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We aim to define a new class of close-to-convex functions which is related to conic domains. Many interesting properties such as
sufficiency criteria, inclusion results, and integral preserving properties are investigated here. Some interesting consequences of our

results are also observed.

1. Introduction

Let o/ be the class of functions f

f@)=z+ OZO:anz", ¢))
n=2

which are analytic in the open unitdisc E = {z € C : |z] <
1}. Let f and g be analytic in E, and we say that f is sub-
ordinate to g, written as f(z) < g(z) if there exists a Schwarz
function w, which is analytic in E with w(0) = 0 and |w(z)| <
1 (z € E), such that f(z) = g(w(z)). In particular, when
g is univalent, then the above subordination is equivalent to
f(0) = g(0) and f(E) € g(E); see [1].

Kanas and Wisniowska [2, 3] introduced and studied the
classes of k-uniformly convex functions denoted by k-%Z €7
and the corresponding class k-8'J related by the Alexander-
type relation. Later, the class k-uniformly close-to-convex
functions denoted by k-% % defined as

k—%%z{f&&i:

Re(zf’ (Z)) >k
g(2)

g(z) € k-8T, zeE}

zf'(2)
g(2)

ll, 2)

was considered by Acu [4]; for study details on these classes,
we refer to [5-7]. All these above mentioned classes were gen-
eralized to the classes SD(k, §), €2 (k, 5), and KD (k, f3,5)
by Shams et al. [8] and Srivastava et al. [9], respectively. The
classes S (k, ) and €D (k, §) are defined as

&9(k,6)={fesz¢:

zf' (2)
Re( 115 ) >k

+6, z€ E},

zf' (2) 1‘
f @)

3)
€D (k,0) = {feszi:

zf”(z)
Re<1+ 15 >>k

+8,zeE},

zf" (2)
f' (@)

where k > 0,0 < 3,8 < 1. The class ZD(k, 3,6) known
as k-uniformly close-to-convex functions of order f3 type &



is the class of all those functions f € & which satisfies the
following condition:

f ()
Re(g’(z)) >k

(k=0,0<pB,6<1; z€E),

@
g (2)

1’ + B,
(4)

for some g € €9(k, 6).
Motivated by the work of Noor et al. [10-13], we define
the following.

Definition 1. Let f € /. Then, f is in the class 7D (k, «, S,
y,0) if and only if, fora > 0,0 < B,9,8 < 1,

Re(H (o, By; f,9)) 2 k[H (. Bys f.9) = 1],
(k>0; z€E),

©)

for some g € €2(k, §), where

i fo) = 1| 52 - ]

o [(Zf' (2))

+_ —_—
l-y| 4 (2)

(6)
_y].

Special Cases

(i) (k,0,8,9,0) = XD(k, B, 6); see [9].

(i) 792(1,0,5,y,0) = 4F(B) and T2(1,1,5,9,0) =
% @Q(y), the classes of uniformly close-to-convex and
quasiconvex functions introduced and investigated in
[14].

(iii) 79(0,4,0,0,0) = @,, the class of alpha quasiconvex
functions, introduced and studied in [11].

(iv) 72(0,03,9,0) = F(B,9), the class of close-to-
convex functions of order f3 type 6, [15].

(v) 792(0, 1, B,y,8) = C*(y,9), the class of quasiconvex
functions of order y type J, [16].

The conditions k > 0, « > 0,0 < 3, 9,8 < 1 on the para-
meters are assumed throughout the entire paper unless other-
wise mentioned.

Geometric Interpretation. A function f € & is in the class
T D(k,a, B,,90) if and only if the functional H(«, 3,7y, 5 f,
g) takes all the values in the conic domain Q) defined as
follows:

Q = {u+w;u>k\/(u—l)2+v2}. (7)
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Extremal functions for these conic regions are denoted by
Pi(2), which are analytic in E and map E onto ) such that
Pi(0) =1 and p,'((O) > 1. These functions are given as:

i+z’ k=0,
-z
2
1+£<logﬂ) , k=1,
m? 1-+z
1+ - sinh? [(Earccos k) arctan h\/Z] ,
- U
P (2) = 1 0<k<1,
u(z)/VE
bl [,
- O 51—t
+ﬁ, k> 1,

(8)

where u(z) = (z - Vt)/(1 - Vtz), t € (0,1), z € E, and
z is chosen such that k = cosh(R'(t)/4R(t)), where R(t) is
Legendre’s complete elliptic integral of the first kind and R’ (t)
is complementary integral of R(t); see [2, 3].

2. Preliminaries Result

We require the following results which are essential in our
investigations.

