that

𝑓 (𝑔 (𝑢)) ≤ 𝑓 (𝑥
0
) . (57)

(2) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥),

there exists an 𝑖
0

∈ 𝐼 and 𝑦 ∈ 𝑇
𝑖0
(𝑥) \ {𝑔(𝑥)}, such

that (56) holds. Then for any 𝑥
0

∈ 𝑋, there exists a
coincidence point 𝑢 ∈ 𝐷 of 𝑔 and {𝑇

𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈

⋂
𝑖∈𝐼

𝑇
𝑖
(𝑢), such that (57) holds.

(3) Let 𝐼 be an index set, and for each 𝑖 ∈ 𝐼, let 𝑇
𝑖
: 𝑋 →

2
𝑋 be a multivalued map. Suppose further that for each

𝑥 ∈ 𝑋 with 𝑥 ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥), there exists 𝑦 ∈ 𝑋 \ {𝑥},

such that

𝑞 (𝑥, 𝑦) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) . (58)

Then for any 𝑥
0
∈ 𝑋, there exists a common fixed point

𝑢 ∈ 𝑋 of {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑢 ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such that

𝑓 (𝑢) ≤ 𝑓 (𝑥
0
) . (59)

(4) (Ekeland type variational principle in quasimetric
spaces) For any 𝑥

0
∈ 𝑋, there exists V ∈ 𝑋, such that

𝑓(V) ≤ 𝑓(𝑥
0
) and

𝑞 (V, 𝑥) > 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) , ∀𝑥 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑥 ̸= V.
(60)

Proof. The equivalence of the conclusions (1)–(4) is clear. We
only prove (4). It follows from (4) of Theorem 15 that for any
𝑥
0
∈ 𝑋, there exists V ∈ 𝑋, such that 𝑓(V) ≤ 𝑓(𝑥

0
) and

𝑞 (V, 𝑥) = 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) ,

∀𝑥 ∈ 𝑋 with 𝑞 (V, 𝑥) = 0,

𝑞 (V, 𝑥) > 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) ,

∀𝑥 ∈ 𝑋 with 𝑞 (V, 𝑥) > 0.

(61)
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If V satisfies (60), then conclusion (4) is proved. Otherwise,
there exists 𝑥 ∈ 𝑋 \ {V}, such that

0 = 𝑞 (V, 𝑥) = 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) . (62)

If 𝑥 and 𝑦 satisfy (62), then 𝑞(V, 𝑥) = 0 and 𝑞(V, 𝑦) = 0. By
using (Q3) in Definition 13, we get that 𝑑(𝑥, 𝑦) = 0. It follows
from (QM1) that 𝑑(𝑥, 𝑥) = 0, and then (QM3) implies that
𝑥 = 𝑦. That is, there is only one point 𝑥 which satisfies (62).
Let

𝑆 (𝑥) = {𝑦 ∈ 𝑋 : 𝑞 (𝑥, 𝑦) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦))} . (63)

Then 𝑆(V) = {𝑥}. Since 𝑥 ∈ 𝑆(V), we can imply that 𝑆(𝑥) ⊂

𝑆(V) = {𝑥}. This shows that for any 𝑥 ̸= 𝑥, 𝑥 ∉ 𝑆(𝑥); that is, 𝑥
satisfies (60). The proof is completed.

Definition 17 (see, e.g., [37]). Let 𝑋 be a real vector space; a
collection B of subsets of 𝑋 is called a vector bornology on
𝑋, if it satisfies the following conditions:

(B1) 𝑥 ∈ 𝑋 implies that {𝑥} ∈ B;
(B2) 𝐵

1
⊂ 𝐵
2
and 𝐵

2
∈ B imply that 𝐵

1
∈ B;

(B3) 𝐵
1
, 𝐵
2
∈ B implies that 𝐵

1
∪ 𝐵
2
∈ B;

(B4) 𝐵
1
, 𝐵
2
∈ B implies that

𝐵
1
+ 𝐵
2
= {𝑥 + 𝑦 : 𝑥 ∈ 𝐵

1
, 𝑦 ∈ 𝐵

2
} ∈ B; (64)

(B5) for any bounded interval 𝐼 ⊂ (−∞, +∞), 𝐵 ∈ B
implies that

𝐼 ⋅ 𝐵 = {𝛼𝑥 : 𝛼 ∈ 𝐼, 𝑥 ∈ 𝐵} ∈ B. (65)

In view of (B5), if 𝐵 ∈ B, so is its balanced hull 𝐵
𝑏

which is defined by 𝐵
𝑏
= [−1, 1] ⋅ 𝐵.

Definition 18. The ordered pair (𝑋,B) is called a bornolog-
ical vector space (in short: BVS), and every element of B is
called a bounded subset (with respect toB).

Definition 19 (see, e.g., [28, 37]). Let (𝑋,B) be a bornological
vector space.

(i) A sequence {𝑥
𝑛
} in 𝑋 is said to be Mackey-

convergent (or 𝑀-convergent) to a point 𝑥, denoted
by lim𝑏

𝑛→∞
𝑥
𝑛
= 𝑥, if there is a balanced 𝐵 ∈ B and

a sequence of positive real numbers {𝜆
𝑛
} such that

lim
𝑛→∞

𝜆
𝑛

= 0 and 𝑥
𝑛
− 𝑥 ∈ 𝜆

𝑛
𝐵 for any 𝑛 ∈ 𝑁.

Also, we say that 𝑥 is a bornological limit of {𝑥
𝑛
}.

