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A nonlinear model predictive control (MPC) is proposed for underactuated surface vessel (USV) with constrained invariant
manifolds. Aimed at the special structure of USV, the invariant manifold under the given controller is constructed in terms of
diffeomorphism and Lyapunov stability theory. Based on MPC, the states of the USV are steered into the constrained terminal
invariant manifolds. After the terminal manifolds set is reached, a linear feedback control is used to stabilize the system. The
simulation results verified the effectiveness of the proposed method. It is shown that, based on invariant manifolds constraints,
it is easy to get the MPC for the USV and it is suitable for practical application.

1. Introduction

The waterjet propulsor is widely used to thrust existing
planning surface vessels.The conventional method to control
planning surface vessels is indirectly achieved through the
course control which is actuated by a steerable nozzle. If the
planar position and course are controlled directly, we need to
regulate the angle and the thrust force of the steering nozzle
to control the movements in three degrees of freedom syn-
chronously. Obviously, the control system of planning surface
vessels is typical underactuated system. In order to ensure
the safety of the planning surface vessel, many constraints
such as the angle of the steering nozzle and radius of gyration
must be in consideration in the design process of shipmotion
controller; otherwise it will undermine the performance of
the planning surface vessels and even lead to collapse of
the hull and other serious consequences. The underactuated
system with constraints is essentially nonlinear system and
cannot be stabilized by any smooth time-invariant control
laws. Predictive control is an effective optimization control
method to deal with constrains [1–6].

In general, the use of MPC in an underactuated structure
system necessitates a means of switching among the available

models to the one that best describes the current operating
condition. A closely related work is the stability analysis of
switched stochastic systems by [7] in which dissipativity-
based sliding mode control was constructed. Since designing
MPC controllers that stabilize underactuated system may
not result in a stable global closed-loop system, closed-loop
stability in switch model/control approaches has also been
studied [8]. The study in the paper is aimed to analyse the
underactuated characteristics of planning surface vessels and
guarantee safe movements of the vessels. Furthermore, based
on predictive control approach, the problem of the stabiliza-
tion and tracking control is solved under the condition of
reserved safety constraints.

Control of underactuated systems has been one of the
active research topics due to its intrinsic nonlinear nature
and practical applications. As a typical example of underac-
tuated systems, control of an underactuated ship has been
focused on recently. The main difficulty in the control of
underactuated ships is that they are not actuated in the
sway axis. This configuration is the most common among
the surface ships [9]. Furthermore, unlike underactuated
systems with nonintegrable constraints, the surface vessels
under the consideration are a class of underactuated systems
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with nonintegrable dynamics and are not transformed into a
driftless system [10]. Nevertheless, several authors have stud-
ied the trajectory tracking control problem. A discontinuous
control approach with two stage control laws switched on
at given time is proposed based on the stability analysis of
the global transformed system in [11]. In [12], the authors
proposed a kinematic tracking controller that achieved global
exponential practical stability of an underactuated surface
vessel. In [13], a continuous time-invariant control law was
proposed to obtain semiglobal exponential position and
orientation tracking, provided the desired angular trajectory
remains positive. Based on the cascaded approach, a global
tracking result was obtained in [14, 15]. The stability analysis
relied on the stability theory of linear time-varying systems.
An application of the recursive technique proposed in [16]
for the standard chain form systems was used in [17] to
provide exponential stability of the reference trajectory.
Based on Lyapunov’s direct method and passivity approach,
two constructive tracking solutions were proposed in [18]
for an underactuated ship. The constructive control design
procedure exploited the inherent cascade-interconnected
structure of the ship dynamics and actually generated an
explicit Lyapunov function whose availability might suit
the requirements of robust and adaptive control design.
With the help of the backstepping design methodology, a
nonlinear time-invariant control law was proposed in [19]
for an underactuated surface vessel. But the control design
in [19] was not complete and lacked a further step in the
backstepping procedure. In the comment letter [20], the
control laws in [19] were revised and the states decayed
asymptotically to zero.

