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A new neural network based optimization algorithm is proposed. The presented model is a discrete-time, continuous-state Hopfield
neural network and the states of the model are updated synchronously. The proposed algorithm combines the advantages of
traditional PSO, chaos and Hopfield neural networks: particles learn from their own experience and the experiences of surrounding
particles, their search behavior is ergodic, and convergence of the swarm is guaranteed. The effectiveness of the proposed approach
is demonstrated using simulations and typical optimization problems.

1. Introduction

The discovery of chaos in astronomical, solar, fluid, and other
systems sparked significant research in nonlinear dynamics
exhibiting chaos. Chaos was found to be useful and have great
potential in many disciplines such as mixing liquids with low
power consumption, presenting outages in power systems,
biomedical engineering applications involving signals from
the brain and heart, to name just a few [1]. Chaotic systems
exhibit three important properties. Firstly, a deterministic
system is said to be chaotic whenever its evolution sensitively
depends on the initial conditions. Secondly, there is an
infinite number of unstable periodic orbits embedded in the
underlying chaotic set. Thirdly, the dynamics of the chaotic
attractor is ergodic, which implies that during its temporal
evolution the system ergodically visits small neighborhoods
around every point in each one of the unstable periodic orbits
embedded within the chaotic attractor. Although it appears
to be stochastic, it is generated by a deterministic nonlin-
ear system. Lyapunov exponents characterize quantitatively
stochastic properties of the dynamical systems. When the
dynamical system is chaotic, there exists at least one lyapunov
exponent A > 0. It is reported that chaotic behavior also
exists in biological neurons and neural networks [2, 3]. Using
chaos to develop novel optimization techniques gained much

attention during the last decade. For a given energy or cost
function, the chaotic ergodic orbits of a chaotic dynamic
system used for optimization may eventually reach the global
optimum or a point close to it with high probability [4, 5].

Since Hopfield and Tank [6] applied their neural network
to the travelling salesman problem, neural networks have
provided a powerful approach to a wide variety of optimiza-
tion problems [7, 8]. However the Hopfield neural network
(HNN) often gets trapped in a local minima. A number
of modifications were made to Hopfield neural networks to
escape from local minima. Some modifications, based on
chaotic neural networks [9] and simulated annealing [10],
were proposed to solve global optimization problems [11].
In [12-14] the guaranteed convergence of Hopfield neural
networks is discussed.

Particle swarm optimization (PSO), developed by Clerc
and Kennedy in 2002 [15], is a stochastic global optimization
method which is based on simulation of social behavior. In a
particle swarm optimizer, individuals “evolve” by cooperating
with other individuals over several generations. Each particle
adjusts its flying according to its own flying experiences and
the flying experience of its companions. Each individual is
named as a particle which, in fact, represents a potential
solution to a problem. Each particle is treated as a point in
a D-dimensional space. However, the PSO algorithm is likely



to temporarily get stuck and may need a long period of time to
escape from a local extremum [16]. It is difficult to guarantee
the convergence of the swarm, especially when random
parameters are used. In order to improve the dynamical
behavior of PSO, one can combine chaos with PSO algorithms
to enhance the performance of PSO. In [17-19] chaos were
applied to the PSO to avoid the PSO getting trapped in local
minima.

PSO is motivated by the behavior of organisms such as
fish schooling and bird flocking [20]. During the process,
future particle positions (determined by velocity) can be
regarded as particle intelligence [21]. Using a chaotic intel-
ligent swarm system to replace the original PSO might be
convenient for analysis while maintaining stochastic search
properties. Most importantly, the convergence of a particle
swarm initialized with random weights is not guaranteed.

In this paper we propose a chaotic Hopfield neural
network swarm optimization (CHNNSO) algorithm. The rest
of the paper is organized as follows. In Section 2, the prelim-
inaries of Hopfield neural networks and PSO are described.
The chaotic Hopfield neural network model is developed in
Section 3. In Section 4, the dynamics of the chaotic Hopfield
neural network is analyzed. Section 5 provides simulation
results and comparisons. The conclusion is given in Section 6.

2. Preliminaries

2.1. Basic Hopfield Neural Network Theory [22]. A Hopfield
net is a recurrent neural network having a synaptic connec-
tion pattern such that there is an underlying Lyapunov energy
function for the activity dynamics. Started in any initial state,
the state of the system evolves to a final state that is a (local)
minimum of the Lyapunov energy function. The Lyapunov
energy function decreases in a monotone fashion under the
dynamics and is bounded below. Because of the existence of
an elementary Lyapunov energy function for the dynamics,
the only possible asymptotic result is a state on an attractor.

