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A generalized gradient projection filter algorithm for inequality constrained optimization is presented. It has three merits. The
first is that the amount of computation is lower, since the gradient matrix only needs to be computed one time at each iterate. The
second is that the paper uses the filter technique instead of any penalty function for constrained programming.The third is that the
algorithm is of global convergence and locally superlinear convergence under some mild conditions.

1. Introduction

The optimal problems are often discovered in the field of
management, engineering design, traffic transportation, na-
tional defence, and so on. The efficient algorithms for these
problems are important. We will consider the following
nonlinear inequality constrained optimization problem:

min 𝑓 (𝑥)
s.t. 𝑐𝑗 (𝑥) ≤ 0,

(1)

where 𝐼 = {1, 2, . . . , 𝑚} and 𝑥 ∈ 𝑅𝑛; assume that𝑓 : 𝑅𝑛 → 𝑅
and 𝑐𝑗(𝑗 ∈ 𝐼) : 𝑅𝑛 → 𝑅 are continuously differentiable.

In 2002, Fletcher and Leyffer [1] had proposed a filter
method for nonlinear inequality constrained optimization,
which did not require any penalty function. The main idea is
that a trial point is accepted if it improves either the objective
function or the constraint violation. Fletcher et al. [2, 3] and
Gonzaga et al. [4] had proved that the method was of global
convergence. More recently, this method has been extended
by Wächter and Biegler [5, 6] and Chin [7] to line search
method and by Su [8] to the SQP method.

In this paper, we modify the method given byWang et al.
[9] and propose a generalized gradient projection filter algo-
rithm for inequality constrained optimization with arbitrary
initial point. It is organized as follows. In Section 2, we first
review the filter method and some definitions of generalized

gradient projection and then introduce an algorithm for
problem (1). The convergence and the rate of convergence on
the algorithm are discussed in Sections 3 and 4, respectively.
In the last section, we shall list the numerical tests.

2. Preliminaries and a Filter Algorithm

Let ℎ(𝑥) be a violation function; that is,

ℎ (𝑥) = max {0, 𝑐𝑗 (𝑥) , 𝑗 ∈ 𝐼} . (2)

Definition 1. A pair (ℎ(𝑥𝑘), 𝑓(𝑥𝑘)) obtained on iteration 𝑘
dominates another pair (ℎ(𝑥𝑙), 𝑓(𝑥𝑙)) if and only if ℎ(𝑥𝑘) ≤
ℎ(𝑥𝑙) and 𝑓(𝑥𝑘) ≤ 𝑓(𝑥𝑙) hold.

Definition 2. A filter is a list of pairs (ℎ(𝑥𝑘), 𝑓(𝑥𝑘)) such that
no pair dominates any other. A pair (ℎ(𝑥𝑘), 𝑓(𝑥𝑘)) is said to
be acceptable for the filter if it is not dominated by any point
in the filter.

We use 𝐹(𝑘) to denote the set of iterations indices 𝑗 (𝑗 <
𝑘) such that (ℎ(𝑥𝑗), 𝑓(𝑥𝑗)) is an entry in the current filter. A
point 𝑥 is said to be “acceptable for the filter” if and only if

ℎ (𝑥) ≤ (1 − 𝛼2𝜂) ℎ (𝑥𝑗) or 𝑓 (𝑥) ≤ 𝑓 (𝑥𝑗) − 𝛾ℎ (𝑥𝑗)

(3)
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holds for all 𝑗 ∈ 𝐹(𝑘), where 𝛾, 𝜂 ∈ (0, 1) is close to zero
and 𝛼 is the step size. We may also “update the filter” which
means that the pair (ℎ(𝑥), 𝑓(𝑥)) is added to the list of pairs
in the filter, and any pairs in the filter that are dominated by
(ℎ(𝑥), 𝑓(𝑥)) are removed.

However, relying solely on this criterion would result in
convergence to a feasible but nonoptimal point. In order to
prevent this, we employ the following sufficient reduction
criterion.

We denote Δ𝑓𝑘 = 𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 + 𝛼𝑑𝑘) and Δ𝑙𝑘 =

−𝛼∇𝑓(𝑥𝑘)
𝑇𝑑𝑘 as actual reduction and linear reduction,

respectively, at 𝑓(𝑥𝑘). The sufficient reduction condition for
𝑓(𝑥𝑘) takes the form

Δ𝑙𝑘 ≥ 0, Δ𝑓𝑘 ≥ 𝜎Δ𝑙𝑘, (4)

where 𝜎 ∈ (0, 1/2) is a preassigned parameter.
At the current iterate 𝑥𝑘, define that 𝐽(𝑥𝑘) = {𝑗 ∈ 𝐼 :

