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This paper studies the indefinite stochastic linear quadratic (LQ) optimal control problem with an inequality constraint for the
terminal state. Firstly, we prove a generalized Karush-Kuhn-Tucker (KKT) theorem under hybrid constraints. Secondly, a new type
of generalized Riccati equations is obtained, based on which a necessary condition (it is also a sufficient condition under stronger
assumptions) for the existence of an optimal linear state feedback control is given by means of KKT theorem. Finally, we design a
dynamic programming algorithm to solve the constrained indefinite stochastic LQ issue.

1. Introduction

The study on LQ control problems can be traced back to
the pioneering work of Kalman [1] and Wonham [2] several
decades ago. The LQ control theory is elegantly established
and developed, and the main work can be seen in [3–11]. In
particular, it is found [6] that a stochastic LQ problem with
indefinite control weighting matrices may still be well-posed.
This discovery evokes a series of subsequent researches,
and many important achievements are obtained [5, 12–16].
Up to now, most work deals with the indefinite stochastic
LQ problems without constraints. However, as a practical
optimization problem, the indefinite stochastic LQ problem
unavoidably has various constraints on the state or control; in
particulary the inequality constraints often appear.

For the constrained indefinite stochastic LQ problems,
[17] studied the equally constrained stochastic LQ optimiza-
tion for Itô systems. In this paper, we will study the stochastic
LQ problem with inequality constraint.

Firstly, we present and prove the generalized KKT the-
orem under hybrid constraints. Secondly, a necessary con-
dition for the existence of an optimal linear state feedback
control is given by means of the generalized KKT theorem.
Thirdly, if we strengthen the condition, we can obtain a
necessary and sufficient condition for the existence of the

optimal linear feedback control to indefinite stochastic LQ
optimal control problem with inequality constraint. Finally,
we give a dynamic programming algorithm to solve the
stochastic LQ problem with the inequality constraint. We
provide an example to demonstrate the effectiveness of our
main theoretical results.

The outline of this paper is organized as follows. In
Section 2, we present a generalized KKT theorem under
hybrid constraints. Section 3 proposes a KKT condition for
the existence of an optimal linear state feedback control. In
Section 4, we provide a necessary and sufficient condition
and a dynamic programming algorithm for the stochastic LQ
problem with inequality constraint. Section 5 concludes the
paper.

For convenience, throughout the paper, we adopt the
following notations: 𝐴𝑇 denotes the transpose of a matrix 𝐴.
𝐴 > 0 (𝐴 ≥ 0): 𝐴 is a positive definite (positive semidefinite)
symmetric matrix. tr(𝐴): trace of a square matrix. 𝑅𝑚×𝑛: the
space of all𝑚 × 𝑛 real matrices. 𝑆𝑛: a 𝑛 × 𝑛 symmetric matrix
space.

2. Preliminaries

Consider the following indefinite stochastic LQ control.
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Problem 1. Consider

min 𝐽 (𝑥
0
, 𝑢) = 𝐸∫

𝑇

0

[𝑥
𝑇
(𝑡) 𝑄 (𝑡) 𝑥 (𝑡)

+𝑢
𝑇
(𝑡) 𝑅 (𝑡) 𝑢 (𝑡)] 𝑑𝑡,

(1a)

s.t. 𝑑𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)] 𝑑𝑡

+ [𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)] 𝑑𝑤 (𝑡) ,

(1b)

𝑥 (0) = 𝑥0, (1c)

𝐸 {‖𝑥 (𝑇)‖
2
} = 𝐸 [𝑥

𝑇
(𝑇) 𝑥 (𝑇)] ≤ 𝑐, (1d)

where 𝑥(𝑡)=[𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 is an 𝑛-dimensional

state variable, 𝑢(𝑡) ∈ 𝑅𝑚 is a control input, 𝑤(⋅) is a one-
dimensional standard Brownian motion defined on a filtered
probability space (Ω, 𝐹, 𝐹

𝑡
, 𝑃). We denote the information

flowF
𝑡
= 𝜎[𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇]. 𝑢(⋅) belongs toL2F(𝑅

𝑚
),

where L2F(𝑅
𝑚
) is a space of all 𝑅𝑚-valued, F

𝑡
-adapted

measurable processes satisfying 𝐸∫𝑇
0
‖𝑢(𝑡)‖

2
𝑑𝑡 < +∞. For

each admissible control, the corresponding trajectory satisfies
the constraint (1c). 𝑐 in constraint (1c) is a given nonnegative
constant. 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡), 𝑄(𝑡), and 𝑅(𝑡) are time-
varying matrices of suitable dimensions. 𝑄(𝑡) and 𝑅(𝑡) in
objective functional are symmetric matrices. To study the
issue, we first put forward the following Assumption H

1
.