Lemma 2 (see [17, page 70]). Let h be convex function in E

and q : E — C with Req(z) > 0, z € E. If p is analytic in E

with p(0) = h(0), then
p(2)+q(z)zp' (2) < h(z) implies p(z) <h(z). (9)

Lemma 3 (see [17, page 195]). Let h be convex function in E
with h(0) = 0 and A > 0. Suppose that j > 4/h'(0) and that
B(z), C(z), and D(z) are analytic in E and satisfy

ReB(z) 2 A+|C(z) - 1| -Re(C(2) - 1) + jD(2), (10)

forz € E. If p is analytic in E with p(z) = a,z+a,2" +a,2" +---
and the following subordination relation holds:

AZ’p" (2) + B(2) 2p' (2) +C(2) p(2) + D (2) < h(2),
(11

then
p(2) <h(z). (12)

Lemma 4 (see [12]). If f(z) < h(z) and g(z) < h(z), then for
« € [0,1],

(I-a)f(z)+ag(z) <h(z). (13)

3. Main Results

First, we prove the following sufficiency criteria for the func-
tions in the class 72 (k, «, 3, 7, 9).
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Theorem 5. A function f € o is said to be in the class T D (k, ~ Using (1) and the series g(z) = z + Y., b,2" in (17), we have

o, 3,y,0), i
Pyt B (o 8.7, £,9) ~ 1|
oo (1—a)(1—y)(1+2222nanz”’1)
n;q’n (ks B,y,0) < (1= B)(1-7), (14) A= B) A=) (1+ 32, nbz" 1)

N a(1-p) (1 +3Y0, nzanz"_l)
where (1-pB)(1-y) (1 + X2, nbz"")
[0-D) el P S )
(1-B)(1-y)(1+ X2, nbz"")

| a0y (SR, nae)
(1-B) (1-y) (1+ X2, nb,z"Y)

(1) a(1-p) (T2, ra,"")

TR ) (S, b

®, (k. f,7.9)

=k+D)[1-a)(1-y)n +oc(1—ﬁ)n2]|an|

+[{(k+2-B)(1-y) +a(k+1)(y-P)nb,].

Proof. Let us assume that relation (6) holds. Now, it is suffi-

cient to show that B [(1-p)+a(y-p)] (2222 ”bnzn_l)
(1-B) (1 -y)(1+ 3.2, nb2"") (18)
k|H (@ B.y,8 f.9)~ 1|~ Re[H (&, B, 1,85 f.9)~ 1] < (11.6) (1 o) (1- y)( Yoo, nla,|lzl" )
1-B) (1-7) (1= T2l l="")
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T ﬁxlyx Tanlb|l2")
1 (e fy. 055 9) =1 -9 el =PI (B2l )
l—a[f'(z) ﬂ] (l_ﬁ)(l_)’)(l_z;ﬁznlb||Z|n71)
1-pld'@ (1-) (1-y) (52, n]a,)
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a zf' (z
oy ! 7 —Y] -1 ,_o-p (X2 |anl)
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1— ﬁg (Z) 1— y gl (Z) (l_ﬂ)(l_Y)(l_Zn:Z’”bnl)
(17) Now,
(1-0p  ay 1‘ k|H (o B,y 8 f,9) = 1] = Re [H (@ B8 £, 9) ~ 1]
1-g  1-y
< (k+ D |H (o poy: 8 f.9) - 1
_|@-2-p @ ey 0N (5 nla)
(1-B)(1-y)g ) B (1-B)(1-y)(1-32,nb|)
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The last inequality is bounded above by 1, if

(k+1) [(1 —a)(1-y) (znlanl) +a(l-p) (in Ian|>
rl0-n) +atr-p1 bl
<-p-n)(1- Snlu)
(20)

Hence,

icbn(k;a,ﬁ,y,a)s(l—/s)(l—w, e

where @, (k; «, 3,7,6) is given by (15). This completes the
proof. O

When we take a = 0, k = 1, and g(z) = z in the above
theorem, we obtain the following sufficient condition for the
functions to be in the class % (f3) which is proved in [14].

Corollary 6 (see [14]). A function f € A is said to be in the
class UK () if

2n|an| < (1;/3) (22)

Corollary 7 (see [14]). A function f € A is said to be in the
class % Q(y) if

020:112 |an| < (I;Y). (23)

n=2

The above corollary is obtained when we take ¢ = 1, k =
1, and g(z) = z in Theorem 5.

Theorem 8. Let f € TD(k,w, 3,7,0) and o = 4(B/(1+3[3)).
Then, f € XD(k,0,6).