There are two popular forms of the model: binary neurons
with discrete time which is updated one at a time and con-
tinuous time graded neurons. In this paper, the second kind
of model is used. The dynamics of a n-neuron continuous
Hopfield neural network is described by

du; —uy,

Here, u; € (—00, 00) is the input of neuron 7, and the output
of neuron i is

x; (t) = g; [u; )], (2)

where i = 1,2,...n, T is a positive constant, I; is external
inputs (e.g., sensory input or bias current) to neuron i and is
sometimes called the “firing threshold” when replaced with
—I;. u; is the mean internal potential of the neuron which
determines the output of neuron i. Tj; is the strength of
synaptic input from neuron i to neuron j. g is a monotone
function that converts internal potential into firing rate input
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of the neuron. T is the matrix with elements T;;. When T is
symmetric, the Lyapunov energy function is given by

1 1 o
1= 5 Y- T Y [0t @dz
ij i i

where g~! is the inverse of the gain function g. There is
a significant limiting case of this function when T has no
diagonal elements and the input-output relation becomes a
step, going from 0 to a maximum firing rate (for convenience,
scaled to 1). The third term of this Lyapnouv function is then
zero or infinite. With no diagonal elements in T', the minima
of J are all located at corners of the hypercube 0 < x; < 1.
In this limit, the states of the continuous variable system are
stable.

Many optimization problems can be readily represented
using Hopfield nets by transforming the problem into vari-
ables such that the desired optimization corresponds to the
minimization of the respective Lyapunov energy function [6].
The dynamics of the HNN converges to a local Lyapunov
energy minimum. If this local minimum is also the global
minimum, the solution of the desired optimization task has
been carried out by the convergence of the network state.

2.2. Basic PSO Theory. Many real optimization problems
can be formulated as the following functional optimization
problem:

min  f(X;), X;= [xil,...,xf‘] ,
4)

st. x;€[a,b], i=12,...,n

Here f is the objective function, and X; is the decision vector

consisting of # variables.

The original particle swarm algorithm works by iteratively
searching in a region and is concerned with the best previous
success of each particle, the best previous success of the
particle swarm and the current position and velocity of each
particle [20]. Every candidate solution of f(X;) is called a
“particle” The particle searches the domain of the problem
according to

Vi(t+1) =V, (t) + R, (P - X; (1) + R, (P, - X; (1)),

(5)

X,t+)=X;)+V;(t+1), (6)

where V, = [vil,vl.z,...,v;'] is the velocity of particle i;
X; =[x}, xiz, ..., x;] represents the position of particle i; P,

represents the best previous position of particle i (indicating
the best discoveries or previous experience of particle i);
P_ represents the best previous position among all particles
(indicating the best discovery or previous experience of the
social swarm); w is the inertia weight that controls the impact
of the previous velocity of the particle on its current velocity
and is sometimes adaptive [17]; R, and R, are two random
weights whose components ] and rj (j = 1,2,...,n) are
chosen uniformly within the interval [0, 1] which might not
guarantee the convergence of the particle trajectory; ¢; and



Journal of Applied Mathematics

x](®)

Feedback input
I
External
applied
input Pé

x(t+1)

FIGURE 1: Particle structure.

¢, are the positive constant parameters. Generally the value
of each component in V; should be clamped to the range
[—Vmax> Vmax) to control excessive roaming of particles outside
the search space.

3. A Chaotic Hopfield Neural Network Model

From the introduction of basic PSO theory, every particle
can be seen as the model of a single fish or a single bird.
The position chosen by the particle can be regarded as a
state of a neural network with a random synaptic connection.
According to (5)-(6), the position components of particle i
can be thought of as the output of a neural network as shown
in Figure 1.

In Figure 1, Rand1(:) and Rand2(-) are two independent
and uniformly distributed random variables within the range

[0, 1], which refer to r{ and rg , respectivgly. plj and pé are the
components of P, and P, respectively. pé is the previous best

value amongst all particles, and p;, as an externally applied
input, is the jth element of the best previous position P,
and it is coupled with other components of P,. The particles
migrate toward a new position according to (5)-(6). This
process is repeated until a defined stopping criterion is met
(e.g., maximum number of iterations or a sufficiently good
fitness value).