Model predictive control (MPC) is a popular technique
for the control of slow dynamical system subject to input
and state constraints. At any time instant, MPC requires
the online solution of an optimization problem to com-
pute optimal control inputs over a fixed number of future
time instants, known as the finite horizon or quasi-infinite
horizon. Using MPC, it is possible to handle inequality
constraints on the manipulated and controlled variables in
a systematic manner during the design and implementation
of the controller. Perhaps the principal shortcoming of
existing MPC-base control techniques is their inability to
explicitly incorporate plant model uncertainty. The fact that
the rudder actuation is limited in amplitude and rate makes
MPC approach a natural choice for the design of the path
following controller. In [21], a standard model predictive
control approach for path following with roll constraints
of marine surface vessels in calm water using the rudder
as the control input has been proposed. The focus is on
satisfying all the input (rudder) and state (roll) constraints
while achieving satisfactory path following performance. For
notational convenience the ship dynamics in [21] are written
into linearized matrix form based on the assumption that
surge velocity is constant and the yawmoment is proportional
to the rudder angle. However, the former assumption is
hardly admissible in engineering. In [22], an analytic model
predictive controller is presented for path following of an
underactuated ship maneuvering along a predefined path.
Themathematical model of shipmotion is described by using
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Figure 1: Underactuated surface vessel.

Serret-Frenet frame, and a systematic method is provided to
guarantee the stability of the closed-loop system in terms
of transforming the original single-input multiple-output
(SIMO) into an equivalent single-input single-output (SISO)
system. However, the MPC algorithm proposed in [22] is
designed as an analytic model predictive controller which is
affected by the accuracy of the parameters.

This paper illuminates the stabilization approach for
underactuated surface vessels with only a surge force and
a yaw moment. A nonlinear model predictive controller is
presented for steering the states of underactuated ship into
a desired terminal invariant manifolds. After the terminal
manifolds set is reached, a linear feedback control is used to
stabilize the system. However, in the techniques mentioned
above, plant modeling is the critical step to obtain feedback
controller and the control result is strongly influenced by
the model; the problems inherent to plant modeling are
inevitable. Moreover, even complex models cannot cover
all the system dynamics [23–26]. In the future work, we
will make efforts to design data-driven MPC controllers to
overcome these problems.

2. Problem Formulation

In this paper, we consider the trajectory tracking control
problem of a surface vessel shown in Figure 1.There is no side
thruster, but two independent main thrusters are located at a
distance from the center line in order to provide both surge
force and yaw moment.

The dynamics and kinematics of an underactuated sur-
face vessel are described as follows [27]:

𝑀]̇ + 𝐶 (]) ] + 𝐷] = 𝜏, (1)

̇𝜂 = 𝐽 (𝜂) ]. (2)

The inertiamatrix𝑀 = diag {𝑚
11
, 𝑚
22
, 𝑚
33
} and the damping

matrix 𝐷 = diag {𝑑
11
, 𝑑
22
, 𝑑
33
} are constant and positive

definite. The vector 𝜏 = [𝜏
1
, 𝜏
2
, 𝜏
3
] denotes the control

forces in surge and sway and control torque in yaw. In this
paper, the surface vessel is assumed as the common thruster
configuration that has no side thruster, such as 𝜏

2
= 0. So
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the second component of (1) behaves as a nonholonomic
constraint, which is a nonintegrable relation involving not
only the generalized coordinates and velocities but also the
generalized accelerations [28]. 𝐶(]) is the matrix of Coriolis
and centripetal terms also including added mass. 𝐽(𝜂) is the
rotation matrix for the transformation between body-fixed
and earth-fixed coordinates:

𝐶 (]) = [

[

0 0 −𝑚
22
V

0 0 𝑚
11
𝑢

𝑚
22
V −𝑚

11
𝑢 0

]

]

,

𝐽 (𝜂) = [

[

cos (𝜓) − sin (𝜓) 0

sin (𝜓) cos (𝜓) 0

0 0 1

]

]

.

(3)

The vector 𝜂 = [𝑥, 𝑦, 𝜓]
𝑇 denotes the North and East

positions and orientation of the underactuated surface vessel
in the earth-fixed coordinate system.The vector ] = [𝑢, V, 𝑟]𝑇
denotes the linear velocities in surge and sway and the angular
velocity in yaw.

As a general accepted conclusion [29, 30], there is no
continuous time-invariant feedback control law that makes
the zero origin an asymptotically stable equilibrium of the
system (1) and (2), for the system does not satisfy Brocketts
condition [31]. Then time-varying and discontinuous control
approaches are only taken into account in this paper.