(ii) A sequence {𝑥
𝑛
} in 𝑋 is said to be Mackey-Cauchy

(or 𝑀-Cauchy) if there is a balanced 𝐵 ∈ B and a
double sequence of positive real numbers {𝜆

𝑚𝑛
} such

that lim
𝑚,𝑛→∞

𝜆
𝑚𝑛

= 0 and 𝑥
𝑚

− 𝑥
𝑛
∈ 𝜆
𝑚𝑛

𝐵 for any
𝑚, 𝑛 ∈ 𝑁.

(iii) 𝐴 ⊂ 𝑋 is said to be Mackey-closed (or 𝑀-closed) if
it contains all bornological limits of any sequences in
𝐴.

(iv) 𝐴 ⊂ 𝑋 is said to be Mackey-complete (or 𝑀-
complete) if every 𝑀-Cauchy sequence in 𝐴 will be
𝑀-convergent to some element in 𝐴.

(v) A BVS (𝑋,B) is said to be separated if every 𝑀-
convergent sequence is 𝑀-convergent to exactly one
bornological limit.

Remark 20. From Lemma 2.13 in [28] we know that if 𝐴 ⊂ 𝑋

is a 𝑀-complete subset, then 𝐴 is 𝑀-closed. On the other
hand, if (𝑋,B) is 𝑀-complete and 𝐴 ⊂ 𝑋 is 𝑀-closed, then
𝐴 is 𝑀-complete. For the details about BVS, one can refer to
[17, 28, 37].

The collection of all (complements of) 𝑀-closed subsets
of 𝑋 defines a topology on 𝑋, and we called it bornological
topology. Therefore, (𝑋,B) endowed this topology is a
topological space (but, from Remark 2.4 in [28], we can see
that it is rarely a vector topology with respect to the algebraic
structure of 𝑋). In the following, we will assume that (𝑋,B)

is separated; that is (v) in Definition 19 holds.
Let 𝑋 be a separated bornological vector space and

𝑃 : 𝑋 → (−∞, +∞] a positively homogeneous subadditive
function. By Lemma 4.4 in [28], 𝑃(𝑥) > 0 for any nonzero 𝑥

if 𝑃 satisfies the following condition:

(P1) the set 𝐶 = {𝑥 ∈ 𝑋 : 𝑃(𝑥) ≤ 1} is 𝑀-complete and
bounded.

Lemma 21. Let 𝑝 : 𝑋 × 𝑋 → (−∞, +∞) be defined by
𝑝(𝑥, 𝑦) = 𝑃(𝑥 − 𝑦). If (P1) holds, then (𝑋,B) is sequentially
lower complete with respect to 𝑝.

Proof. Let {𝑥
𝑛
} be a sequence in 𝑋 and ∑

∞

𝑛=1
𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) =

∑
∞

𝑛=1
𝑃(𝑥
𝑛
−𝑥
𝑛+1

) < +∞. Then for any 0 < 𝛿 < 1, there exists
a positive integer 𝑛

0
, such that ∑∞

𝑛=𝑛0

𝑃(𝑥
𝑛
− 𝑥
𝑛+1

) < 𝛿. Since
𝑃 is subadditive, we get that for any𝑚 > 𝑛

0
,

𝑃 (𝑥
𝑛0

− 𝑥
𝑚
) ≤

𝑚−1

∑

𝑛=𝑛0

𝑃 (𝑥
𝑛
− 𝑥
𝑛+1

) < 𝛿. (66)

From this we have

𝑃 (𝑥
𝑛0

− 𝑥
𝑚
) ≤ 𝛿 < 1. (67)

So we have 𝑥
𝑛0

− 𝑥
𝑚

∈ 𝐶. For any 𝑚 > 𝑛, let 𝜆
𝑚𝑛

=

∑
𝑚−1

𝑘=𝑛
𝑃(𝑥
𝑘
− 𝑥
𝑘+1

), and then we have 𝑃(𝑥
𝑛
− 𝑥
𝑚
) ≤ 𝜆
𝑚𝑛
, and

lim
𝑚,𝑛→∞

𝜆
𝑚𝑛

= 0. It follows from

𝑃 ((𝑥
𝑛0

− 𝑥
𝑚
) − (𝑥

𝑛0
− 𝑥
𝑛
)) = 𝑃 (𝑥

𝑛
− 𝑥
𝑚
) ≤ 𝜆
𝑚𝑛

(68)

that (𝑥
𝑛0

−𝑥
𝑚
) − (𝑥
𝑛0

−𝑥
𝑛
) ∈ 𝜆
𝑚𝑛

𝐶 ⊂ 𝜆
𝑚𝑛

𝐶
𝑏
where 𝐶

𝑏
, is the

(bounded) balanced hull of𝐶.That is, {𝑥
𝑛0
−𝑥
𝑛
} is𝑀-Cauchy.

Since𝐶 is𝑀-complete, {𝑥
𝑛0
−𝑥
𝑛
} is𝑀-convergent.Thus, {𝑥

𝑛
}

is also𝑀-convergent. Assume that {𝑥
𝑛
} is𝑀-convergent to a

point 𝑥. If we set

𝜆
𝑛
=

∞

∑

𝑘=𝑛

𝑃 (𝑥
𝑘
− 𝑥
𝑘+1

) , (69)

then 𝜆
𝑚𝑛

≤ 𝜆
𝑛
, and hence 𝜆

𝑚𝑛
𝐶 ⊂ 𝜆

𝑛
𝐶 whenever 𝑚 > 𝑛. It

follows from (68) that 𝑥
𝑛
− 𝑥
𝑚

∈ 𝐶 for 𝑚 > 𝑛. Since 𝜆
𝑛
𝐶 is

𝑀-closed by (P1), we have

lim𝑏
𝑚→∞

(𝑥
𝑛
− 𝑥
𝑚
) = 𝑥
𝑛
− 𝑥 ∈ 𝜆

𝑛
𝐶. (70)
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Consequently,𝑃(𝑥
𝑛
−𝑥) ≤ 𝜆

𝑛
, and hence lim

𝑛→∞
𝑃(𝑥
𝑛
−𝑥) =

0. Since 𝑃(𝑥
𝑛
− 𝑦) ≤ 𝑃(𝑥

𝑛
− 𝑥) + 𝑃(𝑥 − 𝑦), we have

lim inf
𝑛→∞

𝑃 (𝑥
𝑛
− 𝑦) ≤ lim

𝑛→∞

𝑃 (𝑥
𝑛
− 𝑥) + 𝑃 (𝑥 − 𝑦)

= 𝑃 (𝑥 − 𝑦) .

