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We classify some soliton nilpotent Lie algebras and possible candidates in dimensions 8 and 9 up toisomorphy. We focus on 1 <

2 < ⋅ ⋅ ⋅ < 𝑛 type of derivations, where 𝑛 is the dimension of the Lie algebras. We present algorithms to generate possible algebraic
structures.

1. Introduction

In this paper, we compute and classify 𝑛-dimensional (𝑛 =

8, 9) nilsoliton metric Lie algebras with eigenvalue type
1 < 2 < ⋅ ⋅ ⋅ < 𝑛, which will be called “ordered type
of Lie algebra” throughout this paper. We use MATLAB to
achieve this goal. In the literature, six-dimensional nilpotent
Lie algebras have been classified by algorithmic approaches
[1]. In dimension seven and lower, nilsoliton metric Lie
algebras have been classified [2–9]. Summary and details of
some other classifications can be found in [10]. In our paper,
we focus on dimensions eight and nine. We note that we
have found that our algorithm gives consistent results with
the literature in lower dimensions. We use a computational
procedure that is similar to the one that we have used in our
previous paper [4].

In our previous paper, we classified all the soliton and
nonsoliton metric Lie algebras where the corresponding
Gram matrix is invertible and of dimensions 7 and 8 up to
isomorphism. If corresponding Gram matrix is invertible,
then the soliton metric condition 𝑈V = [1] has a unique
solution. So in this case, it is easy to check if the algebra is
soliton or not. But in noninvertible case, there is more than
one solution. Therefore it is hard to guess if one of the solu-
tions provides the soliton condition without solving Jacobi
identity which is nonlinear. On the other hand, it may be easy
if we can eliminate some algebras which admit a derivation𝐷

that does not have ordered eigenvalues without solving the

following soliton metric condition 𝑈V = [1]. For this, we
prove that if the nilpotent Lie algebra admits a soliton metric
with corresponding Gram matrix of 𝜂 being noninvertible,
all the solutions of 𝑈V = [1] have a unique derivation.
This theorem allows us to omit several cases that come from
nonordered eigenvalues without considering Jacobi identity.

This paper is organized as follows. In Section 2, we
provide some preliminaries that we use for our classifications.
In Section 3, we give specific Jacobi identity conditions for
Lie algebras up to dimension nine. This allows us to decide
whether the Lie algebra has a soliton metric or not. In
Section 4, we give details of our classifications with specific
examples and provide algorithmic procedures. Section 5
contains our concluding remarks.

2. Preliminaries

Let (𝜂𝜇, 𝑄) be a metric algebra, where 𝜇 ∈ Λ
2
𝜂 ⊗ 𝜂

∗. Let
𝐵 = {𝑋𝑖}

𝑛

𝑖=1
be a𝑄-orthonormal basis of 𝜂𝜇 (we always assume

that bases are ordered). The nil-Ricci endomorphism Ric𝜇 is
defined as ⟨Ric𝜇𝑋,𝑌⟩ = ric𝜇(𝑋, 𝑌), where

ric𝜇 (𝑋, 𝑌) = −
1

2

𝑛

∑

𝑖=1

⟨[𝑋,𝑋𝑖] , [𝑌,𝑋𝑖]⟩

+
1

4

𝑛

∑

𝑖=1

⟨[𝑋𝑖, 𝑋𝑗] , 𝑋⟩ ⟨[𝑋𝑖, 𝑋𝑗] , 𝑌⟩

(1)
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for 𝑋,𝑌 ∈ 𝜂 (we often write an inner product 𝑄(⋅, ⋅)

as ⟨⋅, ⋅⟩). When 𝜂 is a nilpotent Lie algebra, the nil-Ricci
endomorphism is the Ricci endomorphism. If all elements
of the basis are eigenvectors for the nil-Ricci endomorphism
Ric𝜇, we call the orthonormal basis a Ricci eigenvector basis.

Now we define some combinatorial objects associated to
a set of integer triples Λ ⊂ {(𝑖, 𝑗, 𝑘) | 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛}. For
1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛, define 1 × 𝑛 row vector 𝑦𝑘

𝑖𝑗
to be 𝜖

𝑇

𝑖
+ 𝜖
𝑇

𝑗
− 𝜖
𝑡

𝑘
,

where {𝜖}
𝑛

𝑖=1
is the standard orthonormal basis for R𝑛. We

call the vectors in {𝑦
𝑘

𝑖𝑗
| (𝑖, 𝑗, 𝑘) ∈ Λ} root vectors for Λ. Let

𝑦1, 𝑦2, . . . , 𝑦𝑚 (where 𝑚 = |Λ|) be an enumeration of the
root vectors in dictionary order. We define root matrix 𝑌Λ

for Λ to be the 𝑚 × 𝑛 matrix whose rows are the root vectors
𝑦1, 𝑦2, . . . , 𝑦𝑚. TheGrammatrix𝑈Λ forΛ is the𝑚×𝑚matrix
defined by 𝑈Λ = 𝑌Λ𝑌

𝑇

Λ
; the (𝑖, 𝑗) entry of 𝑈Λ is the inner

product of the 𝑖th and 𝑗th root vectors. It is easy to see that
𝑈 is a symmetric matrix. It has the same rank as the root
matrix; that is, Rank(𝑈Λ) = Rank(𝑌Λ). Diagonal elements
of 𝑈 are all three, and the off-diagonal entries of 𝑈 are in
the set {−2, −1, 0, 1, 2}. For more information, see [11]. Let 𝐷
have distinct real positive eigenvalues, and let Λ index the
structure constants for 𝜂 with respect to eigenvector basis 𝐵.
If (𝑖1, 𝑗1, 𝑘1) ∈ Λ and (𝑖2, 𝑗2, 𝑘2) ∈ Λ, then ⟨𝑦

𝑘
1

𝑖
1
,𝑗
1

, 𝑦
𝑘
2

𝑖
2
,𝑗
2

⟩ ̸= 2.
Thus 𝑈 does not contain two as an entry [4].