Neglecting the motions in heave, roll, and pitch, the
simplified kinematic model which describes the geometrical
relationship between the earth-fixed (E-frame) and the body-
fixed (B-frame) motion is given as

𝑚
11
�̇� − 𝑚

22
V𝑟 + 𝑑

11
𝑢 = 𝜏
1
,

𝑚
22
V̇ + 𝑚

11
𝑢𝑟 + 𝑑

22
V = 0,

𝑚
33
̇𝑟 + (𝑚
22
− 𝑚
11
) 𝑢V + 𝑑

33
𝑟 = 𝜏
3
,

�̇� = 𝑢 cos𝜓 − V sin𝜓,
̇𝑦 = 𝑢 sin𝜓 + V cos𝜓,

�̇� = 𝑟.

(4)

The following global coordinate transformation and feedback
transformation are adopted before control design. Define

𝑧
1
= 𝑥 cos (𝜓) + 𝑦 sin (𝜓) ,

𝑧
2
= V,

𝑧
3
= −𝑥 sin (𝜓) + 𝑦 cos (𝜓) + 𝑚

22

𝑑
22
]
,

𝑧
4
= 𝜓,

𝑧
5
= −

𝑚
11

𝑑
22
𝑢
− 𝑧
1
,

𝑧
6
= 𝑟.

(5)

It is proved that the state transformation (5) is a global
diffeomorphism [32]. The feedback transformation is

𝑤
1
= (

𝑑
11

𝑑
22

− 1)𝑢 − 𝑧
3
𝑧
6
−
𝜏
1

𝑑
22

,

𝑤
2
=
(𝑚
11
− 𝑚
22
) 𝑢V

𝑚
33

−
𝑑
33
𝑟

𝑚
33

+
𝜏
3

𝑚
33

.

(6)

With the state and feedback transformation (5)-(6), the
system (1)-(2) is eventually transformed to

�̇�
1
= −

𝑑
22

𝑚
11

𝑧
1
−
𝑑
22

𝑚
11

𝑧
5
+ 𝑧
3
𝑧
6
−
𝑚
22

𝑑
22

𝑧
2
𝑧
6
,

�̇�
2
= −

𝑑
22

𝑚
22

𝑧
2
+
𝑑
22

𝑚
22

𝑧
6
(𝑧
1
+ 𝑧
5
) ,

�̇�
3
= 𝑧
5
𝑧
6
, �̇�

4
= 𝑧
6
,

�̇�
5
= 𝑤
1
, �̇�

6
= 𝑤
2
.

(7)

The system (7) has the same diffeomorphismproperties as the
system (1) and (2) [32]; that is, if lim

𝑡→∞
𝑧
𝑖
= 0 (1 ≤ 𝑖 ≤ 6)

then (𝑥, 𝑦, 𝜓, 𝑢, V, 𝑟) converges to zero as 𝑡 → ∞.

Lemma 1. If there exists a control lawwhich globally uniformly
asymptotically stabilizes the system

�̇�
3
= 𝑧
5
𝑧
6
, �̇�

4
= 𝑧
6
,

�̇�
5
= 𝑤
1
, �̇�

6
= 𝑤
2
,

(8)

then the system (7) under the control law is also globally
uniformly asymptotically stabilized.

Proof. An approach to prove Lemma 1 based on Lyapunov
stability theoremhas been given in [28].Therefore, to stabilize
the system (1) and (2), it is only needed to design a stabilizing
control law for the system (8). In the following section, a
discontinuous and time-varying control approach with MPC
control method is proposed for the stabilization of the system
(8).

3. Control Design

Let us recall the following definitions firstly.

Definition 2. LetΦ : 𝑅
𝑛
→ 𝑅
𝑝 be a smoothmap. Amanifold

𝑀 = {𝑥 ∈ 𝑅
𝑛
: Φ(𝑥) = 0} is said to be invariant for the

control system �̇� = 𝑓(𝑥, 𝑢) if all system trajectories starting
in𝑀 at 𝑡 = 𝑡

0
remain in this manifold for all 𝑡 ≥ 𝑡

0
. In other

words, the Lie derivative of Φ along the vector field 𝑓 is zero
(𝐿
𝑓
Φ(𝑥) = 0) for all 𝑥 ∈ 𝑀.

