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A further generalization of an economic growth model is the main topic of this paper.The paper specifically analyzes the effects on
the asymptotic dynamics of the Solowmodel when two time delays are inserted: the time employed in order that the capital is used
for production and the necessary time so that the capital is depreciated. The existence of a unique nontrivial positive steady state
of the generalized model is proved and sufficient conditions for the asymptotic stability are established. Moreover, the existence
of a Hopf bifurcation is proved and, by using the normal form theory and center manifold argument, the explicit formulas which
determine the stability, direction, and period of bifurcating periodic solutions are obtained. Finally, numerical simulations are
performed for supporting the analytical results.

1. Introduction

Most of the phenomena occurring in real-world complex sys-
tems, especially in the economics systems, have not an imme-
diate effect but appear with some delay.Therefore time delays
have been inserted into mathematical models and in partic-
ular in models of the applied sciences based on ordinary dif-
ferential equations; see the recent book [1]. Differential equa-
tions specifically with time delays have been proposed in pop-
ulation dynamics [2] for biological systems such as immune
system response [3–6] and tumor growth [7–12], in models
of social sciences [13], and in economics systems; see, among
others, [14–21].

The introduction of a time delay into an ordinary dif-
ferential equation could change the stability of the equilib-
rium (stable equilibrium becomes unstable) and could cause
fluctuations, and Hopf bifurcation can occur. Indeed global
existence of Hopf bifurcations has been proved inmany delay
mathematicalmodels; see papers [22–24] and references cited
therein.

If on one hand, the stability and bifurcation analysis of
ordinary differential equations with a single time delay is well

outlined in the pertinent literature [25, 26], on the other hand
the analysis of the dynamics of ordinary differential equations
with multiple time delays is a difficult task [27–29] and the
related literature is much limited. In this context, for several
classes of ordinary differential equationmodels withmultiple
time delays, sufficient and necessary conditions have been
established and a complete description of the stability region
has been reached; see, among others, [30, 31] and references
cited therein.

The present paper is concerned with a further generaliza-
tion of the Solow model [32]. The generalized model is gov-
erned by a delay differential equation with two time delays.
Specifically the two time delays refer, respectively, to the time
employed in order that the capital is used for production
and the necessary time so that the capital is depreciated.
The asymptotic analysis performed in this paper shows the
existence of a unique nontrivial positive steady state, and
sufficient conditions for the asymptotic stability are estab-
lished.Moreover, the existence of aHopf bifurcation is proved
and, by using the normal form theory and center manifold
argument, the explicit formulas which determine the stability,
direction, and period of bifurcating periodic solutions are
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obtained. Finally, some numerical simulations to support the
analytical conclusions are carried out.

The rest of the paper is organized into four more sections
which follow this introduction. Specifically, Section 2 dis-
cusses the derivation of the generalized Solowmodelwith two
time delays. Section 3 deals with the analysis of the existence
of Hopf bifurcation and stability of the positive equilibrium
for the model proposed in Section 1. Section 4 is concerned
with the direction and the stability of the Hopf bifurcation.
Some numerical simulations are performed in Section 5 with
the aim of supporting the analytic results. Finally Section 6
completes the paper with conclusions and some future
research perspectives.

2. The Mathematical Model

Recently, Zak has proposed in [15] the following delay ordi-
nary differential equation

̇

𝑘 (𝑡) = 𝑠𝑓 (𝑘 (𝑡 − 𝜏)) − 𝛿𝑘 (𝑡 − 𝜏) (1)

to describe the dynamics of the Solow model [32] in which
a production technology has a constant finite period 𝜏 ≥

0 linked to the time needed for the installation of capital.
Here, 𝑘(𝑡) denotes capital at time 𝑡, 𝑓(𝑘(𝑡)) is a neoclassical
production function, namely a function which is continuous,
increasing, and strictly concave in capital, and 𝑠 ∈ (0, 1) is the
constant savings rate. Population is assumed to be constant
and normalized to unity. During production a proportion of
the capital stock, 𝛿 ∈ (0, 1), depreciates at the same gestation
period 𝜏.

The assumption that the growth of the amount of capital
at time 𝑡 is a function of the total output of capital at time 𝑡−𝜏
has been showed in [15] to be the source of cyclic behaviour in
the economic system (1). Generalizing this idea, we proposed
the following delay ordinary differential equation:

̇

𝑘 (𝑡) = 𝑠𝑓 (𝑘 (𝑡 − 𝜏

1
)) − 𝛿𝑘 (𝑡 − 𝜏

2
) , (2)

that is, the generalized Solow model with two delays.
It is worth stressing that for 𝜏

1
= 𝜏

2
= 𝜏 = 0, we recover

the Solow model equation [32]. In this model, the positive
equilibrium is asymptotically stable in the absence of delay.
For 𝜏
1
= 𝜏

2
= 𝜏 > 0, (2) reduces to the delayed Solow model

proposed by Zak in [15].

3. Local Stability and Hopf Bifurcation

Themathematicalmodel (2) has exactly the same equilibrium
points of the corresponding system with zero delays. Hence,
there exists a unique positive equilibrium 𝑘

∗
, where 𝑠𝑓(𝑘

∗
) =

𝛿𝑘

∗
. To determine the stability of this equilibrium and Hopf

bifurcation, we linearize (2) around 𝑘
∗
. The result is a linear

delay differential equation of the form

̇

𝑘 (𝑡) = −𝐴

1
[𝑘 (𝑡 − 𝜏

1
) − 𝑘

∗
] − 𝐴

2
[𝑘 (𝑡 − 𝜏

2
) − 𝑘

∗
] , (3)

where

𝐴

1
= [𝑠𝑓


(𝑘

∗
) − 𝛿] < 0, 𝐴

2
= 𝛿 > 0. (4)

It is well known that the stability of the equilibrium is deter-
mined by the spectrumof the eigenvalues of the linearization,
which can be found as the roots of the characteristic equation

𝜆 = −𝐴

1
𝑒

−𝜆𝜏
1
− 𝐴

2
𝑒

−𝜆𝜏
2
.