Lemma 1. Let (𝜂, 𝑄) be an 𝑛-dimensional inner product space,
and let 𝜇 be an element of Λ2𝜂∗ ⊗ 𝜂. Suppose that 𝜂𝜇 admits a
symmetric derivation𝐷 having 𝑛 distinct eigenvalues 0 < 𝜆1 <

𝜆2 < ⋅ ⋅ ⋅ < 𝜆𝑛 with corresponding orthonormal eigenvectors
𝑋1, 𝑋2, . . . , 𝑋𝑛. Let 𝛼𝑘𝑖𝑗 denote the structure constants for 𝜂with
respect to the ordered basis𝐵 = {𝑋𝑖}

𝑛

𝑖=1
. Let 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.Then

(1) if there is some 𝑘 ∈ {1, 2, . . . , 𝑛} such that 𝜆𝑘 = 𝜆𝑖 + 𝜆𝑗,
then [𝑋𝑖, 𝑋𝑗] is a scalar multiple of 𝑋𝑘; otherwise 𝑋𝑖

and 𝑋𝑗 commute;

(2) 𝛼𝑘
𝑖𝑗

̸= 0 if and only if𝑋𝑘 ∈ [𝜂𝜇, 𝜂𝜇].

Theorem 2 (see [11]). Let 𝜂 be a vector space, and let 𝐵 =

𝑋𝑖
𝑛

𝑖=1
be a basis for 𝜂. Suppose that a set of nonzero structure

constants 𝛼
𝑘

𝑖,𝑗
relative to 𝐵, indexed by Λ, defines a skew

symmetric product on 𝜂. Assume that if (𝑖, 𝑗, 𝑘) ∈ Λ, then
𝑖 < 𝑗 < 𝑘. Then the algebra is a Lie algebra if and only if
whenever there exists𝑚 so that the inner product of root vectors
⟨𝑦
𝑙

𝑖𝑗
, 𝑦
𝑚

𝑙𝑘
⟩ = −1 for triples (𝑖, 𝑗, 𝑙) and (𝑙, 𝑘, 𝑚) or (𝑘, 𝑙, 𝑚) in Λ,

the equation

∑

𝑠<𝑚

𝛼
𝑠

𝑖,𝑗
𝛼
𝑚

𝑠,𝑘
+ 𝛼
𝑠

𝑗,𝑘
𝛼
𝑚

𝑠,𝑖
+ 𝛼
𝑠

𝑘,𝑖
𝛼
𝑚

𝑠,𝑗
= 0 (2)

holds. Furthermore, a term of form 𝛼
𝑙

𝑖,𝑗
𝛼
𝑚

𝑙,𝑘
is nonzero if and

only if ⟨𝑦𝑙
𝑖,𝑗
, 𝑦
𝑚

𝑙,𝑘
⟩ = −1

Theorem 3 (see [11]). Let (𝜂𝜇, 𝑄) be a metric algebra and 𝐵 =

{𝑋𝑖}
𝑛

𝑖=1
a Ricci eigenvector basis for 𝜂𝜇. Let𝑌 be the root matrix

for 𝜂𝜇. Then the eigenvalues of the nil-Ricci endomorphism are
given by

Ric 𝐵
𝜇
= −

1

2
𝑌
𝑇
V, (3)

where V = [𝛼
2
].

Theorem 4 (see [4, 11]). Let (𝜂, 𝑄) be a nonabelian metric
algebra with Ricci eigenvector basis 𝐵. The following are
equivalent.

(1) (𝜂𝜇, 𝑄) satisfies the nilsoliton condition with nilsoliton
constant 𝛽.

(2) The eigenvalue vector 𝑉𝐷 for 𝐷 = Ric − 𝛽 Id with
respect to 𝐵 lies in the kernel of the root matrix for
(𝜂𝜇, 𝑄) with respect to 𝐵.

(3) For noncommuting eigenvectors 𝑋 and 𝑌 for the nil-
Ricci endomorphism with eigenvalues 𝜅𝑋 and 𝜅𝑌,
the bracket [𝑋, 𝑌] is an eigenvector for the nil-Ricci
endomorphism with eigenvalue 𝜅𝑋 + 𝜅𝑌 − 𝛽.

(4) 𝛽 = 𝑦
𝑘

𝑖𝑗
Ric for all (𝑖, 𝑗, 𝑘) in Λ(𝜂𝜇, 𝐵).

Theorem 5 (see [4]). Let 𝜂 be an 𝑛-dimensional nonabelian
nilpotent Lie algebra which admits a derivation 𝐷 having
distinct real positive eigenvalues. Let 𝐵 be a basis consisting of
eigenvectors for the derivation 𝐷, and let Λ index the nonzero
structure constants with respect to 𝐵. Let𝑈 be the𝑚×𝑚Gram
matrix. If 𝑈 is invertible, then the following hold:

(i) |Λ| ≤ 𝑛 − 1;
(ii) if (𝑖1, 𝑗1, 𝑘1) ∈ Λ and (𝑖2, 𝑗2, 𝑘2) ∈ Λ, then ⟨𝑦

𝑘
2

𝑖
1
,𝑗
1

,
𝑦
𝑘
2

𝑖
2
,𝑗
2

⟩ ̸= − 1.

3. Theory

This section provides some theorems and their proofs that
allow us to consider fewer cases for our algoritm. The
following theorem gives a pruning method while Gram
matrix is noninvertible.

Theorem 6. Let 𝜂 be an 𝑛-dimensional nilsoliton metric Lie
algebra, and 𝑈 the corresponding Gram matrix which is
noninvertible. Then Ker(𝑌𝑇) = Ker(𝑈). Furthermore all of the
solutions of 𝑈V = [1] correspond to a unique derivation.