Definition 3. A manifold𝑀 = {𝑥 ∈ 𝑅
𝑛
: Φ(𝑥) = 0} is said to

be asymptotically attractive in an open domainΩ of 𝑅𝑛 if, for
all 𝑡 ∈ 𝑅

+
such that 𝑥(𝑡

0
) ∈ Ω, lim

𝑥→∞
𝑥(𝑡) ∈ 𝑀.

3.1. Construction of the Invariant Manifold. First, in order to
construct the invariant manifold of the system (8), assume
that [𝑤1 𝑤

2]
𝑇 is a linear state feedback such that

𝑤
1
= −𝑘
1
𝑧
5

(𝑘
1
> 0) ,

𝑤
2
= −𝑘
2
𝑧
6
− 𝑘
3
𝑧
5

(𝑘
2
> 0, 𝑘

3
> 0, 𝑘

1
̸= 𝑘
2
) .

(9)

Substitute (9) into (8); we obtain

�̇�
3
= 𝑧
5
𝑧
6
, �̇�

4
= 𝑧
6
,

�̇�
5
= −𝑘
1
𝑧
5
, �̇�

6
= −𝑘
2
𝑧
6
− 𝑘
3
𝑧
5
.

(10)
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The resulting closed-loop system (10) can be successively
integrated to obtain

𝑧
5
(𝑡) = 𝑧

50
𝑒
−𝑘
1
𝑡
,

𝑧
6
(𝑡) = 𝑧

60
𝑒
−𝑘
2
𝑡
+

𝑘
3
𝑧
50

𝑘
1
− 𝑘
2

(𝑒
−𝑘
1
𝑡
− 𝑒
−𝑘
2
𝑡
) ,

𝑧
4
(𝑡) = 𝑠

4
(𝑧
0
) + [

𝑘
3
𝑧
50

𝑘
2
(𝑘
1
− 𝑘
2
)
−
𝑧
60

𝑘
2

] 𝑒
−𝑘
2
𝑡

−
𝑘
3
𝑧
50

𝑘
1
(𝑘
1
− 𝑘
2
)
𝑒
−𝑘
1
𝑡
,

𝑧
3
(𝑡) = 𝑠

3
(𝑧
0
) −

1

𝑘
1
+ 𝑘
2

(𝑧
40
𝑧
60
−

𝑘
3
𝑧
2

50

𝑘
1
− 𝑘
2

) 𝑒
−(𝑘
1
+𝑘
2
)𝑡

−
𝑘
3
𝑧
2

50

2𝑘
1
(𝑘
1
− 𝑘
2
)
𝑒
−2𝑘
1
𝑡
,

(11)

where 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑠
3
(𝑧
0
), and 𝑠

4
(𝑧
0
) are the integration con-

stants, which can be determined, at 𝑡 = 0, as a function of the
initial conditions 𝑧

40
, 𝑧
50
, and 𝑧

60
. Besides, from (11), one can

easily see that [𝑧5 𝑧6 𝑧4 𝑧3] tends to [0 0 𝑠
4
(𝑧
0
) 𝑠
3
(𝑧
0
)]

when 𝑡 tends to infinity. So, if we take the initial conditions
such that 𝑠

4
(𝑧
0
) = 0 and 𝑠

3
(𝑧
0
) = 0, then the whole state

tends to the origin. Setting 𝑡 = 0 in (11), 𝑠
4
(𝑧) and 𝑠

3
(𝑧) can

be determined. Substituting 𝑧
0
by 𝑧 in the previous functions

leads to

𝑆
4
(𝑧) = 𝑧

4
−

𝑘
3
𝑧
5

𝑘
2
(𝑘
1
− 𝑘
2
)
+
𝑧
6

𝑘
2

+
𝑘
3
𝑧
5

𝑘
1
(𝑘
1
− 𝑘
2
)
,

𝑆
3
(𝑧) = 𝑧

3
+

𝑧
5
𝑧
6

𝑘
1
+ 𝑘
2

−
𝑘
3
𝑧
2

5

𝑘
2

1
− 𝑘
2

2

+
𝑘
3
𝑧
2

5

2𝑘
1
(𝑘
1
− 𝑘
2
)
.