(71)

That is,

lim inf
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑦) ≤ 𝑝 (𝑥, 𝑦) . (72)

Thus, (𝑋,B) is sequentially lower complete with respect to 𝑝.
The proof is completed.

From Lemma 21 andTheorem 9, we can get the following
Ekeland type variational principle in bornological vector
space, which is also proved in [17, 28].

Theorem 22 (Ekeland type variational principle in bornolog-
ical vector space). Let (𝑋,B) be a separated bornological
vector space and 𝑃 : 𝑋 → (−∞, +∞] a positively
homogeneous subadditive function satisfying the condition
(P1). Let 𝑓 : 𝑋 → (−∞, +∞] be a proper, bounded
from below, sequentially lower monotone function and 𝜑 :

(−∞, +∞) → (0, +∞) a nondecreasing function. Then for
any 𝑥
0
∈ 𝑋, there exists V ∈ 𝑋, such that 𝑓(V) ≤ 𝑓(𝑥

0
) and

𝑃 (V − 𝑥) > 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) , ∀𝑥 ̸= V. (73)

Moreover, the corresponding equivalent principles inTheorem9
hold.

Definition 23 (see [25]). Let 𝑋 be a uniform space. An
extended real-valued function𝑝 : 𝑋×𝑋 → [0, +∞] is called
a 𝑞-distance on𝑋 if the following conditions are satisfied:

(q1) for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧);
(q2) every sequence {𝑦

𝑛
} ⊂ 𝑋 with 𝑝(𝑦

𝑛
, 𝑦
𝑚
) → 0 (𝑚 >

𝑛 → ∞) is a Cauchy sequence and in the case
𝑝(𝑦
𝑛
, 𝑦) → 0 implies that 𝑦

𝑛
→ 𝑦 in𝑋;

(q3) for 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑝(𝑧, 𝑥) = 0 and 𝑝(𝑧, 𝑦) = 0 imply
𝑥 = 𝑦.

Here 𝑝(𝑦
𝑛
, 𝑦
𝑚
) → 0 (𝑚 > 𝑛 → ∞) means that for any

𝜀 > 0, there exists 𝑛
0

∈ 𝑁 such that 𝑝(𝑦
𝑛
, 𝑦
𝑚
) < 𝜀 for all

𝑚 > 𝑛 ≥ 𝑛
0
.

Definition 24 (see [25]). Let (𝑋,U) be a uniform space and 𝑝

a 𝑞-distance on𝑋. A proper function 𝑓 : 𝑋 → (−∞, +∞] is
said to be sequentially lower monotone with respect to 𝑝 (in
short, sequentially lower monotone with respect to 𝑝) if for
any sequence {𝑥

𝑛
} in𝑋 satisfying 𝑝(𝑥

𝑛
, 𝑥
𝑚
) → 0 (𝑚 > 𝑛 →

∞), 𝑝(𝑥
𝑛
, 𝑥) → 0 (𝑛 → ∞) and 𝑓(𝑥

𝑛+1
) ≤ 𝑓(𝑥

𝑛
), we have

𝑓(𝑥) ≤ 𝑓(𝑥
𝑛
) for each 𝑛 ∈ 𝑁.

Definition 25 (see [25]). Let (𝑋,U) be a uniform space, 𝑝 a
𝑞-distance on𝑋, and 𝑓 : 𝑋 → (−∞, +∞] a proper function.
(𝑋,U) is said to be sequentially complete with respect to
(𝑝, 𝑓 ↓) if for any sequence {𝑥

𝑛
} in𝑋 satisfying 𝑝(𝑥

𝑛
, 𝑥
𝑚
) →

0 (𝑚 > 𝑛 → ∞) and 𝑓(𝑥
𝑛+1

) ≤ 𝑓(𝑥
𝑛
) for each 𝑛 ∈ 𝑁, there

exists 𝑥 ∈ 𝑋 such that 𝑝(𝑥
𝑛
, 𝑥) → 0 (𝑛 → ∞).

Lemma 26. Let (𝑋,U) be a uniform space, 𝑝 a 𝑞-distance on
𝑋, and 𝑓 : 𝑋 → (−∞, +∞] a sequentially lower monotone
with respect to 𝑝, proper function, bounded from below. If
(𝑋,U) is sequentially lower complete with respect to (𝑝, 𝑓 ↓),
then (𝑋,U) is sequentially lower complete with respect to𝑝 and
𝑓.