Proof . Since rank of a matrix is equal to the rank of its Gram
matrix, then 𝑝 = Rank(𝑌) = Rank(𝑈). Let 𝑈 : R𝑝 → R𝑝

and 𝑌
𝑇

: R𝑝 → R𝑛 denote the linear functions (with
respect to the standard basis) that correspond to the Gram
matrix𝑈 and the transpose of the root matrix𝑌, respectively.
Since Rank(𝑈) = Rank(𝑌) = Rank(𝑌𝑇) and by rank-nullity
theorem, we have

Ker (𝑈) = Ker (𝑌𝑇) . (4)

Let V be a particular solution and V0 the last column of
reduced row echelonmatrix [𝑈, [1]].Then V0 is also a solution
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of𝑈V0 = [1].Therefore𝑈(V−V0) = 0; that is, (V−V0) ∈ Ker(𝑈).
Using (4), then (V − V0) ∈ Ker(𝑌𝑇). For the solution V0,
suppose that we denote 𝐷0 for the Nikolayevsky derivation,
Ric0 for the Ricci tensor, and 𝛽0 for the soliton constant.Then
using (3), we have

(Ric − Ric0) =
1

2
𝑌
𝑡
(V − V0) = 0. (5)

Then Ric = Ric0. Using Theorem 4, we have 𝛽 = 𝛽0, which
implies that𝐷 = 𝐷0.

Lemma 7. If nilsoliton metric Lie algebra 𝜂 has ordered type
of derivations 1 < 2 < ⋅ ⋅ ⋅ < 𝑛, then its index set Λ consists of
triples (𝑖, 𝑗, 𝑖 + 𝑗).

Proof. If 𝑉𝐷 = (𝜆1, 𝜆2, . . . , 𝜆𝑛)
𝑇 is the eigenvalue vector of 𝐷

with eigenvector basis 𝐵 = {𝑋𝑖}
𝑛

𝑖=1
for 𝜂, then by Theorem 4,

𝑉𝐷 lies in the kernel of 𝑌. Thus for each element (𝑖, 𝑗, 𝑘) ∈ Λ,
𝜆𝑖 +𝜆𝑗 −𝜆𝑘 = 0; that is, 𝜆𝑖 +𝜆𝑗 = 𝜆𝑘. By Lemma 1, [𝑋𝑖, 𝑋𝑗] =
𝜆𝑋𝑘 for some 𝜆 ∈ R. Since 𝜆𝑖 = 𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑘 =

𝑖 + 𝑗 and [𝑋𝑖, 𝑋𝑗] = 𝜆𝑋𝑖+𝑗. Hence, the index set for ordered
type of derivations is of form (𝑖, 𝑗, 𝑖 + 𝑗).

The next corollary describes the index triples (𝑖, 𝑗, 𝑘)

and the Jacobi identity for algebras with ordered type of
derivations.

Corollary 8. The algebra 𝜂 is a Lie algebra if and only if for all
pairs of form (𝑖, 𝑗, 𝑙) and (𝑙, 𝑘, 𝑚) or (𝑖, 𝑗, 𝑙) and (𝑘, 𝑙, 𝑚) in Λ 𝐵

with 𝑘 ∉ {𝑖, 𝑗} and for all𝑚 ≥ max{𝑖 + 3, 𝑗+2, 5}, the following
equation holds:

∑

3≤𝑠<𝑚,𝑠∉{𝑖,𝑗,𝑘}

𝛼
𝑠

𝑖,𝑗
𝛼
𝑚

𝑠,𝑘
+ 𝛼
𝑠

𝑗,𝑘
𝛼
𝑚

𝑠,𝑖
+ 𝛼
𝑠

𝑘,𝑖
𝛼
𝑚

𝑠,𝑗
= 0. (6)

If in addition 𝜆𝑖 = 𝑖 for 𝑖 = 1, . . . , 𝑛, then the algebra 𝜂 is
a Lie algebra if and only if for all pairs of form (𝑖, 𝑗, 𝑖 + 𝑗) and
(𝑖+𝑗, 𝑘, 𝑖+𝑗+𝑘) or (𝑖, 𝑗, 𝑖+ 𝑗) and (𝑘, 𝑖+𝑗, 𝑖+𝑗+𝑘) inΛ 𝐵 with
𝑘 ∉ {𝑖, 𝑗, 𝑖 + 𝑗} and for all𝑚 = 𝑖 + 𝑗 + 𝑘 ≥ max{2𝑖 + 2, 𝑗 + 2, 6},
the equation

∑

4≤𝑠<𝑚,𝑠∉{𝑖,𝑗}

𝛼
𝑠

𝑖,𝑗
𝛼
𝑚

𝑠,𝑘
+ 𝛼
𝑠

𝑗,𝑘
𝛼
𝑚

𝑠,𝑖
+ 𝛼
𝑠

𝑘,𝑖
𝛼
𝑚

𝑠,𝑗
= 0 (7)

holds.

Proof. By Theorem 7 of [11], the algebra 𝜂𝜇 defined by 𝜇 is
a Lie algebra if and only if whenever there exists 𝑚 so that
⟨𝑦
𝑙

𝑖𝑗
, 𝑦
𝑚

𝑙𝑘
⟩ = −1 for triples (𝑖, 𝑗, 𝑙) and (𝑙, 𝑘, 𝑚) or (𝑘, 𝑙, 𝑚) in

Λ 𝐵, (2)

∑

𝑠<𝑚

𝛼
𝑠

𝑖,𝑗
𝛼
𝑚

𝑠,𝑘
+ 𝛼
𝑠

𝑗,𝑘
𝛼
𝑚

𝑠,𝑖
+ 𝛼
𝑠

𝑘,𝑖
𝛼
𝑚

𝑠,𝑗
= 0 (8)

holds. Furthermore, if 𝑖, 𝑗, and 𝑘 are distinct, the product
𝛼
𝑙

𝑖𝑗
𝛼
𝑚

𝑙𝑘
is nonzero if and only if ⟨𝑦𝑙

𝑖𝑗
, 𝑦
𝑚

𝑙𝑘
⟩ = −1.