As pointed out by Clerc and Kennedy [15], the powerful
optimization ability of the PSO comes from the interaction
amongst the particles. The analysis of complex interaction
amongst the particles in the swarm is beyond the scope of
this paper which focuses on the construction of a simple
particle using a neural network perspective and convergence
issues. Artificial neural networks are composed of simple
artificial neurons mimicking biological neurons. The HNN
has the property that as each neuron in a HNN updates, an
energy function is monotonically reduced until the network
stabilizes [23]. One can therefore map an optimization
problem to a HNN such that the cost function of the problem
corresponds to the energy function of the HNN and the
result of the HNN thus suggests a low cost solution to the
optimization problem. The HNN might therefore be a good
choice to model particle behavior.

In order to approach P, and P, the HNN model should
include at least two neurons. For simplicity, the HNN model

of each particle position component has two neurons whose
outputs are xf (t) and xfp(t). In order to transform the
problem into variables such that the desired optimization
corresponds to the minimization of the energy function, the
objective function should be determined firstly. As x](t) and
xfp(t) should approach p; and p; , respectively, (x{ (t) - Pé )
and (x{p(t) — p})? can be chosen as two parts gf the energy
function. The third part of energy function (xf (t) - x{p(t))2
is added to accompany (xl;(t) - plj )% to cause x{ (t) to tend

towards plj . Therefore the HNN Lyapunov energy function
for each particle is proposed:

. ; N2 i i\ 2
T ) = A(x] (&) - p})" + B(x], () - p])
' o 7)
j j
+C(x/ (1) - X, ®)
where A, B, and C are positive constants.

Here the neuron input-output function is chosen as a
sigmoid function, given by (9) and (11). Equations (8) and (10)
are the Euler approximation of (1) of the continuous Hopfield
neural network [14]. The dynamics of component j of particle
i is described by

. . j
wl (t+1) = kul (t) + aM, (8)
ax{ ()
. ; 1
x](t+1)=g; (M,] (t+1)) = m> )
J
wl (t+1) = kul, () + A0 (10)
x)
ip
x (t+1) = g (uf, (£ + 1)) = (1)

1- egu{'p(m) ’

According to (5)-(6) and Figure 1, the PSO uses random
weights to simulate birds flocking or fish searching for food.
When birds flock or fish search for food, they exhibit chaos
like behavior, yet (8)-(11) do not generate chaos. Aihara et al.
[9] proposed a kind of chaotic neuron, which includes relative
refractoriness in the model to simulate chaos in a biological



brain. To use this result z; (k) (x (k) - I,) and z,»(k)(xfp (k)-1I,)
are added to (8) and (10) to cause chaos. Equations (8) and
(10) then become

j
w (t+1) = kul (1) + AN z((x®-1), @12
ax{ t)
. , oy (t ;
ufp (t+1) = kufp t) +« i'] (t)) - z; (t) (xfp (t) - Io) - (13)
ip

In order to escape from chaos as time evolves, we set
z(t+1)=(1-p)z ). (14)

In (8)-(14): &, , and k are positive parameters; z;(t) is self-
feedback connection weight (the refractory strength); S is the
damping factor of the time-dependent z;(¢), (0 < S < 1); I is
a positive parameter.

All the parameters are fixed except z(¢) which is varied.

The combination of (9), (11)-(14) is called chaotic Hop-
field neural network swarm optimization(CHNNSO) pro-
posed by us. According to (8)-(14), the following procedure
can be used for implementing the proposed CHNNSO
algorithm.

(1) Initialize the swarm, assign a random position in the
problem hyperspace to each particle, and calculate the
fitness function which is given by the optimization
problem whose variables are corresponding to the
elements of particle position coordinates.

(2) Synchronously update the positions of all the particles
using (9), (11)-(14) and change the two states every
iteration.

(3) Evaluate the fitness function for each particle.

(4) For each individual particle, compare the particle’s
fitness value with its previous best fitness value. If the
current value is better than the previous best value,
then set this value as the p; and the current particle’s

position, x{ ,as pij , else if the p; is updated, then reset
z = z,.

(5) Identify the particle that has the best fitness value.
When iterations are less than a certain value, and if
the particle with the best fitness value is changed then
reset z = z, to keep the particles chaotic to prevent
premature convergence.