(5)

We recall that an equilibrium point of an equation is stable
if all eigenvalues of its linearization have negative real part.
It changes its stability type when eigenvalues cross the
imaginary axis of the complex plane. We first note that 𝜆 = 0
is not a root of (5) because this would imply 𝑠𝑓(𝑘

∗
) = 0, con-

tradicting the fact that 𝑓(𝑘
∗
) > 0. Next, the distribution of

the roots of (5) should be investigated. However, the analysis
of the sign of the real parts of eigenvalues is very complicated
because of the presence of two different delays, 𝜆

1
and 𝜆

2
,

in (5). Therefore, we will use a method consisting of deter-
mining the stability of the equilibrium when one delay is
equal to zero, and, using similar analytic arguments as in the
work by Ruan andWei [33], we will deduce conditions for the
stability of the equilibrium when both time delays are non-
zero.

3.1. Case 1: 𝜏
1
≥ 0 and 𝜏

2
= 0. The characteristic equation (5)

reduces to

𝜆 = −𝐴

1
𝑒

−𝜆𝜏
1
− 𝐴

2
.

(6)

If 𝜏
1
= 0, (6) has the unique root 𝜆 = −𝐴

1
−𝐴

2
= −𝑠𝑓


(𝑘

∗
) <

0. Thus, the equilibrium 𝑘

∗
is locally asymptotically stable.

Consequently, when 𝜏
1
increases, the stability of the steady

state can only be lost if pure imaginary roots appear. Hence
we look for purely imaginary roots ±𝑖𝜔, 𝜔 > 0, of (6). Let 𝑖𝜔
be a purely imaginary root of (6). Then, separating real and
imaginary parts, 𝜔 satisfies

𝜔 = 𝐴

1
sin (𝜔𝜏

1
) , 𝐴

2
= −𝐴

1
cos (𝜔𝜏

1
) . (7)

It follows that

𝜔

2
= 𝐴

2

1
− 𝐴

2

2
= (𝐴

1
+ 𝐴

2
) (𝐴

1
− 𝐴

2
)

= 𝑠𝑓


(𝑘

∗
) {[𝑠𝑓


(𝑘

∗
) − 𝛿] − 𝛿} < 0.

(8)

Hence, (6) has no positive root. Then, we can conclude the
following result about the asymptotic stability of the equilib-
rium of (2).

Proposition 1. Let 𝜏
2
= 0. Then the positive equilibrium 𝑘

∗
of

(2) is locally asymptotically stable.

3.2. Case 2: 𝜏
1
= 0 and 𝜏

2
≥ 0. The characteristic equation (5)

becomes

𝜆 = −𝐴

1
− 𝐴

2
𝑒

−𝜆𝜏
2
.

(9)

Setting 𝜏
2
= 0, we know that the equilibrium 𝑘

∗
is locally

asymptotically stable. Let 𝜆 = 𝑖𝜔, 𝜔 > 0, be a root of (9). Sep-
arating real and imaginary parts, we have the following two
equations:

𝜔 = 𝐴

2
sin (𝜔𝜏

2
) , 𝐴

1
= 𝐴

2
cos (𝜔𝜏

2
) . (10)
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Adding the squares of both hand sides of (10), it follows that
𝜔must be a root of the following equation:

𝜔

2
= 𝐴

2

2
− 𝐴

2

1
= (−𝐴

1
− 𝐴

2
) (𝐴

1
− 𝐴

2
)

= −𝑠𝑓


(𝑘

∗
) {[𝑠𝑓


(𝑘

∗
) − 𝛿] − 𝛿} > 0.

(11)

Hence, (11) admits only the positive root

𝜔

0
=
√
𝐴

2

2
− 𝐴

2

1
.

(12)

Define from (10)

𝜏

0

2
=

1

𝜔

0

arccos(𝐴1
𝐴

2

) , (13)

and

𝜏

𝑛

2
= 𝜏

0

2
+

2𝑛𝜋

𝜔

0

, 𝑛 = 0, 1, 2, . . . . (14)

Then, it is immediate to check that 𝑖𝜔
0
is a simple root of (9)

when 𝜏
2
= 𝜏

𝑛

2
.

Lemma 2. Let 𝜆(𝜏
2
) = 𝑎(𝜏

2
) + 𝑖𝜔(𝜏

2
) be the complex root of

(9) near 𝜏
2
= 𝜏

𝑛

2
satisfying 𝑎(𝜏𝑛

2
) = 0 and 𝜔(𝜏𝑛

2
) = 𝜔

0
. Then the

transversal condition

sign{
𝑑Re [𝜆 (𝜏𝑛

2
)]

𝑑𝜏

2

} > 0 (15)

is satisfied.