𝜖 ≤ 𝑐𝑗(𝑥𝑘) − ℎ(𝑥𝑘) ≤ 0}, 𝐴𝑘 = (∇𝑐𝑗(𝑥𝑘), 𝑗 ∈ 𝐽(𝑥𝑘)), and
𝑐𝐽𝑘 = (𝑐𝑗(𝑥𝑘), 𝑗 ∈ 𝐽(𝑥𝑘))

𝑇, and then

𝑑0𝑘 = −𝑃𝑘∇𝑓 (𝑥𝑘) − 𝐵𝑇𝑘 𝑐𝐽𝑘 ,

𝜆𝑘 = −𝐵𝑘∇𝑓 (𝑥𝑘) + (𝐴𝑇𝑘𝐻𝑘𝐴𝑘)
−1

𝑐𝐽𝑘 = 𝜆1𝑘 + 𝜆2𝑘,

(5)

where 𝐻𝑘 is a given symmetric positive definite matrix, 𝜆1𝑘 =
−𝐵𝑘∇𝑓(𝑥𝑘), 𝜆

2
𝑘 = (𝐴𝑇𝑘𝐻𝑘𝐴𝑘)

−1𝑐𝐽𝑘 , 𝐵𝑘 = (𝐴𝑇𝑘𝐻𝑘𝐴𝑘)
−1𝐴𝑇𝑘𝐻𝑘,

and 𝑃𝑘 = 𝐻𝑘 − 𝐻𝑘𝐴𝑘𝐵𝑘.

Let 𝑈𝑘 = (𝑢𝑘𝑗 , 𝑗 ∈ 𝐽(𝑥𝑘)
𝑇), where 𝑢𝑘𝑗 = {

𝜆1
𝑘𝑗
𝜆1
𝑘𝑗
<0

0 𝜆1
𝑘𝑗
≥0

. Set

𝑑1𝑘 = −𝑃𝑘∇𝑓(𝑥𝑘) + 𝐵𝑇𝑘𝑈𝑘 and 𝑑2𝑘 = −𝑃𝑘∇𝑓(𝑥𝑘) + 𝐵𝑇𝑘 ‖𝑑
1
𝑘‖𝑒,

where 𝑒 = (1, . . . , 1)𝑇. Then

𝑑𝑘 = (1 − 𝜌𝑘) 𝑑
1
𝑘 + 𝜌𝑘𝑑

2
𝑘, (6)

where 𝜌𝑘 = max{𝜌 ∈ (0, 1] : ∇𝑓(𝑥𝑘)
𝑇((1 − 𝜌)𝑑1𝑘 + 𝜌𝑑2𝑘) ≤

𝜃∇𝑓(𝑥𝑘)
𝑇𝑑1𝑘}, 𝜃 ∈ (1/2, 1). We use correction direction 𝑑𝑘 if a

trial point has been rejected.
The following is the algorithm.

Algorithm

(S0) Given start point 𝑥0 ∈ 𝑅𝑛, 𝜖0, 𝜖1 > 0, 𝜇 = ℎ(𝑥0), 𝜂, 𝛾 ∈
(0, 1), and 𝛽, 𝑡, 𝜎 ∈ (0, 1/2). Initialize the filter Φ0 =

{(𝜇, +∞) ∈ 𝑅2} and 𝐹(0) = 0. Set 𝑘 = 0.
(S1) Inner loop A:

(S1.1) set 𝑖 = 0 and 𝜖𝑘𝑖 = 𝜖0;
(S1.2) if det(𝐴𝑇𝑘𝑖𝐴𝑘𝑖) ≥ 𝜖𝑘𝑖 , where 𝐴𝑘𝑖 = (∇𝑐𝑗(𝑥𝑘) : 𝑗 ∈

𝐽𝑘𝑖) and 𝐽𝑘𝑖 = {𝑗 ∈ 𝐼 : 𝜖𝑘𝑖 ≤ 𝑐𝑗(𝑥𝑘) − ℎ(𝑥𝑘) ≤ 0},
then set 𝐽(𝑥𝑘) = 𝐽𝑘𝑖 , 𝐴𝑘 = 𝐴𝑘𝑖 , and 𝜖𝑘 = 𝜖𝑘𝑖 , and
go to S2;

(S1.3) let 𝑖 = 𝑖 + 1, 𝜖𝑘𝑖 = 𝜖𝑘𝑖−1/2, and go to S1.2.

(S2) Compute 𝑑0𝑘, 𝜆𝑘 by (5). If 𝑑0𝑘 = 0 and 𝜆𝑘 ≥ 0, then
stop.

(S3) Test direction 𝑑0𝑘:

(S3.1) if 𝜆𝑘𝑗 ≥ 𝜖1, and 𝑥𝑘+𝑑0𝑘 is acceptable for the filter,
then go to S3.2; otherwise, go to S4;

(S3.2) if ℎ(𝑥𝑘) > 0, let 𝑥𝑘+1 = 𝑥𝑘 + 𝑑0𝑘, and go to S7;
otherwise, go to S3.3;

(S3.3) if 𝑥𝑘 + 𝑑0𝑘 satisfies the sufficient reduction
condition (4), then let 𝑥𝑘+1 = 𝑥𝑘 + 𝑑0𝑘, and go
to S7; otherwise, go to S4.

