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The main feature of the boundary layer flow problems of nanofluids or classical fluids is the inclusion of the boundary conditions
at infinity. Such boundary conditions cause difficulties for any of the series methods when applied to solve such a kind of problems.
In order to solve these difficulties, the authors usually resort to either Padé approximants or the commercial numerical codes.
However, an intensive work is needed to perform the calculations using Padé technique. Due to the importance of the nanofluids
flow as a growing field of research and the difficulties caused by using Padé approximants to solve such problems, a suggestion is
proposed in this paper tomap the semi-infinite domain into a finite one by the help of a transformation. Accordingly, the differential
equations governing the fluid flow are transformed into singular differential equationswith classical boundary conditionswhich can
be directly solved by using the differential transformationmethod.The numerical results obtained by using the proposed technique
are compared with the available exact solutions, where excellent accuracy is found.The main advantage of the present technique is
the complete avoidance of using Padé approximants to treat the infinity boundary conditions.

1. Introduction

Nanotechnology is an advanced technology, which deals
with the synthesis of nanoparticles, processing of the nano
materials and their applications. It is well known that 1 nm
(nanometer) = 10−9 meter. Normally, if the particle sizes are
in the 1–100 nm range, they are generally called nanoparticles.
Nanotechnology has been widely used in industry since
materials with sizes of nanometers possess unique physical
and chemical properties. Nanoscale particle added fluids
are called as nanofluid. The term “nanofluid” was first used
by Choi [1] to describe a fluid in which nanometer-sized
particles are suspended in conventional heat transfer basic
fluids. Fluids such as oil, water, and ethylene glycol mixture
are poor heat transfer fluids, since the thermal conductivity
of these fluids plays important role on the heat transfer coef-
ficient between the heat transfer medium and the heat trans-
fer surface. Numerous methods have been taken to improve
the thermal conductivity of these fluids by suspending
nano/micro or larger-sized particle materials in liquids.

An innovative technique to improve heat transfer is by
using nanoscale particles in the base fluid [1]. Therefore,
the effective thermal conductivity of nanofluids is expected
to enhance heat transfer compared with conventional heat
transfer liquids (Masuda et al. [2]). This phenomenon sug-
gests the possibility of using nanofluids in advanced nuclear
systems (Buongiorno and Hu [3]). Choi et al. [4] showed
that the addition of a small amount (less than 1% by vol-
ume) of nanoparticles to conventional heat transfer liquids
increased the thermal conductivity of the fluid up to approx-
imately two times. A comprehensive survey of convective
transport in nanofluids was made by Buongiorno and Hu [3]
and very recently by Kakaç and Pramuanjaroenkij [5]. It may
be also important tomention that a valuable book in nanoflu-
ids is published recently by Das et al. [6]. In addition, various
interesting results in this regard can be found in [7–17].

Khan and Pop [18] were the first to investigate the
boundary-layer flow of a nanofluid past a stretching sheet.
The main feature of the boundary layer flow of nanofluids or
classical fluid is the inclusion of the boundary conditions at
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infinity. Such conditions cause difficulties for any of the series
methods when applied to solve this kind of problems. This
because the infinity boundary condition cannot be applied
directly to the series solution, where Padé approximants
should be established before applying the boundary condition
at infinity. Many authors [19–32] have been resorted to either
Padé technique or some numerical commercial codes to
solve the boundary value problems in unbounded domain.
However, Padé technique requires a massive computational
work to obtain accurate approximate solutions. Searching
for a direct method to treat the boundary condition at
infinity has been the main goal of many researchers for a
long time to solve boundary value problems in unbounded
domain. Such a direct method is proposed in this paper.
The main idea is to transform the physical domain from
unbounded into bounded through a transformation. Accord-
ingly, a new system arises which is now subject to classical
boundary conditions, where the boundary conditions at
infinity disappeared as a result of the new transformation.The
transformed system can be directly solved by the differential
transformation method (DTM) [33–45] without any need
to Padé approximants. In this paper, the governing system
of ordinary differential equations describing the boundary-
layer flow of a nanofluid past a stretching sheet is analyzed
through the proposed improved version of the DTM. The
main advantage of the present method is that not only it
avoids the use of Padé approximants, but also gives the series
solution in a straightforward manner.

2. Basic Equations

The basic equations of the steady two-dimensional boundary
layer flow of a nanofluid past a stretching surface with the
linear velocity 𝑢

𝑤

(𝑥) = 𝑎𝑥, where 𝑎 is a constant and 𝑥 is the
coordinate measured along the stretching surface, as given by
Kuznetsov and Nield [15] and Nield and Kuznetsov [16] and
later by Khan and Pop [18], are as follows:
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subject to the boundary conditions:
V = 0, 𝑢 = 𝑢

𝑤

(𝑥) = 𝑎𝑥, 𝑇 = 𝑇
𝑤

, 𝐶 = 𝐶
𝑤

, at 𝑦 = 0,

𝑢 = V = 0, 𝑇 = 𝑇
∞

, 𝐶 = 𝐶
∞

, as 𝑦 → ∞.