Suppose that ⟨𝑦𝑙
𝑖𝑗
, 𝑦
𝑚

𝑙𝑘
⟩ = −1 for (𝑖, 𝑗, 𝑙) ∈ Λ 𝐵 and (𝑙, 𝑘, 𝑚)

or (𝑘, 𝑙, 𝑚) in Λ 𝐵. By definition of Λ 𝐵, we have 𝑖 < 𝑗. By
Lemma 1, 𝑗 < 𝑙, 𝑙 < 𝑚, and 𝑘 < 𝑚. Since 𝑖 < 𝑗 < 𝑙 < 𝑚,

we know that 𝑚 ≥ 𝑖 + 3. Similarly, 𝑗 < 𝑙 < 𝑚 implies that
𝑗 + 2 ≤ 𝑚. If 𝑖 = 𝑘 or 𝑗 = 𝑘, then ⟨𝑦

𝑙

𝑖𝑗
, 𝑦
𝑚

𝑙𝑘
⟩ = 0, and so

𝑖, 𝑗, and 𝑘 must be distinct. Since 𝑖, 𝑗, 𝑘, and 𝑙 are all distinct
and less than 𝑚, we know that 𝑚 ≥ 5. Thus an expression of
form

𝛼
𝑠

𝑖,𝑗
𝛼
𝑚

𝑠,𝑘
+ 𝛼
𝑠

𝑗,𝑘
𝛼
𝑚

𝑠,𝑖
+ 𝛼
𝑠

𝑘,𝑖
𝛼
𝑚

𝑠,𝑗 (9)

is nonzero only if𝑚 ≥ max{𝑖 + 3, 𝑗 + 2, 5}, and 𝑘 ∉ {𝑖, 𝑗}.
Suppose that 𝜆𝑖 = 𝑖, and (𝑖, 𝑗, 𝑙) and (𝑙, 𝑘, 𝑚) are in the

index set. Then from Lemma 7, 𝑙 = 𝑖 + 𝑗 which implies that
𝑚 = 𝑖 + 𝑗 + 𝑘. We know that 1 ≤ 𝑖 < 𝑗 < 𝑙 < 𝑚. Then, since
𝑗 ≥ 𝑖 + 1 and 𝑘 ≥ 1, we have 2𝑖 + 2 ≤ 𝑖 + 𝑗 + 𝑘 = 𝑚. Since
2𝑖 + 2 ≤ 𝑚, 𝑚 = 5 implies that 𝑖 = 1. So there is no possible
(𝑖, 𝑗, 𝑘), where all 𝑖, 𝑗, 𝑘 are distinct and 𝑖 < 𝑗 < 𝑚with 𝑖+𝑗+𝑘.
Thus if 𝑚 = 5, then ⟨𝑦

𝑙

𝑖𝑗
, 𝑦
𝑚

𝑙𝑘
⟩ ̸= − 1. Therefore, if 𝜆𝑖 = 𝑖, an

expression of form

𝛼
𝑠

𝑖,𝑗
𝛼
𝑚

𝑠,𝑘
+ 𝛼
𝑠

𝑗,𝑘
𝛼
𝑚

𝑠,𝑖
+ 𝛼
𝑠

𝑘,𝑖
𝛼
𝑚

𝑠,𝑗 (10)

is nonzero only if𝑚 ≥ max{2𝑖 + 2, 𝑗 + 2, 6}, and 𝑘 ∉ {𝑖, 𝑗}.
By Lemma 1, 𝑋1 and 𝑋2 are in [𝜂𝜇, 𝜂𝜇]

⊥, and so 𝛼
𝑠

𝑟𝑡
̸= 0

which implies that 𝑠 ≥ 3 and 𝑟 ̸= 𝑠, 𝑡 ̸= 𝑠. Therefore all
expressions in (10) with 𝑠 < 3 or 𝑠 ∈ {𝑖, 𝑗, 𝑘} are identically
zero and may be omitted from the summation for any
𝑚.

The next corollary describes some equations in the
structure constants of a nilpotent metric Lie algebra that are
equivalent to the Jacobi identity. Each of the terms 𝛼𝑠

𝑖𝑗
𝛼
𝑚

𝑠𝑘
in

the following equations corresponds to each of−1 entry in the
Grammatrix𝑈. Therefore, the following equations are useful
for noninvertible case since there is no −1 entry in the Gram
matrix for the invertible case.

Corollary 9. Let (𝜂𝜇, ⟨⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ⟩) be an 𝑛-dimensional inner
product space where 𝑛 ≤ 9, and, 𝜇 be an element of Λ2𝜂∗ ⊗ 𝜂.
Suppose that the algebra 𝜂𝜇 defined by 𝜇 admits a symmetric
derivation 𝐷 having 𝑛 eigenvalues 1 < 2 < ⋅ ⋅ ⋅ < 𝑛 with corre-
sponding orthonormal eigenvectors𝑋1, 𝑋2, . . . , 𝑋𝑛. 𝛼𝑘𝑖,𝑗 denote
the structure constants for 𝜂 with respect to the ordered basis
𝐵 = {𝑋𝑖}

𝑛

𝑖=1
, and let 𝜆𝐵 index the nonzero structure constants

as defined in (2). The algebra 𝜂𝜇 is a Lie algebra if and only
if

𝛼
4

13
𝛼
6

42
+ 𝛼
5

23
𝛼
6

51
= 0, (11)