(S4) Compute 𝑑𝑘 by (6) and set 𝛼 = 1.
(S5) Inner loop B:

(S5.1) if 𝑥𝑘 + 𝛼𝑑𝑘 is acceptable for the filter, go to S5.2;
otherwise, go to S5.3;

(S5.2) if Δ𝑓𝑘 < 𝜎Δ𝑙𝑘, go to S5.3; otherwise, go to S6;
(S5.3) set 𝛼 = 𝑡𝛼, and go to S5.1.

(S6) Set 𝛼𝑘 = 𝛼 and 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑑𝑘.
(S7) Update filter 𝐹(𝑘) to 𝐹(𝑘+1). Update 𝐻𝑘 to 𝐻𝑘+1 by a

quasi-Newton method. Set 𝑘 = 𝑘 + 1, and back to S1.

3. Global Convergence of the Algorithm

In this section, we assume that the following conditions hold.

(A1) {∇𝑐𝑗(𝑥), 𝑗 ∈ 𝐽(𝑥)} is linearly independent of any 𝑥 ∈

𝑅𝑛.
(A2) For any 𝑘 and 𝑑, 𝑎‖𝑑‖2 ≤ 𝑑𝑇𝐻−1𝑘 𝑑 ≤ 𝑏‖𝑑‖2 holds,

where 0 < 𝑎 ≤ 𝑏 are constants.
(A3) Sequence {𝑥𝑘} generated by the algorithm remains in

a closed, bounded subset Ω ⊂ 𝑅𝑛.
(A4) 𝑓(𝑥) and 𝑐𝑖(𝑥) (𝑖 = 1, 2, . . . , 𝑚) are twice differentiable

in Ω; that is, 𝑀𝑓min ≤ 𝜆(∇2𝑓(𝑥)) ≤ 𝑀𝑓max,𝑀
𝑐
min ≤

𝜆(∇2𝑐𝑖(𝑥)) ≤ 𝑀𝑐max.

Similar to [9], the following theorem and lemma hold.

Theorem 3. If 𝑑0𝑘 = 0 and 𝜆𝑘 ≥ 0 hold, then 𝑥𝑘 is a KKT point
of problem (1).

Lemma 4. Consider

𝑑0𝑘 = 0, 𝜆𝑘 ≥ 0 ⇐⇒ 𝑑1𝑘 = 0. (7)

According to [8], the following lemma holds.

Lemma 5. The inner loop A will terminate in finite times.

Lemma 6. If 𝑥𝑘 is not a KKT point of problem (1), there must
exist ∇𝑓(𝑥𝑘)

𝑇𝑑𝑘 < 0 and ∇𝑐𝑗(𝑥𝑘)
𝑇𝑑𝑘 < 0, 𝑗 ∈ 𝐽(𝑥𝑘).

Proof. Since 𝑥𝑘 is not a KKT point, we have either 𝑑0𝑘 ̸= 0 or
𝑗 ∈ 𝐽(𝑥𝑘) such that 𝜆1𝑘𝑗 < 0. Thus

∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘 ≤ 𝜃∇𝑓(𝑥𝑘)

𝑇
𝑑1𝑘

≤ 𝜃
[
[

[

−(𝑑0𝑘)
𝑇
𝐻−1𝑘 𝑑0𝑘 − ∑

𝜆1
𝑘𝑗
<0

(𝜆1𝑘𝑗)
2]
]

]

< 0
(8)
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holds. From Lemma 4, we know that 𝑑1𝑘 ̸= 0. Therefore

𝐴𝑇𝐽𝑘𝑑
1
𝑘 = 𝑈𝑘 ≤ 0, 𝐴𝑇𝐽𝑘𝑑

2
𝑘 = −

𝑑
1
𝑘

 𝑒 < 0. (9)

That is, ∇𝑐𝑗(𝑥𝑘)
𝑇𝑑𝑘 < 0 (𝑗 ∈ 𝐽(𝑥𝑘)) hold.

Lemma 7. Let 𝑥∞ be the cluster point of {𝑥𝑘} generated by
algorithm. If𝑥∞ is not theKKTpoint of problem (1), there exists
𝛼 > 0, such that Δ𝑓𝑘 ≥ 𝜎Δ𝑙𝑘 holds when 𝛼 ≤ 𝛼.

Proof. From the definition of 𝜌 and the assumption (A2), we
have

Δ𝑙𝑘 ≥ −𝛼𝜃∇𝑓(𝑥𝑘)
𝑇
𝑑1𝑘

= −𝛼𝜃
[
[

[

−(𝑑0𝑘)
𝑇
𝐻−1𝑘 𝑑0𝑘 − ∑

𝜆1
𝑘𝑗
<0

(𝜆1𝑘𝑗)
2]
]

]

≥ 𝛼𝜃(𝑑0𝑘)
𝑇
𝐻−1𝑘 𝑑0𝑘 ≥

𝛼𝜃𝑎

2

𝑑
0
𝑘


2
.