(2)
A complete physical description of the present problem was
well presented by Khan and Pop [18] as follows. The flow
takes place at 𝑦 ≥ 0, where 𝑦 is the coordinate measured
normal to the stretching surface. A steady uniform stress
leading to equal and opposite forces is applied along the 𝑥-
axis so that the sheet is stretched keeping the origin fixed. It
is assumed that at the stretching surface, the temperature 𝑇
and the nanoparticle fraction 𝐶 take constant values 𝑇

𝑤

and
𝐶
𝑤

, respectively. The ambient values, attained as 𝑦 tends to
infinity, of 𝑇 and 𝐶, are denoted by 𝑇

∞

and 𝐶
∞

, respectively.
Here 𝑢 and V are the velocity components along the axes 𝑥

and 𝑦, respectively, 𝑝 is the fluid pressure, 𝜌
𝑓

is the density of
the base fluid, 𝛼 is the thermal diffusivity, ] is the kinematic
viscosity, 𝑎 is a positive constant,𝐷

𝐵

is the Brownian diffusion
coefficient, 𝐷

𝑇

is the thermophoretic diffusion coefficient,
𝜏 = (𝜌𝑐)

𝑝

/(𝜌𝑐)
𝑓

is the ratio between the effective heat capacity
of the nanoparticlematerial and heat capacity of the fluidwith
𝜌 being the density, 𝑐 is the volumetric volume expansion
coefficient, and 𝜌

𝑝

is the density of the particles. Khan and
Pop [18] have looked for a similarity solution of (1) with the
boundary conditions (2) by assuming that
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where the stream function𝜓 is defined in the usual way as 𝑢 =
𝜕𝜓/𝜕𝑦 and V = −𝜕𝜓/𝜕𝑥. Hence, a set of ordinary differential
equations were obtained by [18] as
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where Pr, Le, Nb, and Nt denote the Prandtl number, the
Lewis number, the Brownianmotion parameter, and the ther-
mophoresis parameter, respectively. The quantities of prac-
tical interest are the Nusselt number Nu and the Sherwood
number Sh which are defined as
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where 𝑞
𝑤

and 𝑞
𝑚

are the wall heat and mass fluxes, respec-
tively. According to Kuznetsov and Nield [15], Re−1/2

𝑥
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Sh are known as the reduced Nusselt number Nur and
reduced Sherwood number Shr, respectively,
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where Re
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(𝑥)/] is the local Reynolds number based
on the stretching velocity 𝑢

𝑤

(𝑥). It should be noted that the
exact solution of (4) with the boundary conditions given in
(7) was first obtained by Crane [46] and given as

𝑓 (𝜂) = 1 − 𝑒
−𝜂

. (11)

Substituting 𝑓(𝜂) into (5)-(6), the given system reduces to a
system of two coupled differential equations as
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subject to the boundary conditions:

𝜃 (0) = 1, 𝜃 (∞) = 0,

𝜙 (0) = 1, 𝜙 (∞) = 0.

(13)

3. Transformed Equations

In order to solve boundary value problems in unbounded
domain by using the DTM, authors are usually resort to Padé
approximant due to the boundary condition at infinity, and
an approximate solution is only available in this case. As a
well-known fact, Padé approximant requires a huge amount
of computational work to find out the approximate solution.
In this regard, we think that if it is possible to transform the
unbounded domain into a bounded one then the BVPs may
be easily solvedwithout any need to Padé approximant. A first
step in this direction is to transform the unbounded domain
of the independent variable 𝜂 ∈ [0,∞) into a bounded one
𝑡 ∈ [0, 1). Such a transformation is found as 𝑡 = 1 − 𝑒

−𝜂,
accordingly the governing equations should be changed to
be in terms of the new variable 𝑡. The effectiveness of this
procedure shall be discussed in the next subsection to show
the possibility of obtaining very accurate numerical solutions.
In view of the mentioned transformation, the system (1)–(3)

with the boundary conditions (7) is transformed into a new
system in bounded domain given by
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where primes denote differentiation with respect to 𝑡.