(6) Repeat steps (2)-(5) until a stopping criterion is met
(e.g., maximum number of iterations or a sufficiently
good fitness value).

As can be seen from (9) and (11), the particle posi-
tion component x{ is located in the interval [-1,1]. The

Journal of Applied Mathematics

optimization problem variable interval must therefore be
mapped to [—1, 1] and vice versa using

xj=—1+2(bxj—_aj), i=1,2,...,n,
i~ 44 (15)
xj:aj+%(xj+l)(bj—aj), j=12,...,n

Here, a; and b; are the lower boundary and the upper bound-
ary of x(t), respectively, and only one particle is analyzed for

simplicity.

4. Dynamics of Chaotic Hopfield Network
Swarm Optimization

In this section, the dynamics of the chaotic Hopfield net-
work swarm optimization (CHNNSO) is analyzed. The first
subsection discusses the convergence of the chaotic particle
swarm. The second subsection discusses the dynamics of the
simplest CHNNSO with different parameter values.

4.1. Convergence of the Particle Swarm

Theorem 1 (Wang and Smith [14]). If one has a network
of neurons with arbitrarily increasing I/O functions, there
exists a sufficient stability condition for a synchronous TCNN
(transiently chaotic neural network) equation (12), namely,

2
LI (16)

ﬁ min
max

Here 1/B = min(l/g)) (g; denotes the derivative with
respect to time t of the neural 1/O function for neuron i, in
this paper is the sigmoid function (9). T is the minimum
eigenvalue of the connected weight matrix of the dynamics of
a n-neuron continuous Hopfield neural network).

k>1,

Theorem 2. A sufficient stability condition for the CHNNSO
model is k > 1.

Proof. Whent — oo,
z({t+1)=0. 17)

It then follows that the equilibria of (12) and (13) can be
evaluated by

j
Al (t+1) = (k= 1) u (1) + WM,
ax{ ()
; (18)
Al (t+1) = (k=1)uj, (1) + & 9 ()
axfp (t)
According to (7), we get
A (t+1) = (k= 1) u] (t) + 24a (x] (t) - p!)
(19)

+2Ca (] () - x{P 1) =0,
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Auj (t+1) = (k= 1) uj, (t) + 2Ba (x], (t) - p]) 20)
-2Ca (xl] (t) - X,]P (t)) =0

2Aa +2Ca  —2Ca
-2C« 2Ba + 2Ca

= (A+B+2C)a - a\(A - B)> +4C2
—oc<A+B+2C—\/(A—B)2+4C2>.

mi

T, . =min (eigenvalue(

(21)
In this paper,
1 §
Binax = min(1/g) ~ 4 (22)
It is clear that T, .~ > 0 and the stability condition

(16) is satistied when & > 0. The above analysis verifies
Theorem 2. O

Theorem 3. The particles converge to the sphere with center
point pé and radius R = max IIxi - pijll (xi is the final
convergence equilibria, if the optimization problem is in two-
dimensional plane, the particles are finally in a circle).

It is easy to show that the particle model given by (7) and
(8)-(14) has only one equilibrium as t — oo, that is, z(t) =
0. Hence, ast — 00, X; belongs to the hypersphere whose
originis P, and the radius is R. Solving (9), (11), (19), and (20)
simultaneously, we get

(k-1)In(1-(1/x]) ®) . .
; +2Ax (xf (t) - Pé) 3
+2Ca (x] () - x{;, (1) =

(k= 1)In(1-(1/x}, 1)) . .
: P +2Ba (xjp (t)- P/) -
~2Ca (x] () - xf} (1) =

With (23) and (2
convergence equilibria x and x

4) satisﬁed there must exist the final
. So the best place the

particle swarm can find is || pé - xi (t + 1) || and radius is
- J J
R = max || i II.
The above analysis therefore verifies Theorem 3.