Proof. Differentiating the characteristic equation (9) with
respect to 𝜏

2
, we obtain

𝑑𝜆

𝑑𝜏

2

= 𝐴

2
𝑒

−𝜏
2
𝜆
(𝜏

2

𝑑𝜆

𝑑𝜏

2

+ 𝜆) . (16)

This gives

(

𝑑𝜆

𝑑𝜏

2

)

−1

= −

1

𝜆 (𝜆 + 𝐴

1
)

−

𝜏

2

𝜆

. (17)

Hence, we have

sign [𝑑 (Re 𝜆)
𝑑𝜏

2

]

𝜆=𝑖𝜔
0
,𝜏
2
=𝜏
𝑛

2

= sign[Re( 𝑑𝜆
𝑑𝜏

2

)

−1

𝜆=𝑖𝜔
0
,𝜏
2
=𝜏
𝑛

2

]

= sign[ 1

𝜔

2

0
+ 𝐴

2

1

] .

(18)

This completes the proof.

Bearing the above analysis in mind and the Hopf bifurca-
tion theorem for functional differential equations due toHale
and Verduyn Lunel (see p. 246,Theorem 1.1 of the book [34]),
we have the following result.

Theorem3. Let 𝜏
1
= 0.Then the positive equilibrium 𝑘

∗
of (2)

is locally asymptotically stable when 𝜏
2
∈ [0, 𝜏

0

2
) and unstable

when 𝜏
2
> 𝜏

0

2
. Furthermore, (2) undergoes a Hopf bifurcation

at the positive equilibrium 𝑘

∗
when 𝜏

2
= 𝜏

𝑛

2
, 𝑛 = 0, 1, 2, . . .,

where 𝜏𝑛
2
is defined as in (14).

3.3. Case 3: 𝜏
1
> 0 and 𝜏

2
> 0. Equation (5) has purely imag-

inary roots ±𝑖𝜔, where 𝜔 > 0, if the following equations are
satisfied. Consider

𝜔 − 𝐴

1
sin (𝜔𝜏

1
) = 𝐴

2
sin (𝜔𝜏

2
) ,

𝐴

1
cos (𝜔𝜏

1
) = −𝐴

2
cos (𝜔𝜏

2
) .

(19)

Squaring and adding up both equations in (19) yield

sin (𝜔𝜏
1
) = 𝑔 (𝜔) , (20)

where

𝑔 (𝜔) =

𝜔

2
+ 𝐴

2

1
− 𝐴

2

2

2𝜔𝐴

1

.
(21)

Lemma 4. For every arbitrary 𝜏
1
> 0, (20) has a finite number

of positive solutions for 𝜔 ∈ [𝐴
1
+ 𝐴

2
, −𝐴

1
+ 𝐴

2
].

Proof. The inequality | sin(𝜔𝜏
1
)| ≤ 1 and 𝐴 > 1 imply 𝜔 ∈

[𝐴

1
+ 𝐴

2
, −𝐴

1
+ 𝐴

2
]. The function 𝑔(𝜔) has the properties

𝑔(𝐴

1
+ 𝐴

2
) = 1, 𝑔(−𝐴

1
+ 𝐴

2
) = −1, 𝑔(√𝐴2

2
− 𝐴

2

1
) = 0, and

𝑑𝑔 (𝜔)

𝑑𝜔

=

𝜔

2
+ 𝐴

2

2
− 𝐴

2

1

2𝜔

2
𝐴

1

< 0,

𝑑

2
𝑔 (𝜔)

𝑑𝜔

2
=

𝐴

2

1
− 𝐴

2

2

𝜔

3
𝐴

2

1

< 0.

(22)

A graphical inspection on the intersections of the functions
sin(𝜔𝜏

1
) and 𝑔(𝜔) gives the statement.

Remark 5. If 𝜏
1
∈ (0, 𝜋/(−𝐴

1
+ 𝐴

2
)), (20) has only one

positive solution.

For any 𝜏
1
> 0, (20) has a finite number of positive zeros

𝜔

𝑗
, 𝑗 = 1, 2, . . . , 𝑚. It is clear that for every arbitrary chosen

𝜏

1
> 0 and for each 𝜔

𝑗
we have an infinite number of 𝜏

2
such

that𝐴
1
cos(𝜔

𝑗
𝜏

1
) = −𝐴

2
cos(𝜔

𝑗
𝜏

2
). For all 𝑗 = 1, 2, . . . , 𝑚, we

define

𝜏

𝑗

2
= min {𝜏

2
> 0 : 𝐴

1
cos (𝜔

𝑗
𝜏

1
) = −𝐴

2
cos (𝜔

𝑗
𝜏

2
)} .

(23)

In addition, we set

𝜏

0

2
= min {𝜏𝑗

2
: 𝑗 = 1, 2, . . . , 𝑚} (24)

and denote𝜔
0
= 𝜔

𝑗
for 𝑗 such that 𝜏𝑗

2
= 𝜏

0

2
. Next, we check the

condition which guarantees that the purely imaginary roots
pass through the imaginary axis at ±𝑖𝜔

0
. Let 𝜆(𝜏

2
) = 𝑎(𝜏

2
) +

𝑖𝜔(𝜏

2
) be the root of (5) near 𝜏

2
= 𝜏

0

2
such that 𝑎(𝜏0

2
) = 0 and

𝜔(𝜏

0

2
) = 𝜔

0
. By direct computation we have

𝑑𝜆

𝑑𝜏

2

= 𝐴

1
𝑒

−𝜆𝜏
1
(𝜏

1

𝑑𝜆

𝑑𝜏

2

) + 𝐴

2
𝑒

−𝜆𝜏
2
(𝜏

2

𝑑𝜆

𝑑𝜏

2

+ 𝜆) (25)

and obtain

(

𝑑𝜆

𝑑𝜏

2

)