(10)

Since

Δ𝑓𝑘 − Δ𝑙𝑘
 =


𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝛼𝑑𝑘) + 𝛼∇𝑓(𝑥𝑘)

𝑇
𝑑𝑘



≤
1

2
𝛼2𝑀𝑓max

𝑑𝑘

2
,

(11)

we have



Δ𝑓𝑘 − Δ𝑙𝑘
Δ𝑙𝑘


≤

(1/2) 𝛼2𝑀𝑓max
𝑑𝑘


2

(𝛼𝜃𝑎/2)
𝑑
0
𝑘


2

=
𝛼𝑀𝑓max

𝑑𝑘

2

𝜃𝑎
𝑑
0
𝑘


2

. (12)

It is easy to learn that Δ𝑓𝑘 ≥ 𝜎Δ𝑙𝑘 holds when 𝛼 ≤ 𝛼 = (1 −

𝜎)𝜃𝑎‖𝑑0𝑘‖
2
/𝑀𝑓max‖𝑑𝑘‖

2.

Lemma 8. The inner loop B will end in finite times.

Proof. From Lemma 7, we have that Δ𝑓𝑘 ≥ 𝜎Δ𝑙𝑘 holds when
𝛼 ≤ 𝛼. By contradiction, if the conclusion is false, then the
algorithmwill run infinitely between S5.1 and S5.3, so we have
𝛼 → 0 and 𝑥𝑘+𝛼𝑑𝑘 not acceptable for the filter. We consider
it in the following two cases.

Case 1 (ℎ(𝑥𝑘) = 0). From Lemma 6, we have ∇𝑓(𝑥𝑘)
𝑇𝑑𝑘 < 0

and ∇𝑐𝑗(𝑥𝑘)
𝑇𝑑𝑘 < 0, 𝑗 ∈ 𝐽(𝑥𝑘). So when

𝛼 ≤ min
{
{
{

−∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘

(1/2)𝑀
𝑓
max

𝑑𝑘

2
, min
𝑗∈𝐽(𝑥𝑘)

{
{
{

−∇𝑐𝑗(𝑥𝑘)
𝑇
𝑑𝑘

(1/2)𝑀𝑐max
𝑑𝑘


2

}
}
}

}
}
}

,

(13)

it is easy to get that

𝑓 (𝑥𝑘 + 𝛼𝑑𝑘) ≤ 𝑓 (𝑥𝑘) + 𝛼∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘

+
1

2
𝛼2𝑀𝑓max

𝑑𝑘

2
≤ 𝑓 (𝑥𝑘)

= 𝑓 (𝑥𝑘) − 𝛾ℎ (𝑥𝑘) ,

ℎ (𝑥𝑘 + 𝛼𝑑𝑘) ≤ max {0, 𝑐𝑗 (𝑥𝑘) + 𝛼∇𝑐𝑗(𝑥𝑘)
𝑇
𝑑𝑘

+
1

2
𝛼2𝑀𝑐max

𝑑𝑘

2
}

≤ max {0, 𝑐𝑗 (𝑥𝑘)}

= (1 − 𝛼2𝜂)max {0, 𝑐𝑗 (𝑥𝑘)}

= (1 − 𝛼2𝜂) ℎ (𝑥𝑘) .

(14)

It proves that 𝑥𝑘 + 𝛼𝑑𝑘 is acceptable for the filter.

Case 2 (ℎ(𝑥𝑘) > 0). Similarly, when

𝛼 ≤ min
𝑗∈𝐽(𝑥𝑘)

{
{
{

−∇𝑐𝑗(𝑥𝑘)
𝑇
𝑑𝑘

(1/2)𝑀𝑐max
𝑑𝑘


2
+ 𝜂𝑐𝑗 (𝑥𝑘)

}
}
}

, (15)

it is easy to learn that

ℎ (𝑥𝑘 + 𝛼𝑑𝑘)

≤ max {0, 𝑐𝑗 (𝑥𝑘) + 𝛼∇𝑐𝑗(𝑥𝑘)
𝑇
𝑑𝑘 +

1

2
𝛼2𝑀𝑐max

𝑑𝑘

2
}

≤ (1 − 𝛼2𝜂) ℎ (𝑥𝑘) .