𝛼
3

12
𝛼
7

3,4
− 𝛼
5

14
𝛼
7

52
− 𝛼
6

24
𝛼
7

61
= 0, (12)

𝛼
3

12
𝛼
8

35
+ 𝛼
5

14
𝛼
8

53
+ 𝛼
6

15
𝛼
8

62
+ 𝛼
7

25
𝛼
8

71
+ 𝛼
7

34
𝛼
8

71
= 0, (13)

𝛼
3

12
𝛼
9

36
+ 𝛼
4

13
𝛼
9

45
− 𝛼
5

23
𝛼
9

45
− 𝛼
6

24
𝛼
9

36
− 𝛼
7

34
𝛼
9

27
− 𝛼
8

35
𝛼
9

18
= 0

(14)

holds.
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Table 1: Possible (𝑖, 𝑗, 𝑘) for𝑚 = 6.

Case 𝑖 𝑗 𝑘 PT
(a) 1 2 3 —
(b) 1 3 2 ✓

(c) 1 4 1 —
(d) 2 3 1 ✓

(e) 2 4 0 —

Proof. Following Lemma 7, the index set consists of elements
of form (𝑖, 𝑗, 𝑖 + 𝑗). Therefore the number 𝑠 equals to 𝑖 + 𝑗 in
the expression 𝛼

𝑠

𝑖,𝑗
𝛼
𝑚

𝑠,𝑘
. From the previous corollary,

𝛼
𝑠

𝑖,𝑗
𝛼
𝑚

𝑠,𝑘
+ 𝛼
𝑠

𝑗,𝑘
𝛼
𝑚

𝑠,𝑖
+ 𝛼
𝑠

𝑘,𝑖
𝛼
𝑚

𝑠,𝑗 (15)

is nonzero only if𝑚 ≥ 6, and 𝑘 ∉ {𝑖, 𝑗}. Also 𝑘 ̸= 𝑖+𝑗; otherwise
𝛼
𝑚

𝑠,𝑘
= 0.
If 𝑚 = 6, 2𝑖 + 2 ≤ 𝑚 implies that 𝑖 ≤ 2; that is, possible

numbers for “𝑖” are 1 and 2. Possible and not possible (𝑖, 𝑗, 𝑘)
triples, which are being used in

∑

3≤𝑠<𝑚,𝑠∉{𝑖,𝑗,𝑘}

𝛼
𝑠

𝑖,𝑗
𝛼
𝑚

𝑠,𝑘
+ 𝛼
𝑠

𝑗,𝑘
𝛼
𝑚

𝑠,𝑖
+ 𝛼
𝑠

𝑘,𝑖
𝛼
𝑚

𝑠,𝑗
= 0 (16)

andwhere 𝑖+𝑗+𝑘 = 6, are illustrated in Table 1.The notations
in the table are as follows ✓ := yes; − = no; PT = possible
triple.

In the case (a), 𝑖 + 𝑗 = 𝑘, and then it is not a possible
triple. In the case (b), 𝑖 < 𝑗, 𝑖, 𝑗, 𝑘 are distinct, and 𝑘 ̸= 𝑖 + 𝑗. So
it is a possible triple. In the case (c), 𝑖 = 𝑘, and so it is not a
possible triple. In the case (d), 𝑖 < 𝑗, and all 𝑖, 𝑗, 𝑘 are distinct
as 𝑖 + 𝑗 ̸= 𝑘. Thus it is a possible triple. In the case (e), 𝑘 is not
a natural number, and so it is not a possible triple. Therefore
only possible (𝑖, 𝑗, 𝑘) triples are (1, 3, 2) and (2, 3, 1). Triples
(1, 3, 2) and (2, 3, 1) correspond to nonzero products 𝛼4

13
𝛼
6

42

and 𝛼
5

23
𝛼
6

5,1
, respectively. Using the skew-symmetry, (2) turns

into the following equation:

𝛼
4

13
𝛼
6

24
+ 𝛼
5

23
𝛼
6

15
= 0, (17)

which gives (11). Using the same procedure for 𝑚 = 7,
possible (𝑖, 𝑗, 𝑘) triples are (1, 2, 4), (1, 4, 2) and (2, 4, 1), which
correspond to nonzero 𝛼

3

12
𝛼
7

34
, 𝛼5
14
𝛼
7

52
, and 𝛼

6

24
𝛼
7

61
respec-

tively. Therefore (12) is obtained. Equations (13) and (14) can
be obtained by the same way.

As an illustration, we show how to use the results of this
section in the following example.

Example 10. Let 𝜂 be an 8-dimensional algebra with nonzero
structure constants relative to eigenvector basis 𝐵 indexed by

Λ = {(1, 2, 3) , (1, 3, 4) , (1, 4, 5) , (1, 6, 7) ,

(2, 3, 5) , (2, 6, 8) , (3, 4, 7) , (3, 5, 8)} .

(18)

Computation shows that the structure vector [𝛼
2
] is a

solution to 𝑈V = [1]8 × 1 if and only if it is of form

[𝛼
2
] =

(
(
(
(
(
(
(
(
(
(
(

(

(𝛼
3

12
)
2

(𝛼
4

13
)
2

(𝛼
5

14
)
2

(𝛼
7

16
)
2

(𝛼
5

23
)
2

(𝛼
8

26
)
2

(𝛼
7

34
)
2

(𝛼
8

35
)
2

)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−
3

17

10

17

15

17

−
8

17

−
5

17

12

17

7

17

0

0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

+ 𝑋 ⋅

(
(
(
(
(
(

(

1

0

−1

0

0

−1

0

1

0

)
)
)
)
)
)

)

+ 𝑌 ⋅

(
(
(
(
(
(

(

1

−1

−1

1

1

−1

−1

0

1

)
)
)
)
)
)

)

.