Proof. Assume that {𝑥
𝑛
} is a sequence in 𝑋 with 𝑓(𝑥

𝑛+1
) ≤

𝑓(𝑥
𝑛
) for each 𝑛 ∈ 𝑁 and ∑

∞

𝑛=1
𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) < +∞. Let 𝜆
𝑛
=

∑
∞

𝑘=𝑛+1
𝑝(𝑥
𝑛
, 𝑥
𝑛+1

), then we have that lim
𝑛→∞

𝜆
𝑛
= 0, and for

any𝑚 > 𝑛,

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝜆
𝑛
. (74)

This shows that 𝑝(𝑥
𝑛
, 𝑥
𝑚
) → 0 (𝑚 > 𝑛 → ∞). By using

Definition 23 andDefinition 25, we get that there exists 𝑥 ∈ 𝑋

such that 𝑝(𝑥
𝑛
, 𝑥) → 0 (𝑛 → ∞) and {𝑥

𝑛
} converges to 𝑥.

Then for any 𝑦 ∈ 𝑋, by 𝑝(𝑥
𝑛
, 𝑦) ≤ 𝑝(𝑥

𝑛
, 𝑥) + 𝑝(𝑥, 𝑦) we have

that

lim inf
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑦) ≤ lim

𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥) + 𝑝 (𝑥, 𝑦) = 𝑝 (𝑥, 𝑦) .

(75)

Thus, (𝑋,U) is sequentially lower complete w.r.t.𝑝 and𝑓.The
proof is completed.

From Theorems 5, 7, and 9, we can get the following
Caristi type coincidence point theorem and Ekeland type
variational principle in uniform space equipped with 𝑞-
distance. From Lemma 26, we also see that this is a transfor-
mation of the results appeared in [25].

Theorem 27. Let (𝑋,U) be a uniform space, 𝑝 a 𝑞-distance on
𝑋, and 𝑓 : 𝑋 → (−∞, +∞] a sequentially lower monotone
with respect to 𝑝, proper function, bounded from below. Let 𝐷
be a nonempty subset of 𝑋, 𝑔 : 𝐷 → 𝑋 a surjective function,
𝐼 an index set, and, for each 𝑖 ∈ 𝐼, 𝑇

𝑖
: 𝐷 → 2

𝑋 a multivalued
map. If (𝑋,U) is sequentially complete with repect to 𝑝 and 𝑓

and 𝜑 : (−∞, +∞) → (0, +∞) is a nondecreasing function,
then the following conclusions hold and are equivalent.

(1) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥),

there exists 𝑦 ∈ 𝑋 \ {𝑔(𝑥)}, such that

𝑝 (𝑔 (𝑥) , 𝑦) ≤ 𝜑 (𝑓 (𝑔 (𝑥))) (𝑓 (𝑔 (𝑥)) − 𝑓 (𝑦)) . (76)

Then for any 𝑥
0
∈ 𝑋, there exists a coincidence point

𝑢 ∈ 𝐷 of 𝑔 and {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such

that

𝑓 (𝑔 (𝑢)) ≤ 𝑓 (𝑥
0
) . (77)

(2) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥),

there exists an 𝑖
0

∈ 𝐼 and 𝑦 ∈ 𝑇
𝑖0
(𝑥) \ {𝑔(𝑥)}, such

that (76) holds. Then for any 𝑥
0

∈ 𝑋, there exists a
coincidence point 𝑢 ∈ 𝐷 of 𝑔 and {𝑇

𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈

⋂
𝑖∈𝐼

𝑇
𝑖
(𝑢), such that (77) holds.

(3) Let 𝐼 be an index set, and, for each 𝑖 ∈ 𝐼, let 𝑇
𝑖
: 𝑋 →

2
𝑋 be a multivalued map. Suppose further that for
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each𝑥 ∈ 𝑋with𝑥 ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥), there exists𝑦 ∈ 𝑋\{𝑥},

such that

𝑝 (𝑥, 𝑦) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) . (78)

Then for any 𝑥
0
∈ 𝑋, there exists a common fixed point

𝑢 ∈ 𝑋 of {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑢 ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such that

𝑓 (𝑢) ≤ 𝑓 (𝑥
0
) . (79)

(4) (Ekeland type variational principle in uniform spaces)
For any 𝑥

0
∈ 𝑋, there exists V ∈ 𝑋, such that 𝑓(V) ≤

𝑓(𝑥
0
) and

𝑝 (V, 𝑥) > 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) , ∀𝑥 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑥 ̸= V.
(80)

Moreover, the rest of corresponding equivalent princi-
ples in Theorem 9 hold.

Proof. The equivalence of the conclusions (1)–(4) is clear.We
only need to prove (4).The proof of (4) is similar to the proof
of Theorem 16, by using (q3). So we delete the detail of the
proof.

Remark 28. If 𝜑 : (−∞, +∞) → (0, +∞) is upper semi-
continuous and (76) is replaced by

𝑝 (𝑔 (𝑥) , 𝑦)

≤ max {𝜑 (𝑓 (𝑔 (𝑥))) , 𝜑 (𝑓 (𝑦))} ⋅ (𝑓 (𝑔 (𝑥)) − 𝑓 (𝑦)) ,

(81)

then the conclusions of Theorem 27 hold. In this case, the
proof is similar to the proof of Theorem 2.1 in [11].

As noted in Remark 5.1 in [25], from our Theorem 27,
we can deduce [13, Theorems 3.1 and 3.2, and Corollary 3.3]
and [15, Theorems 4–6]. Furthermore, we will show that
Theorem 27 improves some coincidence point theorems and
their equivalences in 𝐹-type separated topological space (or
equivalently, generating spaces of quasimetric family) and
fuzzy metric spaces, which were proved in [8–11].