(16)

Since𝑥𝑘 is acceptable for the filter, so for all 𝑗 ∈ 𝐹(𝑘−1), ℎ(𝑥𝑘) ≤
ℎ(𝑥𝑗) or 𝑓(𝑥𝑘) ≤ 𝑓(𝑥𝑗) − 𝛾ℎ(𝑥𝑗) holds. From 𝑥𝑘 + 𝛼𝑑𝑘 that is
not acceptable for the filter, we have

ℎ (𝑥𝑘 + 𝛼𝑑𝑘) > (1 − 𝛼2𝜂) ℎ (𝑥𝑗) , (17)

𝑓 (𝑥𝑘 + 𝛼𝑑𝑘) > 𝑓 (𝑥𝑗) − 𝛾ℎ (𝑥𝑗) (18)

hold. If ℎ(𝑥𝑘) ≤ ℎ(𝑥𝑗), then

ℎ (𝑥𝑘 + 𝛼𝑑𝑘) ≤ (1 − 𝛼2𝜂) ℎ (𝑥𝑘) ≤ (1 − 𝛼2𝜂) ℎ (𝑥𝑗) , (19)

which contradicts (17). If 𝑓(𝑥𝑘) ≤ 𝑓(𝑥𝑗) − 𝛾ℎ(𝑥𝑗), then when
𝛼 ≤ −∇𝑓(𝑥𝑘)

𝑇𝑑𝑘/(1/2)𝑀
𝑓
max‖𝑑𝑘‖

2, it is easy to learn that

𝑓 (𝑥𝑘 + 𝛼𝑑𝑘) ≤ 𝑓 (𝑥𝑘) + 𝛼∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘

+
1

2
𝛼2𝑀𝑓max

𝑑𝑘

2
≤ 𝑓 (𝑥𝑘)

≤ 𝑓 (𝑥𝑗) − 𝛾ℎ (𝑥𝑗) ,

(20)

which contradicts (18).
Based on the above analysis, we can see that the claim

holds.
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By the above statement, we can see that the algorithm
is implementable. Now we turn on to prove the global
convergence of the algorithm.

Theorem 9. Let the assumptions hold and𝑀
𝑓

𝑚𝑖𝑛 > 0. Suppose
𝑥∞ be the cluster point of {𝑥𝑘} generated by algorithm. There
exist two possible cases. (i) The iteration terminates at a KKT
point. (ii) Any accumulation point of {𝑥𝑘} is a KKT point.

Proof. we only need to proof case (ii). Since 𝑥∞ is the cluster
point generated by algorithm, let {𝑥𝑘}𝑘∈𝐾 be any thinner
subsequences converging to 𝑥∞.

We will first show that 𝑥∞ is a feasible point. Assume that
ℎ(𝑥𝑘) → ℎ(𝑥∞) > 0 for 𝑘 ∈ 𝐾. Let 𝑖 and 𝑗 be any two adjacent
indices in 𝐾 where 𝑖 < 𝑗. If ℎ(𝑥∞) > 0, then there exists
𝑘 ∈ 𝐾 such that for all 𝑖 ≥ 𝑘 and because 𝑥𝑗 is acceptable to
the filter, we have

𝑓 (𝑥𝑗) ≤ 𝑓 (𝑥𝑖) − 𝛾ℎ (𝑥𝑖) . (21)

Since {𝑓(𝑥𝑘)}𝑘∈𝐾 is a monotonically decreasing subsequence
for 𝑘 ≥ 𝑘 and is bounded below, therefore for 𝑖, 𝑗 ∈ 𝐾, 𝑖, 𝑗 ≥
𝑘, and 𝑖 < 𝑗,

∑
𝑖,𝑗∈𝐾

Δ𝑓𝑖𝑗 = ∑
𝑖,𝑗∈𝐾

(𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗)) (22)

is bounded above. However, since 𝑓(𝑥𝑗) ≤ 𝑓(𝑥𝑖) − 𝛾ℎ(𝑥𝑖),
therefore by summing over all indices 𝑖, 𝑗 ∈ 𝐾, 𝑖, 𝑗 ≥ 𝑘, and
𝑖 < 𝑗,

∑
𝑖,𝑗∈𝐾

Δ𝑓𝑖𝑗 ≥ 𝛾∑
𝑖∈𝐾

ℎ (𝑥𝑖) → +∞, (23)

which contradicts the fact that ∑𝑖,𝑗∈𝐾 Δ𝑓𝑖𝑗 is bounded above.
Thus ℎ(𝑥∞) = 0, hence 𝑥∞ is feasible.

Next we need to show that 𝑥∞ is a KKT point. By the
construction of algorithm, there are two cases: one generates
the sequence {𝑥𝑘} from𝑥𝑘+1 = 𝑥𝑘+𝑑0𝑘, and the other generates
it from 𝑥𝑘+1 = 𝑥𝑘 +𝛼𝑑𝑘. We prove that claim according to the
two cases.

Case 1. Suppose that there are infinite points gotten by 𝑥𝑘+1 =

𝑥𝑘 + 𝑑0𝑘. Since Δ𝑓𝑘 ≥ 𝜎Δ𝑙𝑘, we have

𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝑑0𝑘) = −∇𝑓(𝑥𝑘)
𝑇
𝑑0𝑘

−
1

2
(𝑑0𝑘)
𝑇
∇2𝑓 (𝑦) 𝑑0𝑘

≥ −𝜎∇𝑓(𝑥𝑘)
𝑇
𝑑0𝑘.