(12)

Let

𝑆 = [𝑆4(𝑧) 𝑆
3
(𝑧)]
𝑇

. (13)

From (13), it appears clearly that if the state variables belong
to the 2-dimensional manifold

𝑀
𝑆
= {𝑧 ∈ 𝑅

4
| 𝑆
4
(𝑧) = 0, 𝑆

3
(𝑧) = 0} , (14)

then the whole state 𝑧 tends to the origin, since 𝑧
5
and 𝑧

6

decay exponentially to zero. Furthermore, this manifold is
invariant under the linear state feedback (9), as it is shown
in the following result.

Proposition 4. Consider the following functions:

𝑆
4
(𝑧) = 𝑧

4
−

𝑘
3
𝑧
5

𝑘
2
(𝑘
1
− 𝑘
2
)
+
𝑧
6

𝑘
2

+
𝑘
3
𝑧
5

𝑘
1
(𝑘
1
− 𝑘
2
)
,

𝑆
3
(𝑧) = 𝑧

3
+

𝑧
5
𝑧
6

𝑘
1
+ 𝑘
2

−
𝑘
3
𝑧
2

5

𝑘
2

1
− 𝑘
2

2

+
𝑘
3
𝑧
2

5

2𝑘
1
(𝑘
1
− 𝑘
2
)
.

(15)

Then 𝑀
𝑆
= {𝑧 ∈ 𝑅

4
| 𝑆
4
(𝑧) = 0, 𝑆

3
(𝑧) = 0} is an invariant

manifold for the closed-loop system (8)–(10).

Proof. Denote vector fields of system (10) under the linear
state feedback (9)

𝑓 = 𝑧
5
𝑧
6

𝜕

𝜕𝑧
3

+ 𝑧
6

𝜕

𝜕𝑧
4

− 𝑘
1
𝑧
5

𝜕

𝜕𝑧
5

− (𝑘
2
𝑧
6
+ 𝑘
3
𝑧
5
)
𝜕

𝜕𝑧
6

.

(16)

Evaluating the Lie derivatives of along the vector fields (16)
yields

𝐿
𝑓
𝑆
4
(𝑧)

=
𝜕𝑆
4

𝜕𝑧
𝑓 (𝑧)

=

[
[
[
[
[
[
[

[

0

1

−
𝑘
3

𝑘
2
(𝑘
1
− 𝑘
2
)
+

𝑘
3

𝑘
1
(𝑘
1
− 𝑘
2
)

1

𝑘
2

]
]
]
]
]
]
]

]

𝑇

×

[
[
[

[

𝑧
5
𝑧
6

𝑧
6

−𝑘
1
𝑧
5

−𝑘
2
𝑧
6
− 𝑘
3
𝑧
5

]
]
]

]

= 𝑧
6
+

𝑘
1
𝑘
3
𝑧
5

𝑘
2
(𝑘
1
− 𝑘
2
)
−

𝑘
3
𝑧
5

(𝑘
1
− 𝑘
2
)
− 𝑧
6
−
𝑘
3

𝑘
2

𝑧
5

= 0,

𝐿
𝑓
𝑆
3
(𝑧)

=
𝜕𝑆
3

𝜕𝑧
𝑓 (𝑧)

= [
𝜕𝑆
3

𝜕𝑧
3

,
𝜕𝑆
3

𝜕𝑧
4

,
𝜕𝑆
3

𝜕𝑧
5

,
𝜕𝑆
3

𝜕𝑧
6

]𝑓 (𝑧)

= [1, 0,
𝑧
6

𝑘
1
+ 𝑘
2

−
2𝑘
3
𝑧
5

𝑘
2

1
− 𝑘
2

2

+
2𝑘
3
𝑧
5

2𝑘
1
(𝑘
1
− 𝑘
2
)
,

𝑧
5

𝑘
1
+ 𝑘
2

]

× [𝑧
5
𝑧
6
, 𝑧
6
, −𝑘
1
𝑧
5
, − (𝑘
2
𝑧
6
+ 𝑘
3
𝑧
5
)]
𝑇

= 0.

(17)

It appears clearly that the state variables𝑀
𝑆
belong to the 2-

dimensional invariant manifold.
Hence, we can construct the invariant manifold of the

system (10) as𝑀
𝑆
, which has the following characters:

(1) 𝑧 = 0 ∈ 𝑀
𝑠
;

(2) to stabilize system (8) exponentially, it suffices to
bring the state variables [𝑧5 𝑧6 𝑧4 𝑧3] into𝑀𝑆 by an
additional state feedback, namely, 𝑤

1
, 𝑤
2
.