In the following, we will assume that (𝑋,I) is an 𝐹-
type separated topological space (or equivalently, a uniform
space, see [13, 15]) whose topology is generated by a separated
family {𝑞

𝜆
}
𝜆∈Λ

of quasimetrics, where (Λ, ≺) is a directed set.
Moreover, let 𝛼 : Λ → (0, +∞) be a nondecreasing function;
that is,𝜆, 𝜇 ∈ Λ,𝜆 ≺ 𝜇 implies𝛼(𝜆) ≤ 𝛼(𝜇). An extended real-
valued function 𝑝 : 𝑋 × 𝑋 → [0, +∞] is defined as follows:

𝑝 (𝑥, 𝑦) = sup
𝜆∈Λ

𝛼 (𝜆) 𝑞
𝜆
(𝑥, 𝑦) , ∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑋. (82)

Lemma 29. Let (𝑋,I) be an 𝐹-type separated topological
space (or equivalently, a uniform space) whose topology is
generated by a family {𝑞

𝜆
}
𝜆∈Λ

of quasimetrics, and let 𝑝 :

𝑋 ×𝑋 → [0, +∞] be defined by (82). If (𝑋,I) is sequentially
complete, then (𝑋,I) is sequentially lower complete w.r.t. 𝑝.

Proof. Assume that a sequence {𝑥
𝑛
} in 𝑋 satisfies

∑
∞

𝑛=1
𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) < +∞. This implies that the sequence
{𝑥
𝑛
} satisfies 𝑝(𝑥

𝑛
, 𝑥
𝑚
) → 0 (𝑚 > 𝑛 → ∞). It follows from

Examples 2.3 and 3.1 in [25] that 𝑝 is a 𝑞-distance on 𝑋, and
there exists an 𝑥 ∈ 𝑋, such that {𝑥

𝑛
} converges to 𝑥 and

𝑝(𝑥
𝑛
, 𝑥) → 0. Then for any 𝑦 ∈ 𝑋,

lim inf
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑦) ≤ lim inf

𝑛→∞

[𝑝 (𝑥
𝑛
, 𝑥) + 𝑝 (𝑥, 𝑦)] = 𝑝 (𝑥, 𝑦) .

(83)

Thus, (𝑋,I) is sequentially lower complete w.r.t. 𝑝.The proof
is completed.

By using Lemma 29 and Theorem 27, we have the
following results.

Theorem 30. Let (𝑋,I) be a sequentially complete and
separated 𝐹-type topological space (or equivalently, a uniform
space) whose topology is generated by a family {𝑞

𝜆
}
𝜆∈Λ

of quasi-
metrics, 𝜑 : (−∞, +∞) → (0, +∞) a nondecreasing function,
and 𝑓 : 𝑋 → (−∞, +∞] a proper, bounded from below,
sequentially lower monotone function. Let 𝐷 be a nonempty
subset of 𝑋, 𝑔 : 𝐷 → 𝑋 a surjective function, and 𝐼 an index
set, and, for each 𝑖 ∈ 𝐼, let 𝑇

𝑖
: 𝐷 → 2

𝑋 be a multivalued map.
Then the following conclusions hold and are equivalent.

(1) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥),

there exists 𝑦 ∈ 𝑋 \ {𝑔(𝑥)}, such that

𝛼 (𝜆) 𝑞
𝜆
(𝑔 (𝑥) , 𝑦) ≤ 𝜑 (𝑓 (𝑔 (𝑥))) (𝑓 (𝑔 (𝑥)) − 𝑓 (𝑦)) ,

∀𝜆 ∈ Λ.

(84)

Then for any 𝑥
0
∈ 𝑋, there exists a coincidence point

𝑢 ∈ 𝐷 of 𝑔 and {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such

that

𝑓 (𝑔 (𝑢)) ≤ 𝑓 (𝑥
0
) . (85)

(2) Suppose that for each 𝑥 ∈ 𝐷 with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥),

there exists an 𝑖
0

∈ 𝐼 and 𝑦 ∈ 𝑇
𝑖0
(𝑥) \ {𝑔(𝑥)}, such

that (82) holds. Then for any 𝑥
0

∈ 𝑋, there exists a
coincidence point 𝑢 ∈ 𝐷 of 𝑔 and {𝑇

𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈

⋂
𝑖∈𝐼

𝑇
𝑖
(𝑢), such that (84) holds.

(3) Let 𝐼 be an index set and, for each 𝑖 ∈ 𝐼,𝑇
𝑖
: 𝑋 → 2

𝑋 a
multivaluedmap. Suppose further that for each 𝑥 ∈ 𝑋

with 𝑥 ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥), there exists 𝑦 ∈ 𝑋 \ {𝑥}, such that

𝛼 (𝜆) 𝑞
𝜆
(𝑥, 𝑦) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑦)) , ∀𝜆 ∈ Λ.

(86)

Then for any 𝑥
0
∈ 𝑋, there exists a common fixed point

𝑢 ∈ 𝑋 of {𝑇
𝑖
}
𝑖∈𝐼
; that is, 𝑢 ∈ ⋂

𝑖∈𝐼
𝑇
𝑖
(𝑢), such that

𝑓 (𝑢) ≤ 𝑓 (𝑥
0
) . (87)

(4) (Ekeland type variational principle in 𝐹-type topolog-
ical spaces) For any 𝑥

0
∈ 𝑋, there exists V ∈ 𝑋, such

that 𝑓(V) ≤ 𝑓(𝑥
0
) and for any 𝑥 ∈ 𝑋 with V ̸= 𝑥, there

exists 𝜆
0
∈ Λ, such that

𝛼 (𝜆
0
) 𝑞
𝜆0

(V, 𝑥) > 𝜑 (𝑓 (V)) (𝑓 (V) − 𝑓 (𝑥)) . (88)
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The following version of coincidence point theorem is an
improvement for the coincidence point theorems proved in
[8, 9].