4. Analysis and Results

In this section, the application of the DTM is discussed with-
out resorting to Padé approximants. Applying the DTM to
the previouslymentioned system yielded the following recur-
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with the transformed boundary conditions

Θ (0) = 1,

𝑁

∑
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Θ (𝑘) = 0, (18)

Φ (0) = 1,
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∑
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Equations (17a), (17b), (18), and (19) are used to obtain
very accurate approximate numerical solutions, where two
different cases are derived and discussed in the next two
subsections.

4.1. Case 1: At 𝑁𝑡=0 and 𝑁𝑏=0. At Nt = 0 and Nb = 0,
the boundary value problem for 𝜙 becomes ill-posed and
consequently the boundary value problem for 𝜃 becomes
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conditions (18) for 𝑘 = 0, 1, 2, . . . , 8, a system of algebraic
equations is obtained in Θ(1), Θ(2), . . ., and Θ(10). Solving
this system, the 10-term approximate solution at any Prandtl
number is given in terms of the original similarity variable 𝜂
as
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Here, it may be useful to mention that an exact solution for
the current case is obtained very recently by the first author
in [47] and given by
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𝑑𝜇 is the generalized Gamma
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Gamma function as Γ(𝑎, 𝑧
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𝑑𝜇. There is no doubt that the
availability of the exact solution gives the opportunity to
validate the accuracy of the suggested approach. For the pur-
pose of illustration, the approximate solutions are compared
in Figures 1, 2, and 3 with the exact one given by (24) at
different values of Prandtl number. These primary results
reveal that the 10-term approximate solution is sufficient to
obtain numerical solutions of high accuracy for certain range
of Prandtl number, mainly Pr = 1, 2, 3. However, at Pr = 4

the 10-term approximate solution is not accurate as can be
seen in Figure 4. This observation leads to the conclusion
that with increasing Pr more terms in the approximate series
solution are in fact needed. For example, at Pr = 5 the 20-
term approximate solution is found sufficient in Figure 5,
while 30-term approximate solution is found identical to the
exact one at Pr = 10 in Figure 6. However, the main advant-
age of the suggested approach is the avoidance of Padé-
approximants which has been used a long time to treat the
boundary condition at infinity.

4.2. Case 2: At 𝑁𝑡=0, 𝑃𝑟=𝐿𝑒=1, and 𝑁𝑏 ̸= 0. Substituting
Nt = 0, Pr = 1, and Le = 1 into (17a) and (17b) yields
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× Φ (𝑟 − 𝑚 + 1) = 0,
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𝑘
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(25)

Using the recurrence scheme (25)with the transformed initial
conditions (18) and (19) for 𝑘 = 0, 1, 2, . . . , 4, we get a
system of algebraic equations in Θ(1), Θ(2), . . . , Θ(6) and
Φ(1), Φ(2), . . . , Φ(6). The solution of the required system
leads to the following 6-term approximate solution for the 𝜃
equation:
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where Θ(1), Θ(2), . . ., and Θ(6) are expressed in terms of Nb
but ignored here for lengthy results. However, the 6-term
series solution for the 𝜙 equation is given explicitly as

Φ
6

(𝜂)

= 1 −
1

1237

× [720 (1 − 𝑒
−𝜂

) + 360(1 − 𝑒
−𝜂

)
2

+ 120(1 − 𝑒
−𝜂

)
3

+30(1 − 𝑒
−𝜂

)
4

+ 6(1 − 𝑒
−𝜂

)
5

+ (1 − 𝑒
−𝜂

)
6

] .

(27)

The exact solutions are obtained in [47] as

𝜙 (𝜂) =
1 − 𝑒
−𝑒

−𝜂

1 − 𝑒
−1

,

𝜃 (𝜂) =
1 − 𝑒
−𝛼Nb(1−𝑒−𝑒

−𝜂

)

1 − 𝑒
−Nb .

(28)

The obtained truncated series solution Θ
6

(𝜂) is compared
with the exact one in Figures 7–9 at several values of Nb. As
observed from Figures 7 and 8, the approximate solution is
coincided with the exact one at certain values, Nb = 0.1 and
Nb = 0.3. However, it approaches the exact curve at Nb = 0.5,
where more terms are needed in this case. In addition, the
approximate solution Φ

6

(𝜂) is found identical to the exact
curve as shown in Figure 10.

5. Conclusions

A system of ordinary differential equations describing the
boundary layer flow of a nanofluid past a stretching sheet is
investigated in this paper via a new approach. The suggested
approach is based on transforming the boundary conditions
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at infinity into classical conditions prior to the application
of the differential transformation method. A transformation
is successfully used to map the unbounded physical domain
into a bounded one. In addition, the current results are valid-
ated through various comparisons with the available exact
solutions. In comparison with Padé technique, the new
method of solution is found not only straightforward but also
effective in obtaining accurate numerical solutions, where
Padé approximant was completely avoided.
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