(19)

Equation (13) from the previous corollary leads

(−
3

17
+ 𝑋 + 𝑌) ⋅ 𝑌 = (

15

17
− 𝑋 − 𝑌) ⋅ 𝑌

⇒ 𝑋 + 𝑌 =
9

17
.

(20)

Moreover, using (12), we find that 𝑋 = 3/17 and 𝑌 = 6/17,
which means that (𝛼7

16
)
2
= −2/17. Thus 𝜂 is not a Lie algebra.

4. Algorithm and Classifications

In this section, we describe our computational procedure and
give the results in dimensions 8 and 9.

4.1. Algorithm. Nowwedescribe the algorithm.The following
algorithm can be used for both invertible and noninvertible
cases.

Input.The input is the integer 𝑛 which represents the dimen-
sion.

Output. The output is two 0 − 1 matrices Wsoliton and
Uninv listing characteristic vectors for index sets Λ of Θ𝑛.
ThematrixWsoliton has as its rows all possible characteristic
vectors for canonical index sets Λ for nilpotent Lie algebras
of dimension 𝑛 with ordered type nonsingular nilsoliton
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Table 2: 8-dimensional nilsoliton metric Lie algebras.

Lie bracket Index Nullity

1 (0, 0, √274/2223 ⋅ 12,√99/764 ⋅ 13, √527/8179 ⋅ 14 + √1532/9311 ⋅ 23, √101/2154 ⋅ 15 +
√250/4199 ⋅ 24,√150/3151 ⋅ 16 + √110/367 ⋅ 25 + √110/367 ⋅ 34, √7/17 ⋅ 17) 6 3

2 (0, 0, √82/7253 ⋅ 12, √4/34 ⋅ 13, √97/299 ⋅ 14 + √6/34 ⋅ 23, √1/34 ⋅ 15 + √9/34 ⋅ 24, √10/34 ⋅ 16 +

√1998/12097 ⋅ 25 + √397/13917 ⋅ 34, √728/2883 ⋅ 17 + √637/4000 ⋅ 35) 6 4

3 (0, 0, √163/702 ⋅ 12, √263/2572 ⋅ 13, √343/1334 ⋅ 14 + √547/2871 ⋅ 23, √175/2358 ⋅ 15 +

√160/1149 ⋅ 24, √388/2509 ⋅ 16 + √518/6185 ⋅ 25, √43/13870 ⋅ 17 + √915/2239 ⋅ 35) 6 3

Table 3: The 9-dimensional nilsoliton metric Lie algebras of nullities 1 and 2.

Lie bracket Index Nullity
1 (0, 0, 0, 0, √45 ⋅ 23, √14 ⋅ 24, √91 ⋅ 25 + √91 ⋅ 34, √136 ⋅ 17 + √29 ⋅ 26 + √14 ⋅ 35, √104 ⋅ 18 + 4.27) 4 1
2 (0, 0, 1.12, 0, 1.14 + √3 ⋅ 23, 0, √6 ⋅ 25 + √6 ⋅ 34, √8 ⋅ 17 + 1.26 + √2 ⋅ 35, √6 ⋅ 18+√2 ⋅ 27) 5 2
3 (0, 0, √21 ⋅ 12, 0, √21 ⋅ 14 + √39 ⋅ 23, 0, √13 ⋅ 16 + √70 ⋅ 25 − √70 ⋅ 34, √88 ⋅ 17 + √42 ⋅ 35,√65 ⋅ 18 + √39 ⋅ 27) 5 2

derivation whose canonical Gram matrix 𝑈 is invertible.
The matrix Uninv has as its rows all possible characteristic
vectors for canonical index sets Λ for nilpotent Lie algebras
of dimension 𝑛 with ordered type nonsingular nilsoliton
derivation whose canonical Gram matrix 𝑈 is noninvertible.
In the dimensions 8 and 9, there is no example for invertible
case.ThusWsoliton is an emptymatrix.Therefore we give the
algorithm for the noninvertible case.

Algorithm for the Noninvertible Case. Consider the following.

(i) Enter the dimension 𝑛.
(ii) Compute the matrix 𝑍𝑛.
(iii) Compute the matrix𝑊.
(iv) Delete all rows of 𝑊 containing abelian factor which

is the row that represents direct sums of Lie algebras.
(v) Remove all rows of 𝑊 such that the canonical Gram

matrix 𝑈 associated to the index set Λ is invertible.
(vi) Define eigenvalue vector V𝐷 = (1, 2, 3, . . . , 𝑛)

𝑇 in
dimension 𝑛.

(vii) Remove all rows of𝑊 if V(𝑖) = V0(𝑖) ≤ 0where V is the
general solution of 𝑈ΛV = [1]𝑚×1 and V0 is the vector
that we have defined in the proof of Theorem 6.

(viii) Remove all the rows of𝑊 such that the corresponding
algebra does not have a derivation of eigenvalue type
1 < 2 < ⋅ ⋅ ⋅ < 𝑛.

(ix) Remove all the rows of 𝑊 such that the correspond-
ing algebra does not satisfy Jacobi identity condition,
which is obtained in Corollary 9.

After this process, we solve nonlinear systems which
follow from Jacobi identity. In order to see how the algorithm
works, we give the following example for 𝑛 = 6.

Example 11. Let 𝑛 = 6. Then

Θ6 = {(1, 2, 3) , (1, 3, 4) , (1, 4, 5) , (1, 5, 6) , (2, 3, 5) , (2, 4, 6)} .

(21)

Table 4:The8-dimensional nilsolitonmetric Lie algebra candidates.