Now it appears clearly that if the initial conditions are
locating in the invariant manifold 𝑀

𝑆
, the system variables

decay exponentially to zero in terms of linear feedback
control. If the initial conditions locate outside of𝑀

𝑆
, in order

to stabilize the system, we should force the system variables
into𝑀

𝑆
firstly and then use the feedback control to stabilize

the system.
In this paper, an MPCmethod is proposed for system (8)

with the initial conditions out of the manifolds𝑀
𝑆
. Consider

an initial state [𝑧5 𝑧6 𝑧4 𝑧3] and a control horizon of 𝑇. At
initial time, let the manifolds𝑀

𝑆
be the terminal constraint

set. The first objective of the proposed algorithm is to use a
T-step control horizon to steer the terminal set-valued state
prediction [𝑧(𝑡 + 𝑇)] into the terminal constraint set𝑀

𝑆
. The

detail solution can be achieved by the minimization problem



Abstract and Applied Analysis 5

in Section 3.2. Secondly, use the feedback control to stabilize
the system to the origin.

3.2. Design of MPC Controller. In this subsection we focus
our objective on the determination of the first term to make
the MPC controller steer the state into the terminal manifold
𝑀
𝑆
, asymptotically attractive. Once on it, the whole state

[𝑧5 𝑧6 𝑧4 𝑧3] tends to zero under the residual linear state
feedback (9).

MPC is an attractive strategy for systems subject to
terminal constraints. Due to the USV systems with terminal
constraints, we obtain the control input by minimizing a
nominal cost [𝐽(𝑧, 𝑤

𝑐
)] over a finite predictive horizon as

follows:

𝐽 (𝑧, 𝑤
𝑐
) = min
𝑢
𝑐

∫

𝑡+𝑇

𝑡

𝐿 (𝑧, 𝑤
𝑐
) 𝑑𝑡 + 𝑊 (𝑥 (𝑡 + 𝑇)) (18)

s.t.

�̇�
3
= 𝑧
5
𝑧
6
, �̇�
4
= 𝑧
6
,

�̇�
5
= 𝑤
1
, �̇�
6
= 𝑤
2
, 𝑧 (𝑡 + 𝑇) ∈ 𝑀

𝑠
,

(19)

where 𝑇, 𝐿(𝑧, 𝑤
𝑐
), and𝑊(𝑥(𝑡 + 𝑇)) denote the time horizon,

the running, and terminal costs. 𝑀
𝑠
denotes the terminal

constraint set.
Substituting 𝐿(𝑧, 𝑤

𝑐
) = 𝑆
2 by 𝑆 = √𝑠2

3
+ 𝑠
2

4
, we can obtain

𝑀
2

𝑠
= 𝑆
2
= (𝑧
3
+
𝑧
6

𝑘
2

)

2

+ (𝑧
2
+

𝑧
4
𝑧
6

𝑘
1
+ 𝑘
2

)

2

. (20)

Selecting 𝐿(𝑧, 𝑤
𝑐
) = 𝑆
2 and𝑊 = 0 leads to

𝐽 (𝑧, 𝑤
𝑐
) = min
𝑤
𝑐

∫

𝑡+𝑇

𝑡

((𝑧
3
+
𝑧
6

𝑘
2

)

2

+ (𝑧
2
+

𝑧
4
𝑧
6

𝑘
1
+ 𝑘
2

)

2

)𝑑𝑡.

(21)

Proposition 5. If the optimization problem in (18) and (19)
is feasible, the closed-loop underactuated system (10) with
terminal invariant manifolds constraints𝑀

𝑠
is asymptotically

stable in terms of MPC controller.