−1

= −

1 + 𝜆𝜏

1

𝜆𝐴

2
𝑒

−𝜆𝜏
2

+

𝜏

1
− 𝜏

2

𝜆

. (26)
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Hence, it follows that

sign [𝑑 (Re 𝜆)
𝑑𝜏

2

]

𝜆=𝑖𝜔
0
,𝜏
2
=𝜏
0

2

= sign[Re( 𝑑𝜆
𝑑𝜏

2

)

−1

𝜆=𝑖𝜔
0
,𝜏
2
=𝜏
0

2

]

= sign[
sin (𝜔

0
𝜏

0

2
) + 𝜏

1
𝜔

0
cos (𝜔

0
𝜏

0

2
)

𝐴

2
𝜔

0

]

= sign [sin (𝜔
0
𝜏

0

2
) + 𝜏

1
𝜔

0
cos (𝜔

0
𝜏

0

2
)] .

(27)

If for given 𝜏
1
both sin(𝜔

0
𝜏

0

2
) and cos(𝜔

0
𝜏

0

2
) are positive (resp.,

negative), then

sign [sin (𝜔
0
𝜏

0

2
) + 𝜏

1
𝜔

0
cos (𝜔

0
𝜏

0

2
)] > 0 (resp., < 0)

(28)

and the purely imaginary roots ±𝑖𝜔
0
of (5) move to the right

(resp., left) half plane when the bifurcation parameter 𝜏
2

increases. So, we have the following transversality condition.

Proposition 6. Let Ω
1
= [0, 𝜋/2] and Ω

2
= [𝜋, 3𝜋/2].

(1) If 𝜔
0
𝜏

0

2
∈ Ω

1
, then sign [𝑑(Re 𝜆)/𝑑𝜏

2
]

𝜆=𝑖𝜔
0
,𝜏
2
=𝜏
0

2

> 0.

(2) If 𝜔
0
𝜏

0

2
∈ Ω

2
, then sign [𝑑(Re 𝜆)/𝑑𝜏

2
]

𝜆=𝑖𝜔
0
,𝜏
2
=𝜏
0

2

< 0.

Lemma 7. 𝜆 = ±𝑖𝜔
0
are simple roots of (5)when 𝜔

0
𝜏

0

2
∈ Ω

1
∪

Ω

2
.

Proof. If 𝜆 = 𝑖𝜔

0
is a repeated root for (5), then 1 =

𝜏

1
𝐴

1
𝑒

−𝑖𝜔
0
𝜏
1
+ 𝜏

0

2
𝐴

2
𝑒

−𝑖𝜔
0
𝜏
0

2 holds true. Using (5), this leads to
−𝜔

0
𝜏

1
= (𝜏

0

2
−𝜏

1
)𝐴

2
sin(𝜔
0
𝜏

0

2
) and 1 = (𝜏0

2
−𝜏

1
)𝐴

2
cos(𝜔

0
𝜏

0

2
).

Thus, we must have −𝜔
0
𝜏

1
= tan(𝜔

0
𝜏

0

2
). If 𝜔

0
𝜏

0

2
∈ Ω

1
, this

means 𝜔
0
= 0, while if 𝜔

0
𝜏

0

2
∈ Ω

2
, this identity does not hold.

The conclusion is immediate.

From the discussion above, and recalling that for any 𝜏
1

and 𝜏
2
= 0 all roots of (5) have strictly negative real parts, the

following theorem about stability and Hopf bifurcation of (2)
is immediately obtained.

Theorem8. Let 𝜏
1
> 0 andΩ

1
,Ω
2
be defined as in Proposition

6. Then
(1) equation (2) undergoes a Hopf bifurcation at 𝑘

∗
when

𝜏

2
= 𝜏

0

2
,

(2) if 𝜔
0
𝜏

0

2
∈ Ω

1
, then the nontrivial equilibrium 𝑘

∗
to

(2) is locally asymptotically stable for 𝜏
2
∈ [0, 𝜏

0

2
) and

unstable for 𝜏
2
> 𝜏

0

2
,

(3) if 𝜔
0
𝜏

0

2
∈ Ω

2
, then the nontrivial equilibrium 𝑘

∗
to (2)

is locally asymptotically stable for 𝜏
2
∈ [0, +∞).

4. Direction and Stability of
the Hopf Bifurcation

In this section, we study the direction of bifurcations and the
stability of bifurcating periodic solutions of (2) at 𝜏0

2
by using

the method based on the normal form theory and center
manifold theory introduced by Hassard et al. [35].

For notational convenience, let 𝜏
2
= 𝜏

0

2
+ 𝜇, 𝜇 ∈ R. Then

𝜇 = 0 is theHopf bifurcation point for (2). First, we transform
(2) into a functional differential equation in 𝐶([−𝜏

1
, 0],R),

which is the Banach space of continuous real-valued func-
tions that map [−𝜏

1
, 0] into R, and endowed with the norm








𝜑









= sup
−𝜏
1
≤𝜗≤0









𝜑 (𝜗)









. (29)

Set 𝑥(𝑡) = 𝑘(𝑡) − 𝑘
∗
. Then, rewriting (2) in terms of 𝑥(𝑡) and

considering its Taylor expansion at the trivial equilibrium up
to the third order, we get

�̇� (𝑡) = − [𝑠𝑓


(𝑘

∗
) − 𝛿] 𝑥 (𝑡 − 𝜏

1
) − 𝛿𝑥 (𝑡 − 𝜏

2
)

+

𝑠𝑓


(𝑘

∗
)

2

𝑥(𝑡 − 𝜏

1
)

2

+

𝑠𝑓


(𝑘

∗
)

3!