(24)

Thus∇𝑓(𝑥𝑘)
𝑇𝑑0𝑘 ≤ −(1/2)(𝑑0𝑘)

𝑇∇2𝑓(𝑦)𝑑0𝑘/(1−𝜎) holds. Since
𝑓 is bounded below, then

+∞ >
∞

∑
𝑘=0

𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘+1) ≥ −
∞

∑
𝑘=0

∇𝑓(𝑥𝑘)
𝑇
𝑑0𝑘

≥
1

2

∞

∑
𝑘=0

(𝑑0𝑘)
𝑇
∇2𝑓 (𝑦) 𝑑0𝑘

1 − 𝜎
≥

𝑀
𝑓

min
2 (1 − 𝜎)

∞

∑
𝑘=0

𝑑
0
𝑘


2
.

(25)

Thus∑∞𝑘=0 ‖𝑑
0
𝑘‖
2
< +∞, which means ‖𝑑0𝑘‖ → 0. Since 𝑥∞ is

a feasible point, 𝑥∞ is a KKT point.

Case 2. Suppose that there are infinite points gotten by 𝑥𝑘+1 =
𝑥𝑘 + 𝛼𝑑𝑘. Since Δ𝑓𝑘 ≥ 𝜎Δ𝑙𝑘, we have

0 = lim
𝑘→∞

𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝛼𝑑𝑘)

≥ − lim
𝑘→∞

𝜎𝛼∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘 ≥ − lim

𝑘→∞
𝛼𝜎∇𝑓(𝑥𝑘)

𝑇
𝑑𝑘 ≥ 0,

(26)

which means that ∇𝑓(𝑥𝑘)
𝑇𝑑𝑘 → 0. Since

∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘 ≤ 𝜃∇𝑓(𝑥𝑘)

𝑇
𝑑1𝑘

≤ 𝜃[

[

−(𝑑0𝑘)
𝑇
𝐻−1𝑘 𝑑0𝑘 − ∑

𝜆1
𝑘𝑗
<0

(𝜆1𝑘𝑗)
2]

]

< 0
(27)

we have ‖𝑑0𝑘‖ → 0 and 𝜆𝑘𝑗 ≥ 0, and since 𝑥∞ is a feasible
point, 𝑥∞ is a KKT point.

Combined Case 1 and Case 2, we can see that the claim
holds.

4. The Rate of Convergence

In this section, we discuss the convergent rate of the algo-
rithm. We need the following strong assumptions.

(A5) The second-order sufficiently conditions hold, that
is, 𝑑𝑇∇2𝑥𝑥𝐿(𝑥

∞, 𝜆∞)𝑑, for all 𝑑 ∈ ker∇𝑐𝐽(𝑥∞) \

{0}, where 𝐿(𝑥, 𝜆) = 𝑓(𝑥) + 𝜆𝑇𝑐(𝑥), 𝑐(𝑥) =

(𝑐1(𝑥), . . . , 𝑐𝑚(𝑥))
𝑇, 𝐽(𝑥∞) = {𝑗 ∈ 𝐽(𝑥∞) : (𝜆∞)𝑗 > 0},

and (𝑥∞, 𝜆∞) is the KKT pair of problem (1).
(A6) Consider ‖(𝐻−1𝑘 − ∇2𝑥𝑥𝐿(𝑥

∞, 𝜆∞))𝑑0𝑘‖ = 𝑜(‖𝑑0𝑘‖).

Theorem 10. Suppose that assumptions (A1)–(A6) hold; then
𝑥𝑘+1 = 𝑥𝑘 + 𝑑0𝑘 for large enough 𝑘. Therefore the algorithm is
superlinearly convergent.

Proof. Suppose that𝑥𝑘 is acceptable for the filter; wewill show
that for large enough 𝑘, 𝑥𝑘+1 = 𝑥𝑘 + 𝑑0𝑘 is acceptable for the
filter and satisfies the sufficient reduction condition.