Proof. Let

(2

= , 24
7@ p2) (24)

where p(z) is analytic and p(0) = 1. Now differentiating (24),
we have

(' @)

W =zp' (2)+p @)y (2), (25)
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where y(z) = (zg'(z))’/g'(z). Using (24) and (25) in relation
(6), we obtain

H (e, 8,76 f (2)

1:;[p<z>—/s]+

: [20' (2) + p (D) ¥ (2) - ]

licy
(1-a) (1-y)+a(1-B) ¥ (2)
(1-B)(1-y)

_BU-a)(1-y)+ay(1-p)
(1-B)(-y)

=B(z)zp' (2) +C(2) p(z) + D (2),

(29 i
= mzp (2)+ p(2)

(26)
where

_ (-0 (1-p)+a(1-p)v ()
(1-8) (1-y)

B —a)(1-y)+ay(1-p)

(1-B)(1-v) '

C(z)

o
B(Z)—E,

D(z)=-
(27)

Now, since f € T D(k, «, 3,7, 5), we have
B(2)zp' (2) +C(2) p(2) +D(2) < p (2).  (28)

Replacing p(z) by p,(z) = p(z) — 1 and p,(z) by p; () =
Pr(2z) — 1, the above subordination is equivalent to

B(z)zp. (2) + C(2) p, (2) + D, (2) < p; (2), (29)

where D, (z) = C(z) + D(z) — 1. Using Lemma 3 with A = 0,
we obtain

p. (2) < pi (2). (30)
This implies that
f'(@
=p(2) < p(2). (31
7@ p(2) < p(2)
Hence, f € ZD(k,0,8). This completes the proof. O

Corollary 9. Let f € TD(k,«,0,0,0) = @Q,. Then, f €
FK2(0,0,0) = F. That is, Q, ¢ K, « > 0.

The above result is well-known inclusion proved in [11].
For f € A, consider the following integral operator de-
fined by

m+1

= zm

F(z)=1,|f]

z
J " f () dt, m=1,2,3....
0
(32)
This operator was given by Bernardi [18] in 1969. In particular,

the operator I; was considered by Libera [19]. Now let us
prove the following.
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Theorem 10. Let f € Tk, f3,9,6). Then, I,[f] €
KD (k,0,0).

Proof. Let the function g be such that (6) is satisfied. It can
easily be seen that according to [4], the functionG = I,,[ f] €
€D(k, ), and from (32), we deduce

(1+m) f (z) = (1 +m)F (2) + zF" (2), (33)
1+m)g (2)=(1+m)G (2)+2G" (z).  (34)

If we let p(z) = F'(2)/G'(z) and qz) = 1/m + 1 +
(zG"(2)/G")), then simple computations yield us

'@  (1+m)F (2)+zF" (2)
g (z) T (1+m)G (2) +2G" (2)

_2p (@) g @+2p(2)g" (&) +2g' (&) p' (2) (35)
(1+m)G' (2) +zG" (2)

=p(2)+q(2)zp' (2).
Let
J; : 8 @+ @Dq@=hz).  (6)

where h(z) is analytic and p(0) = 1. From (36), we have

(z;%))) =y (@) h() +2H (2), 37)

where y(z) = (zg'(z))l/g'(z). Using (36) and (37) in (6), we
have

H(a, ,7,6; f (2))

e LGN CACRUICITOR
zli‘yzh’(z)
(1-a)(1-y)+a(l-P)y(2)
h
(eI @
CBU-a)(1-y)+ay(1-p)
(1-B)(1-y)
=B(2)zh (z) +C(2) h(z) + D(2),
(38)
where
B(z) = %, c :(1—06)(1—Y)+0‘(1—/3)1//(Z)’
@=1p ¥ -pH -
B-a)(1-y)+ay(1-p)
D =— .
® -B ()

(39)

Now proceeding in the similar manner as in the proof of
Theorem 5 and using Lemma 3 with A = 0, we obtain

(@
7@ =h(z) < p(2). (40)
From (36), it implies that
P@) +2p' (2)q(2) < pi (). (41)

By employing Lemma 2, we immediately obtain the desired
result. u

Theorem 11. Fora > a; > 0,
TP (k,a, $,7,0) € TD (k, a1, 5,7, 9). (42)
Proof. Let f € TD(k,a, 3,9,0). Then, consider

H (00, 7,8 f,g) =~ [f (=) —ﬁ]

1-B 14 ()
/ (43)
-yl @ |

After some simple computations, we have

H (o, 8,985 f,9)
1 a\[ f'(2)
-m@ﬁ)[wzrﬁ]
o [1-a(f @ o« (' @)
wlis(re e (Gl
=(1_

Now, since f € T D(k, &, B,y,0), wehave H(a, 3,7, 6; f, g) <
Pi(2). Also, Theorem 8 gives us that H(0,5,y,6; f,g) <
Pr(2). The use of Lemma 4 leads us to the required relation;
that is, H(x;,3,y,6; f,9) < px(2). This completes the
proof. O

R

) H (0,76 £.9)+ SLH (s £19)

8|

(44)
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