𝑥(𝑡 − 𝜏

1
)

3

+ ⋅ ⋅ ⋅ .

(30)

For 𝜑 ∈ 𝐶([−𝜏
1
, 0],R), define the linear operator

𝐿

𝜇
(𝜑) = − [𝑠𝑓


(𝑘

∗
) − 𝛿] 𝜑 (−𝜏

1
) − 𝛿𝜑 (−𝜏

2
) (31)

and the nonlinear operator

𝐹 (𝜇, 𝜑) =

𝑠𝑓


(𝑘

∗
)

2

𝜑(−𝜏

1
)

2

+

𝑠𝑓


(𝑘

∗
)

3!

𝜑(−𝜏

1
)

3

+ ⋅ ⋅ ⋅ .

(32)

By the Riesz representation theorem, there exists a bounded
variation function 𝜂(𝜗, 𝜇) with 𝜗 ∈ [−𝜏

1
, 0] such that

𝐿

𝜇
(𝜑) = ∫

0

−𝜏
1

𝑑𝜂 (𝜗, 𝜇) 𝜑 (𝜗) , (33)

with

𝜂 (𝜗, 𝜇) = {

−𝛿Γ (𝜗) , 𝜗 ∈ (−𝜏

2
, 0] ,

[𝑠𝑓


(𝑘

∗
) − 𝛿] Γ (𝜗 + 𝜏

1
) , 𝜗 ∈ [−𝜏

1
, −𝜏

2
] ,

(34)

where Γ is the Dirac delta function. For 𝜑 ∈ 𝐶([−𝜏

1
, 0],R),

define

𝐴 (𝜇) 𝜑 =

{

{

{

{

{

{

{

{

{

𝑑𝜑 (𝜗)

𝑑𝜗

, 𝜗 ∈ [−𝜏

1
, 0) ,

∫

0

−𝜏
1

𝑑𝜂 (𝑢, 𝜇) 𝜑 (𝑢) , 𝜗 = 0,

𝑅 (𝜇) 𝜑 = {

0, 𝜗 ∈ [−𝜏

1
, 0) ,

𝐹 (𝜇, 𝜑) , 𝜗 = 0.

(35)

Then (30) is equivalent to

�̇�

𝑡
= 𝐴 (𝜇) 𝑥

𝑡
+ 𝑅 (𝜇) 𝑥

𝑡
, (36)

where 𝑥
𝑡
(𝜗) = 𝑥(𝑡 + 𝜗) for 𝜗 ∈ [−𝜏

1
, 0]. For 𝜓 ∈ 𝐶([0, 𝜏

1
],R),

define the operator 𝐴∗ as

𝐴

∗
(0) 𝜓 (𝑢) =

{

{

{

{

{

{

{

−

𝑑𝜓 (𝑢)

𝑑𝑢

, 𝑢 ∈ (0, 𝜏

1
] ,

∫

0

−𝜏
1

𝑑𝜂 (𝑟, 0) 𝜓 (−𝑟) , 𝑢 = 0,

(37)
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and the bilinear inner product

⟨𝜓, 𝜑⟩ = 𝜓 (0) 𝜑 (0)

− ∫

0

𝜗=−𝜏
1

∫

𝜗

𝜉=0

𝜓 (𝜉 − 𝜗) 𝑑𝜂 (𝜗, 0) 𝜑 (𝜉) 𝑑𝜉,

(38)

where the over bar denotes complex conjugation. Then 𝐴(0)
and 𝐴∗(0) are adjoint operators. By the discussion in the
previous section, we know that ±𝑖𝜔

0
are eigenvalues of 𝐴(0).

Thus, they are also eigenvalues of𝐴∗(0). We need to compute
the eigenvector of 𝐴(0) and 𝐴∗(0) corresponding to 𝑖𝜔

0
and

−𝑖𝜔

0
, respectively. A direct computation shows that their

eigenvectors are

𝑞 (𝜗) = 𝑒

𝑖𝜔
0
𝜗
, 𝜗 ∈ [−𝜏

1
, 0] ,

𝑞

∗
(𝑢) = 𝐵𝑒

𝑖𝜔
0
𝑢
, 𝑢 ∈ [0, 𝜏

1
] ,

(39)

respectively. We have ⟨𝑞∗, 𝑞⟩ = 0. In order to ensure ⟨𝑞∗, 𝑞⟩ =
1, we choose 𝐵 as

𝐵 =

1

1 − 𝜏

1
[𝑠𝑓


(𝑘

∗
) − 𝛿] 𝑒

𝑖𝜔
0
𝜏
1
− 𝜏

0

2
𝛿𝑒

𝑖𝜔
0
𝜏
0

2

. (40)

Next, we compute the coordinates to describe the center
manifold C at 𝜇 = 0. Let 𝑥

𝑡
be the solution of (36) when

𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞

∗
, 𝑥

𝑡
⟩ , 𝑊 (𝑡, 𝜗) = 𝑥

𝑡
(𝜗) − 2Re [𝑧 (𝑡) 𝑞 (𝜗)] .