First we need to prove that 𝑥𝑘+1 = 𝑥𝑘 + 𝑑0𝑘 is acceptable
for the filter. If ℎ(𝑥𝑘 + 𝑑0𝑘) ≤ (1 − 𝜂)ℎ(𝑥𝑘), then 𝑥𝑘+1 = 𝑥𝑘 + 𝑑0𝑘
is already acceptable for the filter. Else we need to show that
𝑓(𝑥𝑘 + 𝑑0𝑘) ≤ 𝑓(𝑥𝑘) − 𝛾ℎ(𝑥𝑘). Let 𝑠𝑘 = 𝑓(𝑥𝑘 + 𝑑0𝑘) − 𝑓(𝑥𝑘) +
𝛾ℎ(𝑥𝑘); it holds that

𝑠𝑘 ≤ ∇𝑓(𝑥𝑘)
𝑇
𝑑0𝑘 +

1

2
(𝑑0𝑘)
𝑇
∇2𝑓 (𝑥𝑘) 𝑑

0
𝑘

+
𝛾ℎ (𝑥𝑘 + 𝑑0𝑘)

1 − 𝜂
+ 𝑜 (

𝑑
0
𝑘


2
) ≤ ∇𝑓(𝑥𝑘)

𝑇
𝑑0𝑘

+
1

2
(𝑑0𝑘)
𝑇
∇2𝑓 (𝑥𝑘) 𝑑

0
𝑘

+
𝛾

2 (1 − 𝜂)

𝑚

∑
𝑗=1

(𝑑0𝑘)
𝑇
∇2𝑐𝑗 (𝑥𝑘) 𝑑

0
𝑘 + 𝑜 (

𝑑
0
𝑘


2
) .

(28)
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From ∇𝑓(𝑥𝑘)
𝑇𝑑0𝑘 = 𝜆𝑇𝑘𝑐𝐽𝑘 − (𝑑0𝑘)

𝑇𝐻−1𝑘 𝑑0𝑘, we have

𝑠𝑘 ≤ 𝜆𝑇𝑘𝑐𝐽𝑘 − (𝑑0𝑘)
𝑇
𝐻−1𝑘 𝑑0𝑘 +

1

2
(𝑑0𝑘)
𝑇
∇2𝑓 (𝑥𝑘) 𝑑

0
𝑘

+
𝛾

2 (1 − 𝜂)

𝑚

∑
𝑗=1

(𝑑0𝑘)
𝑇
∇2𝑐𝑗 (𝑥𝑘) 𝑑

0
𝑘 + 𝑜 (

𝑑
0
𝑘


2
) .

(29)

Since 𝜆𝑘𝑗 ≥ 𝜖1, set 𝜖1 = 𝛾/(1 − 𝜂), and then

𝑠𝑘 ≤ 𝜆𝑇𝑘𝑐𝐽𝑘 − (𝑑0𝑘)
𝑇
𝐻−1𝑘 𝑑0𝑘 +

1

2
(𝑑0𝑘)
𝑇
∇2𝑓 (𝑥𝑘) 𝑑

0
𝑘

+
1

2

𝑚

∑
𝑗=1

𝜆𝑘𝑗(𝑑
0
𝑘)
𝑇
∇2𝑐𝑗 (𝑥𝑘) 𝑑

0
𝑘 + 𝑜 (

𝑑
0
𝑘


2
)

= −(𝑑0𝑘)
𝑇
𝐻−1𝑘 𝑑0𝑘 + 𝜆𝑇𝑘𝑐𝐽𝑘

+
1

2
(𝑑0𝑘)
𝑇
∇2𝑥𝑥𝐿 (𝑥𝑘, 𝜆𝑘) 𝑑

0
𝑘 + 𝑜 (

𝑑
0
𝑘


2
) .

(30)

According to 𝑥𝑘 → 𝑥∞, 𝜆𝑘 → 𝜆∞ ≥ 0, and 𝑐𝑗(𝑥𝑘) →

𝑐𝑗(𝑥
∞) ≤ 0 and assumptions (A2), (A3), and (A5), then

𝑠𝑘 ≤ −
𝑎

2

𝑑
0
𝑘


2

+
1

2
(𝑑0𝑘)
𝑇
(∇2𝑥𝑥𝐿 (𝑥𝑘, 𝜆𝑘) − ∇2𝑥𝑥𝐿 (𝑥∞, 𝜆∞)) 𝑑0𝑘

+ 𝑜 (
𝑑
0
𝑘


2
) +

1

2
(𝑑0𝑘)
𝑇
(∇2𝑥𝑥𝐿 (𝑥∞, 𝜆∞) − 𝐻−1𝑘 ) 𝑑0𝑘

≤ −
𝑎

2

𝑑
0
𝑘


2
+ 𝑜 (

𝑑
0
𝑘


2
) ≤ 0.

(31)

Hence, for large enough 𝑘, 𝑥𝑘+1 = 𝑥𝑘+𝑑0𝑘 is acceptable for the
filter.