Proof. Firstly, define the “MPC value function” as 𝑉; (𝑧, 𝑤
𝑐
)

denotes the optimal solution of (18), 𝛿 denotes the sampling
time, and𝑇 denotes the predictive and control horizon.There
exists a scalar 𝜀 > 0 such that for each time 𝑡 ∈ [𝑇,∞) and
each 𝑧

𝑡
∈ 𝑀
𝑠
, we can choose a control function 𝑤

𝑐
: [𝑡, 𝑡 +

𝜀] → 𝑅
2, satisfying [33]

𝜕𝑊(𝑧
𝑡
)

𝜕𝑧
𝑓 (𝑧
𝑡
, 𝑤
𝑐
(𝑡)) ≤ −𝐿 (𝑧

𝑡
, 𝑤
𝑐
(𝑡)) . (22)

In sampling time 𝑡
𝑖
, the value function for 𝐽(𝑡

𝑖
, 𝑧
𝑡
𝑖

, 𝑇) is

𝑉
𝑡
𝑖

= ∫

𝑡
𝑖
+𝑇

𝑡
𝑖

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡 + 𝑊(𝑧 (𝑡

𝑖
+ 𝑇)) . (23)

Choose sample time 𝛿 < 𝜀 small enough such that extending
the process (𝑧, 𝑤

𝑐
) to [𝑡

𝑖
, 𝑡
𝑖
+ 𝑇 + 𝛿], 𝑢

𝑐
[𝑡
𝑖
+ 𝑇, 𝑡
𝑖
+ 𝑇 + 𝛿] will

satisfy (22). To this control it will correspond to the extended
trajectory 𝑧[𝑡

𝑖
+𝑇, 𝑡
𝑖
+𝑇+𝛿].The condition (22) guarantees that

the extended process (𝑧, 𝑤
𝑐
) taken in the interval [𝑡

𝑖
+ 𝛿, 𝑡
𝑖
+

𝑇 + 𝛿] is admissible for problem 𝐽(𝑡
𝑖
+ 𝛿, 𝑧

𝑡
𝑖
+𝛿
, 𝑇). However,

since this process is not necessarily optimal, we have

𝑉
𝑡
𝑖
+𝛿
(𝑡
𝑖
+ 𝛿, 𝑧 (𝑡

𝑖
+ 𝛿)) ≤ ∫

𝑡
𝑖
+𝑇+𝛿

𝑡
𝑖
+𝛿

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡

+ 𝑊(𝑧 (𝑡
𝑖
+ 𝑇 + 𝛿)) .

(24)

Hence

𝑉
𝑡
𝑖
+𝛿
(𝑡
𝑖
+ 𝛿, 𝑧 (𝑡

𝑖
+ 𝛿)) − 𝑉

𝑡
𝑖

(𝑡
𝑖
, 𝑧 (𝑡
𝑖
))

≤ −∫

𝑡
𝑖
+𝛿

𝑡
𝑖

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡

+ ∫

𝑡
𝑖
+𝑇+𝛿

𝑡
𝑖
+𝑇

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡

+ 𝑊(𝑧 (𝑡
𝑖
+ 𝑇 + 𝛿)) − 𝑊(𝑧 (𝑡

𝑖
+ 𝑇)) .

(25)

Integrating (22), we have

𝑊(𝑧 (𝑡
𝑖
+ 𝑇 + 𝛿)) − 𝑊(𝑧 (𝑡

𝑖
+ 𝑇))

+ ∫

𝑡
𝑖
+𝑇+𝛿

𝑡
𝑖
+𝑇

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡 ≤ 0.

(26)

Finally, we obtain

𝑉
𝑡
𝑖
+𝛿
(𝑡
𝑖
+ 𝛿, 𝑧 (𝑡

𝑖
+ 𝛿)) − 𝑉

𝑡
𝑖

(𝑡
𝑖
, 𝑧 (𝑡
𝑖
))

≤ −∫

𝑡
𝑖
+𝛿

𝑡
𝑖

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡.

(27)

Due to 𝐿(𝑧, 𝑤
𝑐
) ≥ 0, we know the value function is decreasing

on each interval [𝑡
𝑖
, 𝑡
𝑖
+ 𝛿] for any 𝑖 and the function 𝑉 is

smaller at 𝑡
𝑖+1

than at 𝑡
𝑖
. Hence the close-loop system (8) is

asymptotically stable.
The stabilizing properties of this approach can be con-

firmed by the existence of an admissible solution to the open-
loop optimization (21) at initial time 𝑡, and so stability is
guaranteed provided that 𝑀

𝑠
is reachable in time. Then the

condition 𝐿(𝑧, 𝑤
𝑐
) = 0 is guaranteed by using the linear

feedback control 𝑤
𝑐
. Because 𝐿(𝑧, 𝑤

𝑐
) = 0, the condition

�̇� = 0 ≤ 𝐿(𝑧, 𝑤
𝑐
) = 0 is satisfied. It is clear that condition (22)

is satisfied. (A thorough discussion of the previous problems
can be found in [33].)