(41)

On the centermanifoldC, we have𝑊(𝑡, 𝜗) = 𝑊(𝑧(𝑡), 𝑧(𝑡), 𝜗),
with

𝑊(𝑧, 𝑧, 𝜗) = 𝑊

20
(𝜗)

𝑧

2

2

+𝑊

11
(𝜗) 𝑧𝑧 +𝑊

02
(𝜗)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

(42)

where 𝑧 and 𝑧 are local coordinates for C in the direction of
𝑞

∗ and 𝑞∗. For any 𝑥
𝑡
∈ C, since 𝜇 = 0, we find

�̇� (𝑡) = 𝑖𝜔

0
𝑧 (𝑡) + 𝑞

∗
(0) 𝐹

0
(𝑧, 𝑧) , (43)

with

𝐹

0
(𝑧, 𝑧) = 𝐹 (0,𝑊 (𝑧, 𝑧, 0) + 2Re [𝑧 (𝑡) 𝑞 (0)]) . (44)

We rewrite (43) as

�̇� (𝑡) = 𝑖𝜔

0
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) , (45)

where
𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝐹 (0,𝑊 (𝑧, 𝑧, 0) + 2Re [𝑧 (𝑡) 𝑞 (0)])

= 𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

+ ⋅ ⋅ ⋅ .

(46)

It follows from (36) and (43) that
̇

𝑊 = �̇�

𝑡
− �̇�𝑞 −

̇

𝑧 𝑞

= {

𝐴 (0)𝑊 − 2Re [𝑞∗ (0) 𝐹
0
𝑞 (𝜗)] , 𝜗 ∈ [−𝜏

1
, 0) ,

𝐴 (0)𝑊 − 2Re [𝑞∗ (0) 𝐹
0
𝑞 (0)] + 𝐹

0
, 𝜗 = 0,

= 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜗) ,

(47)

where
𝐻(𝑧, 𝑧, 𝜗) = Re [𝑔 (𝑧, 𝑧) 𝑞 (0)]

+ 𝐹 (0,𝑊 (𝑧, 𝑧, 𝜗) + 2Re [𝑧 (𝑡) 𝑞 (𝜗)])

= 𝐻

20
(𝜗)

𝑧

2

2

+ 𝐻

11
(𝜗) 𝑧𝑧 + 𝐻

02
(𝜗)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(48)

Expanding the above series and comparing the coefficients,
we get

[𝐴 (0) − 2𝑖𝜔

0
]𝑊

20
(𝜗) = −𝐻

20
(𝜗) ,

𝐴 (0)𝑊

11
(𝜗) = −𝐻

11
(𝜗) ,

[𝐴 (0) + 2𝑖𝜔

0
]𝑊

02
(𝜗) = −𝐻

02
(𝜗) .

(49)

Now 𝑞∗(0) = 𝐵 implies

𝑔 (𝑧, 𝑧) = 𝐵

𝑠𝑓


(𝑘

∗
)

2

𝑥

2

𝑡−𝜏
1

+ 𝐵

𝑠𝑓


(𝑘

∗
)

3!

𝑥

3

𝑡−𝜏
1

+ ⋅ ⋅ ⋅ .

(50)

Noticing that 𝑥
𝑡
(𝜗) = 𝑊(𝑧, 𝑧, 𝜗) + 𝑧𝑞(𝜗) + 𝑧 𝑞(𝜗), we derive

𝑥

𝑡−𝜏
1

= 𝑊

20
(−𝜏

1
)

𝑧

2

2

+𝑊

11
(−𝜏

1
) 𝑧𝑧

+𝑊

02
(−𝜏

1
)

𝑧

2

2

+ ⋅ ⋅ ⋅ + 𝑒

−𝑖𝜔
0
𝜏
1
𝑧 (𝑡) + 𝑒

𝑖𝜔
0
𝜏
1
𝑧 (𝑡) .

(51)

Then substituting this into (50) and comparing the coeffi-
cients with (46), the following hold:

𝑔

20
= 𝐵𝑠𝑓


(𝑘

∗
) 𝑒

−2𝑖𝜔
0
𝜏
1
,

𝑔

11
= 𝐵𝑠𝑓


(𝑘

∗
) ,

𝑔

02
= 𝐵𝑠𝑓


(𝑘

∗
) 𝑒

2𝑖𝜔
0
𝜏
1
,

𝑔

21
= 𝐵 {𝑠𝑓


(𝑘

∗
) [2𝑊

11
(−𝜏

1
) 𝑒

−𝑖𝜔
0
𝜏
1
+𝑊

20
(−𝜏

1
) 𝑒

𝑖𝜔
0
𝜏
1
]

+ 𝑠𝑓


(𝑘

∗
) 𝑒

−𝑖𝜔
0
𝜏
1
} .

(52)

In order to compute 𝑔
21
, we need to know𝑊

20
(𝜗) and𝑊

11
(𝜗).

For 𝜗 ∈ [−𝜏
1
, 0], we have

𝐻(𝑧, 𝑧, 𝜃) = −2Re {𝑞∗ (0) 𝐹
0
𝑞 (𝜃)} = −𝑔𝑞 (𝜃) − 𝑔 𝑞 (𝜃)

= −(𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ ⋅ ⋅ ⋅ ) 𝑞 (𝜃)

− (𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ ⋅ ⋅ ⋅ ) 𝑞 (𝜃) .

(53)

Comparing the coefficients with those in (48) yields

𝐻

20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻

11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(54)
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From (49)

̇

𝑊

20
(𝜃) = 2𝑖𝜔

0
𝑊

20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃)

̇

𝑊

11
(𝜃) = 𝑔

11
𝑞 (𝜃) + 𝑔

11
𝑞 (𝜃) .