Theorem 31. Let (𝑋, 𝑑
𝜆
: 𝜆 ∈ Λ) and (𝑌, 𝛿

𝜆
: 𝜆 ∈ Λ) be two

sequentially complete and separated generating spaces of quasi-
metric family, 𝛼 : Λ → (0, +∞) a nondecreasing function, 𝐷
a nonempty subset of 𝑋, 𝑔 : 𝐷 → 𝑋 a surjective function,
ℎ : 𝑋 → 𝑌 a closed mapping, 𝑓 : ℎ(𝑋) → (−∞, +∞]

a proper, bounded from below, sequentially lower monotone
function, and 𝜑 : (−∞, +∞) → (0, +∞) a non-decreasing
function. Let 𝐼 be an index set, and, for each 𝑖 ∈ 𝐼, let 𝑇

𝑖
: 𝐷 →

2
𝑋 be a multivalued map. Suppose further that for each 𝑥 ∈ 𝐷

with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥), there exists 𝑦 ∈ 𝑋 \ {𝑔(𝑥)}, such that

𝛼 (𝜆)max {𝑑
𝜆
(𝑔 (𝑥) , 𝑦) , 𝑐𝛿

𝜆
(ℎ (𝑔 (𝑥)) , ℎ (𝑦))}

≤ 𝜑 (𝑓 (ℎ (𝑔 (𝑥)))) (𝑓 (ℎ (𝑔 (𝑥))) − 𝑓 (ℎ (𝑦))) , ∀𝜆 ∈ Λ,

(89)

where 𝑐 > 0 is a given constant. Then for any 𝑥
0

∈ 𝑋, there
exists a coincidence point 𝑢 ∈ 𝐷 of 𝑔 and {𝑇

𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈

⋂
𝑖∈𝐼

𝑇
𝑖
(𝑢), such that

𝑓 (ℎ (𝑔 (𝑢))) ≤ 𝑓 (ℎ (𝑥
0
)) . (90)

Proof. For each 𝜆 ∈ Λ, we define 𝑞
𝜆
: 𝑋 × 𝑋 → 𝑅 by

𝑞
𝜆
(𝑥, 𝑦) = max {𝑑

𝜆
(𝑥, 𝑦) , 𝑐𝛿

𝜆
(ℎ (𝑥) , ℎ (𝑦))} , (91)

and then, by Definition 2 in [15], we can verify that the
collection {𝑞

𝜆
}
𝜆∈Λ

defined by (91) is a family of quasimetrics
on 𝑋. Since (𝑋, 𝑑

𝜆
: 𝜆 ∈ Λ) and (𝑌, 𝛿

𝜆
: 𝜆 ∈ Λ) are

sequentially complete generating spaces of quasimetric fam-
ily and ℎ is a closed mapping, we can deduce that (𝑋, 𝑞

𝜆
:

𝜆 ∈ Λ) is also a sequentially complete generating space of
quasimetric family. Next, we assume that {𝑥

𝑛
} ⊂ 𝑋 is a

sequence which converges to 𝑥 in (𝑋, 𝑞
𝜆
: 𝜆 ∈ Λ) and satisfies

𝑓 (ℎ (𝑥
1
)) ≥ 𝑓 (ℎ (𝑥

2
)) ≥ ⋅ ⋅ ⋅ ≥ 𝑓 (ℎ (𝑥

𝑛
)) ≥ ⋅ ⋅ ⋅ . (92)

By (91) we know that {𝑥
𝑛
} converges to 𝑥 in (𝑋, 𝑑

𝜆
: 𝜆 ∈ Λ)

and {ℎ(𝑥
𝑛
)} converges to ℎ(𝑥) in (𝑌, 𝛿

𝜆
: 𝜆 ∈ Λ). Since

𝑓 : ℎ(𝑋) → (−∞, +∞] is a sequentially lower monotone
function, we have𝑓(ℎ(𝑥)) ≤ 𝑓(ℎ(𝑥

𝑛
)), for each 𝑛, that is,𝑓∘ℎ

is a sequentially lower monotone function on (𝑋, 𝑞
𝜆
: 𝜆 ∈ Λ).

Then by using Theorem 27 (1) for (𝑋, 𝑞
𝜆

: 𝜆 ∈ Λ) and
𝑓 ∘ ℎ, we can get the conclusion of Theorem 31. The proof
is completed.

The following version of coincidence point theorem is an
improvement for the coincidence point theorems proved in
[11].

Theorem 32. Let (𝑋, 𝑑
𝜆
: 𝜆 ∈ Λ) and (𝑌, 𝛿

𝜆
: 𝜆 ∈ Λ) be two

sequentially complete generating spaces of quasimetric family,
𝛼 : Λ → (0, +∞) a nondecreasing function, 𝐷 a non-empty
subset of 𝑋, 𝑔 : 𝐷 → 𝑋 a surjective function, ℎ : 𝑋 → 𝑌 a
closed mapping, 𝑓 : ℎ(𝑋) → (−∞, +∞] a proper, bounded
from below, sequentially lower monotone function, and 𝜑 :

(−∞, +∞) → (0, +∞) an upper semicontinuous function.