4.2. Dynamics of the Simplest Chaotic Hopfield Neural Network
Swarm. In this section, the dynamics of the simplest particle
swarm model is analyzed. Equations (7) and (8)-(13) are the
dynamic model of a single particle with subscript 7 ignored.
According to (7) and Theorem 3, the parameters A, B, and
C control the final convergent radius. According to trial and
error, the parameters A, B, and C can be chosen in the range
from 0.005 to 0.05. According to (16) and (22), k > 1 and

& > 0. In the simulation, the results are better when k is in
the neighborhood of 1.1 and £ is in the neighborhood of 150.
The parameters 3 and Z(0) control the time of the chaotic
period. If 3 is too big and/or Z(0) is too small, the system
will quickly escape from chaos and performance will be poor.
The parameter I, = 0.2 is standard in the literature on chaotic
neural networks. The simulation showed that the model is
not sensitive to the values of parameters & and k, for example,
100 < &£ <200 and 1 < k < 1.5 are feasible.
Then the values of the parameters in (7)-(14) are set to

A=002, B=C=001, &=150,
a=1, f=0001, Z(0)=03, (25)
k=11, ;=02  p=05  p,=02.

Figure 2 shows the time evolution of x;(t), z(t) and the
Lyapunov exponent A of x;(t). The Lyapunov exponent A
characterizes the rate of separation of infinitesimally close
trajectories. A positive Lyapunov exponent is usually taken as
an indication that the system is chaotic [1]. Here, A is defined
as

m—1

dx (t+ 1)

dx ) (26)

At about 200 steps, z(t) decays to a small value and x;(t)
departs from chaos which corresponds with the change of A
from positive to negative.

According to Figure 2, the convergence process of a
simple particle position follows the nonlinear bifurcation
making the particle converge to a stable fixed point from a
strange attractor. In the following section, it is shown that
the fixed point is determined by the best previous position P,
among all particles and the best position P, of the individual
particle.

Remark 4. The proposed CHNNSO model is a deterministic
Chaos-Hopfield neural network swarm which is different
from existing PSOs with stochastic parameters. Its search
orbits exhibit an evolutionary process of inverse period
bifurcation from chaos to periodic orbits then to sink. As
chaos is ergodic and the particle is always in a chaotic state at
the beginning (e.g., in Figure 2), the particle can escape when
trapped inlocal extrema. This proposed CHNNSO model will
therefore in general not suffer from being easily trapped in a
the local optimum and will continue to search for a global
optimum.

5. Numerical Simulation

To test the performance of the proposed algorithms, two
famous benchmark optimization problems and an engi-
neering optimization problem with linear and nonlinear
constraints are used. The solutions to the two benchmark
problems can be represented in the plane and therefore the
convergence of the CHNNSO can be clearly observed. The
results of the third optimization problem when compared
with other algorithms are displayed in Table 1. We will
compare the CHNNSO with the original PSO [20].
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FIGURE 2: Time evolutions of x;(¢), z(t), and the Lyapunov exponent A.
TaBLE 1: The parameters of the Hartmann function (when# = 3 and -1
q=4).
P i i3 G Pir Pi> Pis
1 3 10 30 1 0.3689 0.1170 0.2673 ~15H
2 01 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547 ®
4 0.1 10 35 3.2 0.03815 0.5473 0.8828 =
2|
5.1. The Rastrigin Function. To demonstrate the efficiency
of the proposed technique, the famous Rastrigin function is
. . . . . 25 . . .
choserll) as a test problem. This function with two variables is 0 03 ; s 5 x10*
iven

8 Y Step

f(X) = x} + x5 —cos (18x,) — cos (18x,)
(27)
-1<x;<1,i=12.

The global minimum is —2 and the minimum point is (0,
0). There are about 50 local minima arranged in a lattice
configuration.

The proposed technique is applied with a population size
of 20 and the maximum number of iterations is 20000. The
chaotic particle swarm parameters are chosen as A = 0.02,
B = C = 0.01, § = 0.001, 2(0) = 03,0« = 1,& = 150,
k=1.1,and I, =0.2.

The position of every particle is initialized with a random
value. The time evolution of the cost of the Rastrigin function
is shown in Figure 3. The global minimum at -2 is obtained
by the best particle with (x;, x,) = (0,0).

From Figure 3, it can be seen that the proposed method
gives good optimization results. Since there are two variables
in the Rastrigin function, it is easy to show the final conver-
gent particle states in the plane.

In Figure 4, the “+”s are the best experiences of each
particle. The “+”s are the final states of the particles. The global

«  »

minimum (0, 0) is also included in the “+”s and the “+”s. Most
“x”s and “+7s are overlapped at the global minimum (0, 0).