Lie bracket Index Nullity

1 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24,
1.16 + 1.34, 1.17 + 1.26 + 1.35) 6 4

2 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24,
1.16 + 1.25, 1.17 + 1.26 + 1.35) 6 4

3 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24,
1.16 + 1.25 + 1.34, 1.17 + 1.26) 6 4

4 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24,
1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35) 6 5

Table 5: Number of 9-dimensional nilsoliton metric Lie algebra
candidates.

Nullity Number of Lie algebras
3 98
4 81
5 45
6 22
7 7
8 1

So, matrix 𝑍6 is 6 × 3 of form

𝑍6 =
(

(

1 2 3

1 3 4

1 4 5

1 5 6

2 3 5

2 4 6

)

)

. (22)

Since |Θ6| = 6, the matrix𝑊 is of size 26 × 6 as follows

𝑊Θ = (

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

...
...

...
...

...
...

1 1 1 1 1 1

). (23)
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Table 6: The 9-dimensional candidates of nullities 6 and 8.

Lie bracket Index Nullity
1 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) 6 6
2 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) 7 6
3 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) 7 6
4 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.36 + 1.45) 7 6
5 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36 + 1.45) 7 6
6 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.45) 7 6
7 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36) 7 6
8 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.36 + 1.45) 7 6
9 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) 7 6
10 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) 7 6
11 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) 7 6
12 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) 7 6
13 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.26 + 1.35, 1.18 + 1.36 + 1.45) 7 6
14 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) 7 6
15 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) 7 6
16 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.36) 7 6
17 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.26, 1.18 + 1.27 + 1.36 + 1.45) 7 6
18 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.45) 7 6
19 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36) 7 6
20 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) 7 6
21 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) 7 6
22 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) 7 6
23 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36 + 1.45) 7 8

The first row of 𝑊𝜃 represents empty matrix, row two rep-
resents the subset {(2, 4, 6)} of Θ6, and so forth. Eliminating
rows that represent direct sums, we have 33 rows in𝑊matrix.
Therefore none of the rows of𝑊 corresponds to Lie algebras
that can be written as direct sums.These algebras correspond
both to invertible and noninvertible Gram matrices. There
is no example for the invertible case. For the noninvertible
case, there is one ordered type nilsolitonmetric Lie algebra 𝜂.
Let 𝐵 be the eigenvector basis for 𝜂, whose nonzero structure
constants are indexed by

Λ 𝜂 = {(1, 2, 3) , (1, 3, 4) , (1, 4, 5) , (1, 5, 6) , (2, 3, 5) , (2, 4, 6)} .

(24)

Computation shows that the structure vector [𝛼2] is a solution
to 𝑈V = [1]6 × 1 if and only if it is of form

[𝛼
2
] =

(
(
(
(
(

(

(𝛼
3

12
)
2

(𝛼
4

13
)
2

(𝛼
5

14
)
2

(𝛼
6

15
)
2

(𝛼
5

23
)
2

(𝛼
6

24
)
2

)
)
)
)
)

)

=
1

143

(

(

2

1

2

5

5

0

)

)

+
𝑡

143

(

(

0

1

0

−1

−1

1

)

)

.

(25)

By Corollary 9, 𝜂 satisfies (11). Solving the equation for 𝑡, we
find that

(𝛼
4

13
𝛼
6

24
)
2

= (𝛼
5

23
𝛼
6

15
)
2

,

(11 + 𝑡) 𝑡 = (55 − 𝑡)
2
,

𝑡 = 25.

(26)

After rescaling and solving for structure constants from [𝛼
2
],

we see that letting

[𝑋1, 𝑋2] = √22𝑋3, [𝑋1, 𝑋3] = 6𝑋4,

[𝑋1, 𝑋4] = √22𝑋5, [𝑋1, 𝑋5] = √30𝑋6,

[𝑋2, 𝑋3] = √30𝑋5, [𝑋2, 𝑋4] = 5𝑋6

(27)

defines a nilsolitonmetric Lie algebra, previously found in [3].

4.2. Classifications. Classification results for dimensions 8
and 9 appear in Tables 2 and 3, respectively. We use vector
notations to represent Lie algebra structures. For example, the
list

(0, 0, 0, 0, √45 ⋅ 23, √14 ⋅ 24, √91 ⋅ 25 + √91 ⋅ 34, √136 ⋅ 17

+√29 ⋅ 26 + √14 ⋅ 35, √104 ⋅ 18 + 4 ⋅ 27)

(28)
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Table 7: The 9-dimensional nilsoliton metric Lie algebra candidates of nullity 3.

Lie bracket Index Nullity
1 (0, 0, 0, 0, 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18, 1.27 + 1.36 + 1.45) 4 3
2 (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) 5 3
3 (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) 5 3
4 (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) 5 3
5 (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) 5 3
6 (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) 5 3
7 (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.36) 5 3
8 (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) 5 3
9 (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) 5 3
10 (0, 0, 1.12, 0, 1.23, 1.24, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) 5 3
11 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36 + 1.45) 5 3
12 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.45) 5 3
13 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36) 5 3
14 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) 5 3
15 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) 5 3
16 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) 5 3
17 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) 5 3
18 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) 5 3
19 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) 5 3
20 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) 5 3
21 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) 5 3
22 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) 5 3
23 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) 5 3
24 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) 5 3
25 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) 5 3
26 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) 5 3
27 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) 5 3
28 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) 5 3
29 (0, 0, 1.12, 0, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) 5 3
30 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) 4 3
31 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) 4 3
32 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) 4 3
33 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.36) 4 3
34 (0, 0, 1.12, 0, 1.14 + 1.23, 1.24, 1.16 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) 4 3
35 (0, 0, 1.12, 1.13, 1.23, 0, 1.16 + 1.25, 1.17 + 1.26 + 1.35, 1.27 + 1.36 + 1.45) 4 3
36 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27 + 1.45) 5 3
37 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27 + 1.36) 5 3
38 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.27 + 1.36 + 1.45) 5 3
39 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.27 + 1.45) 5 3
40 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.27 + 1.36) 5 3
41 (0, 0, 1.12, 1.13, 1.14, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36 + 1.45) 5 3
42 (0, 0, 1.12, 1.13, 1.14, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.45) 6 3
43 (0, 0, 1.12, 1.13, 1.14, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27 + 1.36) 6 3
44 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.36 + 1.45) 6 3
45 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.45) 6 3
46 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) 6 3
47 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) 6 3
48 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) 6 3
49 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.27 + 1.45) 5 3
50 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.27 + 1.36) 5 3
51 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.35, 1.18 + 1.27 + 1.45) 5 3
52 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.35, 1.18 + 1.27 + 1.36) 5 3
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Table 7: Continued.