The approach was first described in [33]. In this case,
outside the invariant manifolds centered at the origin, we
have to solve the open-loop optimal control problem with
(21). Before we reach 𝑀

𝑠
, we have a free time problem.

After the set 𝑀
𝑠
is reached, we switch to a linear stabilizing

feedback controller for the linearized system. The course of
solution is described as follows:

𝑤
𝑐
= 𝑤
𝑐MP𝐶, 𝑧 ∉ 𝑀

𝑠
, 𝑤

𝑐
= 𝑤
𝑐𝑀
𝑠

, 𝑧 ∈ 𝑀
𝑠
, (28)

where𝑤
𝑐MPC denotes the control law by using nonlinearMPC

and denotes the linear feedback control law.
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Figure 2: Trajectory of 𝑥 and 𝑦.
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4. Simulation Results

In [9], an underactuated actual ship named “Northern Clip-
per” is introduced. Consider the simulation model with par-
ameters as “Northern Clipper” in [9]: 𝑚

11
= 5.312 × 10

6 kg,
𝑚
22
= 8.283 × 10

6 kg, 𝑚
33
= 3.745 × 10

6 kg, 𝑑
11
= 5.024 ×

10
4 kg/s, 𝑑

22
= 2.722 × 10

5 kg/s, and 𝑑
33
= 1.189 × 10

8 kg/s.
Length of “Northern Clipper” 𝐿 = 76.2m, and mass 𝑚 =

4.6 × 10
6 kg. In this section, the effectiveness of the proposed

MPC control law is verified by following simulation. For the
purpose of comparisons,more simulations with slidingmode
control approach proposed in [11] and backstepping control
proposed in [19] are done to verify the advantage of the MPC
method. The control law is selected as Proposition 5, and
the initial values are selected as 𝑥(0) = −152.4m, 𝑦(0) =
−152.4m, 𝜓(0) = −𝜋/2 rad, 𝑢(0) = V(0) = 0m/s, and
𝑟 = 0 rad/s.

The control parameters are selected as 𝑘
1
= 1.2, 𝑘

2
=

0.8, and 𝑘
3
= 1.5. The performance cost is selected as (21).

The terminal manifolds are selected as 𝑀
𝑠
. Sampling time

is selected as 𝛿 = 0.5 s. Predictive and control horizon are
selected as 𝑇 = 5 s.

Simulation results are shown in the following figures, and
the simulation time is set as 150 s. Figure 2 gives the time
response of the position 𝑥, 𝑦. Figure 3 gives the time response
of the orientation 𝜓 and orientation velocity 𝑟. Figure 4 gives
the time response of the velocities 𝑢, V. The responses of the
control inputs 𝜏

1
and 𝜏
3
are shown in Figure 5.

Figures 2–5 show that the three control laws all asymp-
totically stabilize the underactuated surface vessel to the
zero origin. Since the MPC control law guarantees a faster
convergence rate of the simulation system, the MPC method
may be superior to the other two. Furthermore, Figure 5
shows that surge control force 𝜏

1
given by MPC is always

positive. Compared with reverse thrust for an actual ship,
positive thrust is easier to achieve in practice. Therefore, the
MPC approach gets a more favorable control effect.

5. Conclusion

This paper proposes the stabilization approach for under-
actuated surface vessels with only a surge force and a yaw
moment. The invariant manifolds constraints are studied,
and stability theory of MPC controller is further developed,
which is applied to the stabilization control of underactuated
surface vessel. For the stabilization control of underactuated
surface vessel, a nonlinear MPC control law with terminal
invariant manifolds constraints is designed through coor-
dinate transformation and state feedback transformation
based on diffeomorphism and Lyapunov stability theory.The
simulation results show that the proposed control law can
effectively deal with the problem of stabilization control of
underactuated surface vessel.

It should be noted that the controller proposed in this
paper is developed with constant parameters. In the future
work, efforts will bemade to design the data-driven controller
with uncertain parameters to reduce the effect of noisy data
and computational complexity.
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