According to Theorem 3, the particles will finally converge to

FIGURE 3: Time evolutions of Rastrigin function.

a circle finally. For this Rastrigin problem, the particles’ final
states converge to the circle as shown in Figure 4, and hence
the global convergence of the particles is guaranteed.

Figure 5 displays the results when the original PSO [20]
was used to optimize the Rastrigin function. In the numerical
simulation, the particle swarm population size is also 20 and
parameters ¢; and ¢, are set to 2 and w set to 1. v, is set
equal to the dynamic range of each dimension. The “*”s in
Figure 5 are the final states of all the particles corresponding
to the “+7s in Figure 4. It is easy to see that the final states of
the particles are ruleless even though the global minimum of
-2 is obtained by the best experience of the particle swarm,
that is, (x;, x,) = (0, 0) as shown in Figure 5.

By comparing the results obtained by the proposed
CHNNSO in Figure 4 with the results of the original PSO in
Figure 5, it can be seen that the final states of the particles of
the proposed CHNNSO are attracted to the best experience
of all the particles and that convergence is superior. The
final states of CHNNSO particles are guaranteed to converge
which is not the case for original PSO implications.
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FIGURE 4: The final states and the best experiences of the particles
achieved from the proposed CHNNSO for Rastrigin function.

0.5 F g
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*
S 0 * * : * * 1
. * *
*
-0.5}F * * * 1
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X1

FIGURE 5: The final states of the particles achieved from original PSO
for Rastrigin function.

When their parameters ¢; and ¢, are both set to 1.494
and w to a value of 0.729, v, is set equal to the dynamic
range on each dimension. The constriction factors ¢;, ¢,, w are
applied to improve the convergence of the particle over time
by damping the oscillations once the particle is focused on
the best point in an optimal region. The main disadvantage of
this method is that the particles may follow wider cycles and
may not converge when the individual best performance is
far from the neighborhoods best performance (two different
regions) [24].

5.2. The Schaffer’s F6 Function. To further investigate the
performance of the CHNNSO,

sin (x2 +x2)* - 0.5

) (28)
1.0 +0.001(x2 + x2)°

F(X) =05+

7
5 . : :
*
2.5 I *
g 0r
*
*
»
-251 .
-5 L L L
-5 -25 0 25 5

X1

F1GURE 6: The final states and the best experiences of the particles
achieved from the proposed CHNNSO for Schaffer’ F6 function.

the Schaffer’s F6 function [25] is chosen. This function has a
single global optimum at (0, 0) and f,;,(x, y) = 0, and alarge
number of local optima. The global optimum is difficult to
find because the value at the best local optimum differs with
only about 10~ from the global minimum. The local optima
crowd around the global optimum. The proposed technique is
applied with a population size of 30, the iterations are 100000,
and the parameters of CHNNSO are chosen as
A=B=C=0.01, B =0.0003, z(0) = 0.3,

(29)

£ =155,

k=11, I,=02.

The position of each particle is initialized with a random
value. In Figure 6, the “+”s are the best experiences of each
particle. The global minimum at 2.674 x 10~* is obtained by
the best particle with (xy,x,) = (-0.00999,0.01294) which
is included in the “#”s. The “+”s are the final states of the
particles. According to Theorem 3 the particles’ final states
converge in a circle as shown in Figure 6 which proves global
convergence. From Figure 6 it is clearly seen that the particles’
final states are attracted to the neighborhoods of the best
experiences of all the particles and the convergence is good.

Figure 7 shows the final particle states when the original
PSO [20] was used to optimize the Schaffer’s F6 function. In
this numerical simulation of the original PSO, the particle
swarm population size is also 20 and parameters ¢; and ¢, are
both set to 2 and set w is set to a value of 1. v, is set equal to
the dynamic range of each dimension. The “*”s in Figure 7 are
the final states of all the particles corresponding to the “+”s in
Figure 6. It is easy to see that the final states of the particles are
ruleless in Figure 7. The global minimum 6.3299 x 107* is
obtained by the best particle with (x,, x,) = (0.01889 x 107,
~0.4665 x 107°). The best experience from the original PSO
is not as good as the best of the proposed CHNNSO.

Comparing the results obtained from the proposed
CHNNSO in Figure 6 and the original PSO in Figure 7, it
is clearly seen that the particles’ final states of the proposed
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FIGURE 7: The final states of the particles achieved from original PSO
for Schaffer’s F6 function.