Lie bracket Index Nullity
53 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.45) 5 3
54 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.36) 5 3
55 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27) 5 3
56 (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.27 + 1.36 + 1.45) 5 3
57 (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.27 + 1.45) 5 3
58 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.27 + 1.36 + 1.45) 5 3
59 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.27 + 1.45) 5 3
60 (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) 6 3
61 (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.45) 6 3
62 (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) 6 3
63 (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.45) 6 3
64 (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.27 + 1.36) 6 3
65 (0, 0, 1.12, 1.13, 1.14, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18 + 1.27) 6 3
66 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.36 + 1.45) 6 3
67 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.45) 6 3
68 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.45) 6 3

Table 8: The 9-dimensional nilsoliton metric Lie algebra candidates of nullity 3.

Lie bracket Index Nullity
69 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.45) 6 3
70 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36) 6 3
71 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27) 6 3
72 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26, 1.18 + 1.45) 6 3
73 (0, 0, 1.12, 1.13, 1.14 + 1.23, 0, 1.16 + 1.25 + 1.34, 1.17 + 1.26 + 1.35, 1.18) 6 3
74 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.26, 1.18 + 1.27 + 1.36 + 1.45) 6 3
75 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27 + 1.45) 6 3
76 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27 + 1.36) 6 3
77 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36 + 1.45) 6 3
78 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27 + 1.36) 6 3
79 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26, 1.27 + 1.36 + 1.45) 7 3
80 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.27 + 1.45) 7 3
81 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.27 + 1.36) 7 3
82 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.35, 1.18 + 1.27 + 1.45) 7 3
83 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.35, 1.18 + 1.27 + 1.36) 7 3
84 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26, 1.18 + 1.27 + 1.45) 7 3
85 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26, 1.18 + 1.27 + 1.36) 7 3
86 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.26 + 1.35, 1.18 + 1.27) 7 3
87 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17, 1.27 + 1.36 + 1.45) 6 3
88 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.27 + 1.45) 6 3
89 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.27 + 1.36) 6 3
90 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.45) 7 3
91 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17, 1.18 + 1.27 + 1.36) 7 3
92 (0, 0, 1.12, 1.13, 1.14, 1.15, 1.16 + 1.25 + 1.34, 1.17 + 1.35, 1.18 + 1.27) 7 3
93 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.35, 1.18) 7 3
94 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.34, 1.17 + 1.26, 1.18) 7 3
95 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17, 1.18 + 1.45) 7 3
96 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17, 1.18 + 1.36) 7 3
97 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25, 1.17 + 1.35, 1.18) 7 3
98 (0, 0, 1.12, 1.13, 1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34, 1.17, 1.18) 7 3
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in the first row of Table 3 is meant to encode the metric Lie
algebra (𝑛, ⟨⋅, ⋅⟩) with orthonormal basis 𝐵 = {𝑋𝑖}

8

𝑖=1
and

bracket relations

[𝑋2, 𝑋3] = √45𝑋5, [𝑋2, 𝑋4] = √14𝑋6,

[𝑋2, 𝑋5] = √91𝑋7, [𝑋3, 𝑋4] = √91𝑋7,

[𝑋1, 𝑋7] = √136𝑋8, [𝑋2, 𝑋6] = √29𝑋8,

[𝑋3, 𝑋5] = √14𝑋8, [𝑋1, 𝑋8] = √104𝑋9,

[𝑋2, 𝑋7] = 4𝑋9.

(29)

4.2.1. Candidates of NilsolitonMetrics. Table 5 illustrates how
many possible candidates of Lie algebras appear in dimension
9 up to the nullity of its Grammatrix.The algebras illustrated
in Table 4 are possible candidates of nilsoliton metric Lie
algebras with ordered type of derivations in dimension 8.
Here, as an example we give potential Lie algebra structures
when the nullity of their corresponding Grammatrices are 3,
6 and 8 in Tables 6, 7, and 8 respectively for dimension nine.

5. Conclusion

In this work, we have focused on nilpotentmetric Lie algebras
of dimensions eight and nine with ordered type of deriva-
tions. We have given specific Jacobi identity conditions for
Lie algebras which allowed us to simplify the Jacobi identity
condition. We have classified nilsoliton metric Lie algebras
for the corresponding Gram matrix 𝑈 being invertible and
noninvertible. For dimension 8, we have focused onnilsoliton
metric Lie algebras with noninvertable Gram matrix which
leads to more than one solution for 𝑈V = [1]. We have
proved that if the nilpotent Lie algebra admits a soliton
metric with correspondingGrammatrix being noninvertible,
all the solutions of 𝑈V = [1] correspond to a unique
derivation.This theorem has allowed us to omit several cases
that come from nonordered eigenvalues without considering
Jacobi condition.Moreover, we have classified somenilsoliton
metric Lie algebras with derivation types 1 < 2 < ⋅ ⋅ ⋅ < 𝑛

and provided some candidates that may be classified. We are
currently working on an algorithm that provides a full list of
classifications for dimensions eight and nine.

Appendix

See Tables 5, 6, 7, and 8.
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