(55)

Solving𝑊
20
(𝜃), we have

𝑊

20
(𝜃) = −

𝑔

20

𝑖𝜔

0

𝑒

𝑖𝜔
0
𝜃
−

𝑔

02

3𝑖𝜔

0

𝑒

−𝑖𝜔
0
𝜃
+ 𝐸

1
𝑒

2𝑖𝜔
0
𝜃
, (56)

and, similarly for𝑊
11
(𝜃),

𝑊

11
(𝜃) =

𝑔

11

𝑖𝜔

0

𝑒

𝑖𝜔
0
𝜃
−

𝑔

11

𝑖𝜔

0

𝑒

−𝑖𝜔
0
𝜃
+ 𝐸

2
. (57)

Here 𝐸
1
and 𝐸

2
are constants to be determined by setting 𝜃 =

0 in𝐻(𝑧, 𝑧, 𝜃). A direct computation shows

𝐸

1
=

𝑠𝑓


(𝑘

∗
) 𝑒

−2𝑖𝜔
0
𝜏
1

2𝑖𝜔

0
+ [𝑠𝑓


(𝑘

∗
) − 𝛿] 𝑒

−2𝑖𝜔
0
𝜏
1
+ 𝛿𝑒

−2𝑖𝜔
0
𝜏
0

2

,

𝐸

2
=

𝐵

𝑠𝑓


(𝑘

∗
)

.

(58)

Then all 𝑔
𝑖𝑗
have been obtained, and thus we can compute the

quantities

𝑐

1
(0) =

𝑖

2𝜔

0

(𝑔

11
𝑔

20
− 2









𝑔

11









2

−









𝑔

02









2

3

) +

𝑔

21

2

,

𝜇

2
= −

Re [𝑐
1
(0)]

Re [𝜆 (𝜏0
2
)]

,

𝛽

2
= 2Re [𝑐

1
(0)] ,

𝑇

2
= −

Im [𝑐

1
(0)] + 𝜇

2
Im [𝜆


(𝜏

0

2
)]

𝜔

0

,

(59)

which determine the properties of bifurcating periodic solu-
tions at the critical value 𝜏0

2
. From the discussion above, we

have the following result.

Theorem 9. Let 𝑘
∗
be the unique positive equilibrium of the

model (2). Then one has the following.

(1) 𝜇
2
determines the direction of the Hopf bifurcation

when 𝜏 = 𝜏0
2
: if 𝜇
2
> 0 (resp., 𝜇

2
< 0), then the Hopf

bifurcation is supercritical (resp., subcritical) and the
bifurcating periodic solution exists for 𝜏 > 𝜏

0

2
(resp.,

𝜏 < 𝜏

0

2
) in a sufficiently small 𝜏0

2
-neighbourhood.

(2) 𝛽
2
determines the stability of the bifurcating periodic

solution: if 𝛽
2
< 0 (resp., 𝛽

2
> 0) the bifurcating

periodic solution is locally asymptotically stable (resp.,
unstable).

(3) 𝑇
2
determines the period of the bifurcating periodic

solution: if 𝑇
2
> 0 (resp., 𝑇

2
< 0) the period increases

(resp., decreases).

5. Numerical Simulations

This section is concerned with some numerical simulations
of the mathematical model (2) with the aim of exploring the
analytical results. The model is characterized by four non-
negative parameters (𝑠, 𝛿, 𝜏

1
, 𝜏
2
) and the function 𝑓. In what

follows we restrict our attention to the Cobb-Douglas func-
tion; this function reads

𝑓 (𝑘 (𝑡)) = 𝐴[𝑘 (𝑡)]

𝛼
, (60)

with 𝛼 ∈ (0, 1) and 𝐴 > 0.
The first set of simulations refers to the following case:

𝑠 = 0.11, 𝛿 = 0.8, 𝛼 = 0.1,

𝐴 = 1, 𝜏

1
= 3, 𝜏

2
= 2,

(61)

where 𝜏
1
> 𝜏

2
. Figure 1(a) shows that the function 𝑘(𝑡)

reaches the stationary state (the equilibrium 𝑘

∗
). This equi-

librium is stable; see Figure 1(b), where the evolution of 𝑘(𝑡)
versus 𝑘(𝑡) is depicted for 𝑡 ∈ [0, 100].

The dynamics depicted by Figure 1 does not change from
the qualitative viewpoint when𝛼 ∈ [0.02, 1). Indeedwhen the
parameter 𝛼 varies in the interval [00.2, 1) the time necessary
for reaching the stationary state increases but the behavior
is that of Figure 1. When 𝛼 < 0.2 the time evolution of 𝑘(𝑡)
is shown in Figure 2. In this simulation the time length has
been increased in order to better visualize the evolution. As
Figure 2(b) shows, the equilibrium is now instable.

The second set of simulations refers to the following case:

𝑠 = 0.11, 𝛿 = 0.8, 𝛼 = 0.1,

𝐴 = 1, 𝜏

1
= 1, 𝜏

2
= 2.