CHNNSO are finally attracted to the best experience of all
the particles and the convergence is better than that of the
original PSO. The CHNNSO can guarantee the convergence
of the particle swarm, but the final states of the original PSO
are ruleless.

5.3. The Hartmann Function. The Hartmann function when
n =3;q = 4is given by

n

q
fx)= _Zci exp <_Zaij(xj - pij)2> ) (30)
i=1 j

& s
with x; belonging to
S={xeR"|0$xjsl,1Sjsn}, (31)

Table 1 shows the parameter values for the Hartmann func-
tionwhenn =3,9=4.

When n = 3, X, = (0.114,0.556,0.882), f(Xyn) =
-3.86.

The time evolution of the cost of the Hartmann function
is 15000. In Figure 8, only subdimensions are pictured.
In Figure 8, the “+7s are the final states of the particles
and the “«”s denote the best experiences of all particles.
From Figure 8, it can be easily seen that the final states
of the particles converge to the circle. The center point is
(0.0831,0.5567,0.8522) and the radius is 0.1942. The final
particle states confirm Theorem 3, and the final convergency
is guaranteed.

5.4. Design of a Pressure Vessel. The pressure vessel problem
described in [26, 27] is an example which has linear and
nonlinear constraints and has been solved by a variety of
techniques. The objective of the problem is to minimize the
total cost of the material needed for forming and welding
a cylindrical vessel. There are four design variables: x; (T,
thickness of the shell), x, (T}, thickness of the head), x; (R,
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FIGURE 8: The final states of the particles achieved from original PSO
for Hartmann function.

inner radius), and x, (L, length of the cylindrical section of
the vessel). T, and T), are integer multiples of 0.0625 inch,
which are the available thickness of rolled steel plates, and R
and L are continuous. The problem can be specified as follows:

Minimize  f (X) = 0.6224x,%x3%, + 1.7781x,%3
+3.1661x7x, + 19.84x x5,
subject to g, (X) = —x; +0.0193x; <0,

9 (X) = —x, + 0.00954x; < 0,
2 4
g3 (X) = —mxix, - $77%s + 1296000 <0,

g4 (X) = x, —240 < 0.

(32)
The following range of the variables were used [27]:
0<x,<99, 0<x,<99, 10 < x; <200,
(33)
10 < x, < 200.

de Freitas Vas and de Graga Pinto Fernandes [26] proposed
an algorithm to deal with the constrained optimization prob-
lems. Here this algorithm [26] is combined with CHNNSO
to search for the global optimum. The proposed technique
is applied with a population size of 20 and the maximum
number of iterations is 20000. Then the values of the
parameters in (7)-(14) are set to

A=002, B=C=001, £=150,
a=1, =000, Z(0)=03,
(34)
k=11, I,=02,
pi=05  p,=05.

From Table 2, the best solution obtained by the CHNNSO is
better than the other two solutions previously reported.
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TaBLE 2: Comparison of the results for pressure Vessel design
problem.

. . Best solutions found
Design variables

This paper Huetal. [27]  Coello [28]
x,(T,) 0.8125 0.8125 0.8125
x,(T),) 0.4375 0.4375 0.4375
%;(R) 42.09845 42.09845 40.3239
x,(L) 176.6366 176.6366 200.0
9,(X) 0 0 0.03424
9,(X) -0.03588 -0.03588 -0.052847
9:(X) -1.1814 % 107" —5.8208 « 107"} -27.105845
94(X) —-63.3634 —-63.3634 -40.0
f(X) 6059.1313 6059.1313 6288.7445

6. Conclusion

This paper proposed a chaotic neural networks swarm
optimization algorithm. It incorporates the particle swarm
searching structure having global optimization capability into
Hopfield neural networks which guarantee convergence. In
addition, by adding chaos generator terms into Hopfield
neural networks, the ergodic searching capability is greatly
improved in the proposed algorithm. The decay factor
introduced in the chaos terms ensures that the searching
evolves to convergence to global optimum after globally
chaotic optimization. The experiment results of three classic
benchmark functions showed that the proposed algorithm
can guarantee the convergence of the particle swarm search-
ing and can escape from local extremum. Therefore, the
proposed algorithm improves the practicality of particle
swarm optimization. As this is a general particle model, some
techniques such as the local best version algorithm proposed
in [29] can be used together with the new model. This will be
explored in future work.
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