Let 𝐼 be an index set, and, for each 𝑖 ∈ 𝐼, let 𝑇
𝑖
: 𝐷 → 2

𝑋

be a multivalued map. Suppose further that for each 𝑥 ∈ 𝐷

with 𝑔(𝑥) ∉ ⋂
𝑖∈𝐼

𝑇
𝑖
(𝑥), there exists 𝑦 ∈ 𝑋 \ {𝑔(𝑥)}, such that

𝛼 (𝜆)max {𝑑
𝜆
(𝑔 (𝑥) , 𝑦) , 𝑐𝛿

𝜆
(ℎ (𝑔 (𝑥)) , ℎ (𝑦))}

≤ max {𝜑 (𝑓 (ℎ (𝑔 (𝑥)))) , 𝜑 (𝑓 (ℎ (𝑦)))}

× (𝑓 (ℎ (𝑔 (𝑥))) − 𝑓 (ℎ (𝑦))) , ∀𝜆 ∈ Λ,

(93)

where 𝑐 > 0 is a given constant. Then for any 𝑥
0

∈ 𝑋, there
exists a coincidence point 𝑢 ∈ 𝐷 of 𝑔 and {𝑇

𝑖
}
𝑖∈𝐼
; that is, 𝑔(𝑢) ∈

⋂
𝑖∈𝐼

𝑇
𝑖
(𝑢), such that

𝑓 (ℎ (𝑔 (𝑢))) ≤ 𝑓 (ℎ (𝑥
0
)) . (94)

Proof. It follows from the proof of Theorem 16 that 𝑓 ∘ ℎ is
a sequentially lower monotone function on (𝑋, 𝑞

𝜆
: 𝜆 ∈ Λ),

where {𝑞
𝜆
}
𝜆∈Λ

is defined by (91). Then by using Remark 28
for (𝑋, 𝑞

𝜆
: 𝜆 ∈ Λ) and 𝑓 ∘ ℎ, we can get the conclusion of

Theorem 32. The proof is completed.

Remark 33. Similarly, under the conditions of Theorem 31
or Theorem 32, we can get corresponding common fixed
point theorems, Ekeland’s variational principle, and other
equivalences of Theorems 31 and 32. On the other hand,
a fuzzy metric space in the sense of Kaleva and Seikkala
[39] is a generating space of quasimetric family (see, e.g.,
[8, 9, 11]); thus, by using our results in this section we
can get coincidence point theorems and its equivalences in
fuzzy metric spaces. Therefore, our results are also unified
improvements of the results in [8–11].

Let (𝑋,U) be a uniform space, 𝑞 : 𝑋×𝑋 → [0, +∞) a 𝑞-
distance on 𝑋, and ℎ : [0, +∞) → [0, +∞) a nondecreasing
function, such that

∫

+∞

0

𝑑𝑟

1 + ℎ (𝑟)
= +∞, (95)

and 𝑥
0
is a given point in 𝑋. Let 𝑝 : 𝑋 × 𝑋 → [0, +∞) be

defined by

𝑝 (𝑥, 𝑦) = ∫

𝑞(𝑥0 ,𝑥)+𝑞(𝑥,𝑦)

𝑞(𝑥0,𝑥)

𝑑𝑟

1 + ℎ (𝑟)
. (96)

Lemma 34. Let (𝑋,U) be a uniform space, 𝑞 a 𝑞-distance
on 𝑋, ℎ : [0, +∞) → [0, +∞) a nondecreasing function
satisfying (95), and 𝑓 : 𝑋 → (−∞, +∞] a sequentially lower
monotone with respect to 𝑞, proper function, bounded from
below. If (𝑋,U) is sequentially lower complete with respect to
(𝑞, 𝑓 ↓), then (𝑋,U) is sequentially lower complete with respect
to 𝑝 and 𝑓, where 𝑝 is defined by (96).

Proof. Let {𝑥
𝑛
} be a sequence in 𝑋 with 𝑓(𝑥

𝑛+1
) ≤ 𝑓(𝑥

𝑛
) for

each 𝑛 ∈ 𝑁 and satisfy

∞

∑

𝑛=1

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) =

∞

∑

𝑛=1

∫

𝑞(𝑥0 ,𝑥𝑛)+𝑞(𝑥𝑛 ,𝑥𝑛+1)

𝑞(𝑥0 ,𝑥𝑛)

𝑑𝑟

1 + ℎ (𝑟)
< +∞.

(97)
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For any 𝑛 > 1, by noting that ℎ : [0, +∞) → [0, +∞) is
nondecreasing, we have

∫

∑
𝑛−1

𝑘=0
𝑞(𝑥𝑘,𝑥𝑘+1)

𝑞(𝑥0 ,𝑥1)

𝑑𝑟

1 + ℎ (𝑟)

= ∫

𝑞(𝑥0,𝑥1)+𝑞(𝑥1 ,𝑥2)

𝑞(𝑥0 ,𝑥1)

𝑑𝑟

1 + ℎ (𝑟)
+ ⋅ ⋅ ⋅

+ ∫

𝑞(𝑥0 ,𝑥1)+⋅⋅⋅+𝑞(𝑥𝑛−1 ,𝑥𝑛)

𝑞(𝑥0 ,𝑥1)+⋅⋅⋅+𝑞(𝑥𝑛−2,𝑥𝑛−1)

𝑑𝑟

1 + ℎ (𝑟)

≤ ∫

𝑞(𝑥0,𝑥1)+𝑞(𝑥1 ,𝑥2)

𝑞(𝑥0 ,𝑥1)

𝑑𝑟

1 + ℎ (𝑟)
+ ⋅ ⋅ ⋅

+ ∫

𝑞(𝑥0 ,𝑥𝑛)+𝑞(𝑥𝑛−1 ,𝑥𝑛)

𝑞(𝑥0 ,𝑥𝑛)

𝑑𝑟

1 + ℎ (𝑟)

≤

∞

∑

𝑛=1

∫

𝑞(𝑥0 ,𝑥𝑛)+𝑞(𝑥𝑛 ,𝑥𝑛+1)

𝑞(𝑥0 ,𝑥𝑛)

𝑑𝑟

1 + ℎ (𝑟)

< +∞.