(62)

These simulations take into account the case 𝜏
1
< 𝜏

2
. As

Figure 3 shows, oscillations occur for a long time (about 𝑡 ∈
[0, 1500]), with respect to the previous case, before reaching
the equilibrium. In this case the equilibrium is stable but a
very long time is necessary to reach it; see Figure 3(b). It
is sufficient to increase 𝛼 for obtaining the stationary state
rapidly. These simulations suggest that when the value of 𝛼
increases then the time necessary to reach the stationary state
decreases. Moreover, if the difference 𝜏

2
− 𝜏

1
> 0 increases,

then the stability of the equilibrium is lost for all 𝛼 ∈ (0.1).
Finally, we would show some numerical simulations

related to the evolution of 𝑘(𝑡) versus 𝑘(𝑡). Figure 4 shows the
instability of the equilibrium for 𝑠 = 0.41, 𝛿 = 0.35, 𝛼 = 0.8,
𝐴 = 1, 𝜏

1
= 10, 𝜏

2
= 2, see Figure 4(a); it is worth stressing

that the equilibrium is reached for 𝑡 ≥ 3500. In this case,
when we increase the magnitude of 𝑠 we are able to reach the
equilibrium more rapidly, see Figure 4(b), which is obtained
for 𝑠 = 0.91 and 𝑡 ∈ [0, 3500]. The equilibrium is rapidly
reached if we also decrease the magnitude of 𝛼.

6. Conclusions and Research Perspectives

In the present paper, a generalization of the Solow model
by inserting two time delays has been considered. The
delays, respectively, represent the time employed in order that
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Figure 1: The time evolution of the function 𝑘(𝑡) for 𝑠 = 0.11, 𝛿 = 0.8, 𝛼 = 0.1, 𝐴 = 1, 𝜏
1
= 3, and 𝜏

2
= 2 (a). The 𝑘(𝑡) versus 𝑘(𝑡), for

𝑡 ∈ [0, 100] (b).
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Figure 2: The time evolution of the function 𝑘(𝑡) for 𝑠 = 0.11, 𝛿 = 0.8, 𝛼 = 0.01, 𝐴 = 1, 𝜏
1
= 3, and 𝜏

2
= 2 (a). The 𝑘(𝑡) versus 𝑘(𝑡), for

𝑡 ∈ [0, 300] (b).

the capital is used for production and the necessary time
so that the capital is depreciated. Specifically, an asymptotic
analysis has been performed referring to the stability analysis
of the steady state and the conditions under which a Hopf
bifurcation appears.

According to the analysis developed in this paper, the
stability of the positive equilibrium changes as the time delays
vary. Indeed if 𝜏

2
= 0, the positive equilibrium is always

locally asymptotically stable; if 𝜏
1
= 0 the positive equilib-

rium can be locally asymptotically stable or unstable and a
Hopf bifurcation occurs; the dynamics is more complicated
when the two time delays are both different from zero (see
Theorem 8 where as the reader can see the investigation of
stability switches becomes quite complicated). This shows
that the time delays play an important role in the dynamics of
the model. Then, based on the analysis of the existence of the
Hopf bifurcation, by using the centermanifold theory and the
normal form method, an explicit algorithm for determining

the direction of the Hopf bifurcation and the stability of the
bifurcating periodic solutions has been derived. This means
that one can obtain the important quantities which determine
the properties of bifurcating periodic solutions at the critical
value; see Theorem 9. According to our results, we can say
that the model with two independent time delays has much
more complicated dynamics than the model with only one
time delay. That is why it seems to be more realistic.

The introduction of time delays can be also performed in
the mathematical model developed in [36] for the mammary
carcinoma. Indeed the stability analysis developed in the
present paper can help to reach more results in the cancer-
immune system competition. From a biological point of
view, the Hopf bifurcation means that for small values of
parameters the nontrivial stationary solution to the model
in [36] is stable, and we do not observe radical changes in
the competition. Otherwise, nontrivial stationary solution
can oscillate and the amplitude of the oscillations about
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Figure 3: The time evolution of the function 𝑘(𝑡) for 𝑠 = 0.11, 𝛿 = 0.8, 𝛼 = 0.1, 𝐴 = 1, 𝜏
1
= 1, and 𝜏

2
= 2 (a). The 𝑘(𝑡) versus 𝑘(𝑡), for

𝑡 ∈ [0, 1300] (b).
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Figure 4: The time evolution of 𝑘(𝑡) versus 𝑘(𝑡) for 𝑠 = 0.41, 𝛿 = 0.35, 𝛼 = 0.8, 𝐴 = 1, 𝜏
1
= 10, 𝜏

2
= 2, and 𝑡 ∈ [0, 3500] (a). The time

evolution of 𝑘(𝑡) versus 𝑘(𝑡) for 𝑠 = 0.91, 𝛿 = 0.35, 𝛼 = 0.8, 𝐴 = 1, 𝜏
1
= 10, 𝜏

2
= 2, and 𝑡 ∈ [0, 3500] (b).

the stationary solution remains constant. This case simply
corresponds to the situation when the competition oscillates
in time.

The Hopf bifurcation analysis developed in this paper
must be revised if the mathematical models are not based on
ordinary differential equations. Recently an increasing num-
ber of partial differential equation models for tumor growth
or therapy have been developed; see the references section
of paper [12] and the references cited in the recent review
paper [37].

Moreover thermostated integrodifferential equations
have been proposed in papers [38–43] for the modeling
of biological systems, vehicular traffic, crowd and swarm
dynamics, and economic systems subjected to external force
fields.The introduction of the Gaussian isokinetic thermostat

ensures the reaching of stationary states whose existence has
been proved in [44].The introduction of multiple time delays
in thermostated equations, their stability, and bifurcation
analysis is a future research perspective.

It is worth stressing that also theBoltzmann equationwith
the one-dimensional Bhatnagar-Gross-Krook relaxation type
operator [45] and the Kac equation have been coupled with
a Gaussian isokinetic thermostat; the existence of stationary
solutions is ensured also within these frameworks; see papers
[46–48].
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