Now we are going to show that when 𝑘 is large enough,
𝑥𝑘+1 = 𝑥𝑘 + 𝑑0𝑘 satisfies the sufficient reduction condition
Δ𝑓𝑘 ≥ 𝜎Δ𝑙𝑘. Let 𝑡𝑘 = 𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 + 𝑑0𝑘) − 𝜎Δ𝑙𝑘; then we
have

𝑡𝑘 = (𝜎 − 1) (𝜆
𝑇
𝑘𝑐𝐽𝑘 − (𝑑0𝑘)

𝑇
𝐻−1𝑘 𝑑0𝑘)

−
1

2
(𝑑0𝑘)
𝑇
∇2𝑓 (𝑥𝑘) 𝑑

0
𝑘 − 𝑜 (

𝑑
0
𝑘


2
)

≥ (𝜎 − 1) (𝜆
𝑇
𝑘𝑐𝐽𝑘 − (𝑑0𝑘)

𝑇
𝐻−1𝑘 𝑑0𝑘)

−
1

2
(𝑑0𝑘)
𝑇
∇2𝑥𝑥𝐿 (𝑥𝑘, 𝜆𝑘) 𝑑

0
𝑘 − 𝑜 (

𝑑
0
𝑘


2
) .

(32)

Since 𝑐𝑗(𝑥𝑘) → 𝑐𝑗(𝑥
∞) ≤ 0 and assumptions (A3), and (A5),

then

𝑡𝑘 ≥ (𝜎 − 1) 𝜆
𝑇
𝑘𝑐𝐽𝑘 − (𝜎 −

1

2
) (𝑑0𝑘)

𝑇
𝐻−1𝑘 𝑑0𝑘

−
1

2
(𝑑0𝑘)
𝑇
(∇2𝑥𝑥𝐿 (𝑥𝑘, 𝜆𝑘) − ∇2𝑥𝑥𝐿 (𝑥∞, 𝜆∞)) 𝑑0𝑘

−
1

2
(𝑑0𝑘)
𝑇
(∇2𝑥𝑥𝐿 (𝑥∞, 𝜆∞) − 𝐻−1𝑘 ) 𝑑0𝑘 − 𝑜 (

𝑑
0
𝑘


2
)

≥
𝑎

2
(
1

2
− 𝜎)

𝑑
0
𝑘


2
− 𝑜 (

𝑑
0
𝑘


2
) ≥ 0.

(33)

Hence, for large enough 𝑘, 𝑥𝑘+1 = 𝑥𝑘 + 𝑑0𝑘 satisfies the
sufficient reduction condition.

Based onTheorem 10, we can see, when 𝑘 is large enough
that the algorithm will implement the Newton steps and will
not change; thus the algorithm is superlinearly convergent.

5. Numerical Test

In this section, we give some numerical results according to
our algorithm. We update the matrix 𝐻𝑘 by BFGS formu-
lation and the algorithm parameters are set as 𝐻0 = 𝐼 ∈
𝑅𝑛×𝑛, 𝛾 = 0.1, 𝜂 = 0.1, and 𝜎 = 0.01.

Example 11. One has

min 𝑓 (𝑥) = 0.1 {0.44
𝑥31
𝑥22

+
10

𝑥1
+ 0.592

𝑥1
𝑥32

}

s.t. −1 + 8.62
𝑥32
𝑥1

≤ 0,

(34)

where 𝑥0 = (2.5, 2.5), 𝑥∞ = (1.2867, 0.5305), and iterate =
16.

Example 12 (see [8]). Consider

min 𝑓 (𝑥) = 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24

s.t. 6 − 𝑥21 − 𝑥22 − 𝑥23 − 𝑥24 ≤ 0,
(35)

where 𝑥0 = (2, 2, 2, 2), 𝑥∞ =
(1.2247, 1.2247, 1.2247, 1.2247), and iterate = 14.

Example 13 (see [10]). One has

min 𝑓 (𝑥) = −50 (𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25)

−10.5𝑥1 − 7.5𝑥2 − 3.5𝑥3 − 2.5𝑥4
−1.5𝑥5 − 10𝑥6

s.t. 6𝑥1 + 3𝑥2 + 3𝑥3 + 2𝑥4 + 𝑥5 ≤ 6.5

10𝑥1 + 10𝑥3 + 𝑥6 ≤ 20

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2, 3, 4, 5; 𝑥6 ≥ 0.

(36)

𝑥∞ = (0, 1, 0, 1, 1, 20) is a minimizer with an objective
value 𝑓∗ = −361.5. We choose the initial point 𝑥0 =
(1, 1, 1, 1, 1, 10), iterate = 6.
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Example 14 (see [11]). Consider

min 𝑓 (𝑥) = 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 − 5𝑥1 − 5𝑥2 − 21𝑥3 − 7𝑥4
s.t. 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥1 − 𝑥2 + 𝑥3 − 𝑥4 − 8 ≤ 0

𝑥21 + 2𝑥22 + 𝑥23 + 2𝑥24 + 𝑥1 − 𝑥4 − 9 ≤ 0

2𝑥21 + 𝑥22 + 𝑥23 + 2𝑥24 − 𝑥2 − 𝑥4 − 5 ≤ 0.

(37)

We choose the initial point 𝑥0 = (1, 1, 1, 1). 𝑥∞ =
(0.2896, 0.9150, 2.1798, 0.6265) is a minimizer with an objec-
tive value 𝑓∗ = −50.1192, iterate = 40.
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