(98)

This shows that

∫

∑
∞

𝑛=1
𝑞(𝑥𝑛,𝑥𝑛+1)

𝑞(𝑥0 ,𝑥1)

𝑑𝑟

1 + ℎ (𝑟)

≤

∞

∑

𝑛=1

∫

𝑞(𝑥0 ,𝑥𝑛)+𝑞(𝑥𝑛 ,𝑥𝑛+1)

𝑞(𝑥0 ,𝑥𝑛)

𝑑𝑟

1 + ℎ (𝑟)
< +∞.

(99)

By (95) we obtain that∑∞
𝑛=1

𝑞(𝑥
𝑛
, 𝑥
𝑛+1

) < +∞. Since (𝑋,U) is
sequentially lower complete w.r.t. (𝑞, 𝑓 ↓), by Lemma 26, we
get that there exists 𝑥 ∈ 𝑋 such that 𝑞(𝑥

𝑛
, 𝑥) → 0 (𝑛 → ∞),

{𝑥
𝑛
} converges to 𝑥, and, for any 𝑦 ∈ 𝑋,

lim inf
𝑛→∞

𝑞 (𝑥
𝑛
, 𝑦) ≤ 𝑝 (𝑥, 𝑦) . (100)

Then there exists a subsequence {𝑥
𝑛𝑘
} such that

lim
𝑘→∞

𝑞 (𝑥
𝑛𝑘
, 𝑦) = lim inf

𝑛→∞

𝑞 (𝑥
𝑛
, 𝑦) ≤ 𝑞 (𝑥, 𝑦) . (101)

Also, there exists a subsequence {𝑥
𝑛𝑘𝑖

} of {𝑥
𝑛𝑘
} such that

lim
𝑖→∞

𝑞(𝑥
0
, 𝑥
𝑛𝑘𝑖

) = lim inf
𝑘→∞

𝑞(𝑥
0
, 𝑥
𝑛𝑘
). It follows from

𝑞(𝑥
𝑛
, 𝑥)→ 0 (𝑛 → ∞) and 𝑞(𝑥

0
, 𝑥) ≤ 𝑞(𝑥

0
, 𝑥
𝑛𝑘𝑖

) + 𝑞(𝑥
𝑛𝑘𝑖

, 𝑥)

that 𝑞(𝑥
0
, 𝑥) ≤ lim

𝑖→∞
𝑞(𝑥
0
, 𝑥
𝑛𝑘𝑖

). Then, by noting that ℎ is
nondecreasing, we have

lim inf
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑦) ≤ lim inf

𝑘→∞

𝑝 (𝑥
𝑛𝑘
, 𝑦)

≤ lim inf
𝑖→∞

𝑝 (𝑥
𝑛𝑘𝑖

, 𝑦)

= lim inf
𝑖→∞

∫

𝑞(𝑥0 ,𝑥𝑛
𝑘𝑖

)+𝑞(𝑥𝑛
𝑘𝑖

,𝑦)

𝑞(𝑥0,𝑥𝑛
𝑘𝑖

)

𝑑𝑟

1 + ℎ (𝑟)

= ∫

lim𝑖→∞𝑞(𝑥0,𝑥𝑛
𝑘𝑖

)+lim𝑖→∞𝑞(𝑥𝑛
𝑘𝑖

,𝑦)

lim𝑖→∞𝑞(𝑥0 ,𝑥𝑛
𝑘𝑖

)

𝑑𝑟

1 + ℎ (𝑟)

≤ ∫

𝑞(𝑥0 ,𝑥)+lim𝑖→∞𝑞(𝑥𝑛
𝑘𝑖

,𝑦)

𝑞(𝑥0,𝑥)

𝑑𝑟

1 + ℎ (𝑟)

≤ ∫

𝑞(𝑥0 ,𝑥)+𝑞(𝑥,𝑦)

𝑞(𝑥0 ,𝑥)

𝑑𝑟

1 + ℎ (𝑟)
= 𝑝 (𝑥, 𝑦) .

(102)

Thus, (𝑋,U) is sequentially lower complete with respect to 𝑝

and 𝑓. The proof is completed.

Remark 35. By using Lemma 34 andTheorem 27, we can get
coincidence point theorems and its equivalences for (𝑋,U)

and 𝑝, which improve the results in [29, 30].

Remark 36. Let (𝑋,I) be a sequentially complete 𝐹-type
separated topological space (or equivalently, a uniform
space) whose topology is generated by a family {𝑞

𝜆
}
𝜆∈Λ

of
pseudometrics (see [15]), 𝛼 : Λ → (0, +∞) a nondecreasing
function, and ℎ : [0, +∞) → [0, +∞) a nondecreasing
function satisfying (95). Let 𝑝

𝜆
: 𝑋 × 𝑋 → [0, +∞) be

defined by

𝑝
𝜆
(𝑥, 𝑦) = ∫

𝑞𝜆(𝑥0 ,𝑥)+𝑞𝜆(𝑥,𝑦)

𝑞𝜆(𝑥0 ,𝑥)

𝑑𝑟

1 + ℎ (𝑟)
, 𝜆 ∈ Λ, (103)

and let an extended real-valued function 𝑝 : 𝑋 × 𝑋 →

[0, +∞] be defined by

𝑝 (𝑥, 𝑦) = sup
𝜆∈Λ

𝛼 (𝜆) 𝑝
𝜆
(𝑥, 𝑦) , ∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑋. (104)

Similar to the proof of Lemma 34, one can prove that
(𝑋,I) is sequentially lower complete w.r.t. 𝑝. Then, by using
Theorem 27, we can get coincidence point theorems and its
equivalences for (𝑋,I) and 𝑝, which improve the results in
[32].
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