Assumption 𝐻
1
. 𝐴(𝑡), 𝐶(𝑡) ∈ L∞(0, 𝑇, 𝑅𝑛×𝑛),𝑄(𝑡) ∈ L∞(0,

𝑇, 𝑆
𝑛
), 𝐵(𝑡), 𝐷(𝑡) ∈ L∞(0, 𝑇, 𝑅𝑛×𝑚), and 𝑅(𝑡) ∈ L∞(0, 𝑇,

𝑆
𝑚
), where 𝐿∞(0, 𝑇,𝑋) := {𝑓(𝑡) : 𝑋-valued essential bound-

ed measurable function and ess sup
𝑡∈[0,𝑇]

‖𝑓(𝑡)‖ < +∞}.
In this paper, the weighting matrices in the objective

functional are not required to be definite. Therefore Problem
1 is an indefinite stochastic LQ optimal control problem. For
later use, we recall KKT theorem for this type ofmathematical
programming (MP) problems:

min 𝑓 (𝑥)

s.t. g (𝑥) ≤ 0,

h (𝑥) = 0,

(2)

where g(𝑥)=(𝑔
1
(𝑥), . . . , 𝑔

𝑝
(𝑥)), and h(𝑥)=(ℎ

1
(𝑥), . . . , ℎ

𝑞
(𝑥)).

TheKKT conditions [18–20], which are also known as the
Kuhn-Tucker (KT) conditions, are the first-order necessary
conditions for a solution in nonlinear programming to
be optimal, provided that some regularity conditions are
satisfied.The Lagrange multiplier method, which allows only
equality constraints, can be viewed as a special case of KKT
conditions.

Regularity Condition (or Constraint Qualification). In MP
above, let 𝐼∗ = {𝑖 | 𝑔

𝑖
(𝑥
∗
) = 0} (𝑔

𝑖
(𝑥
∗
) 𝑖 ∈ 𝐼

∗ be active
constraints at 𝑥∗). The gradient vectors ∇𝑔

𝑖
(𝑥
∗
), 𝑖 ∈ 𝐼

∗, and

∇ℎ
𝑗
(𝑥
∗
), 𝑗 = 1, . . . , 𝑞, are linearly independent, is known as

a linear independent constraint qualification (LICQ).

Regular Point. In MP above, 𝑥∗ is said to be a regular point of
the constraints if the gradient vectors ∇𝑔

𝑖
(𝑥
∗
), ∇ℎ
𝑗
(𝑥
∗
), 𝑖 ∈

𝐼
∗
, 𝑗 = 1, . . . , 𝑞, are linearly independent.

KKT Theorem. In MP above, we assume that the functions
𝑓, g = (𝑔

1
, . . . , 𝑔

𝑝
)
𝑇
, h = (ℎ

1
, . . . , ℎ

𝑞
)
𝑇 are twice contin-

uously differentiable and we assume that all the constraints
satisfy the regularity condition LICQ. Let 𝑥∗ be a point
satisfying all the constraints and let 𝑥∗ be a regular point of
the above constraints. Now suppose that this regular point 𝑥∗
is also a relativeminimumpoint for the originalMP.Then it is
shown that there exist a vector 𝜆 ≥ 0 ∈ 𝑅 and a vector 𝜇 ∈ 𝑅,
such that

∇
𝑥
𝐿 (𝑥
∗
, 𝜆
∗
, 𝜇
∗
) = 0,

𝜆
∗

𝑖
𝑔
𝑖
(𝑥
∗
) = 0, 𝑖 = 1, . . . , 𝑝,

(3)

where 𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) + 𝜆𝑇g(𝑥) + 𝜇𝑇h(𝑥) is the Lagrangian
function and 𝜆∗

𝑖
𝑔
𝑖
(𝑥
∗
) = 0, 𝑖 = 1, . . . , 𝑝, are complementary

clackness condition.
It is particularly important to check the regularity condi-

tion before we apply the conclusion of KKT theorem. If it is
not so, the conclusion of KKT theorem would not be valid,
just as the following example shows.

Example 2. Consider

min 𝑓 (𝑥
1
, 𝑥
2
) = −2𝑥

1
− 3𝑥
2
,

s.t. g (𝑥
1
, 𝑥
2
) = 𝑥
2

1
+ 𝑥
2

2
= 0.

(4)

Obviously, the minimum point is 𝑥∗(0, 0)𝑇. According to
KKT theorem, we obtain

2 − 𝜆𝑥
∗

1
= 0,

3 − 𝜆𝑥
∗

2
= 0,

𝑥
∗

1

2
+ 𝑥
∗

2

2
= 0.

(5)

The conclusion of KKT theorem does not hold at point
𝑥
∗
(0, 0)
𝑇, because ∇g(0, 0) = (0, 0)𝑇 is not linearly indepen-

dent. It does not satisfy the LICQ regularity condition.
In order for a minimum point 𝑥∗ to satisfy the above

KKT conditions, it should satisfy some regularity conditions.
Except for LICQ regularity condition, the most used ones are
listed below.

Constant Rank Constraint Qualification. For each subset of
the gradients of the active inequality constraints and the
gradients of the equality constraints the rank at a vicinity of
𝑥
∗ is constant.

Mangasarian-Fromovitz Constraint Qualification. The gradi-
ents of the active inequality constraints and the gradients of
the equality constraints are linear independent at 𝑥∗.

Constant Positive LinearDependence ConstraintQualification.
For each subset of the gradients of the active inequality
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constraints and the gradients of the equality constraints, if it
is positive-linear dependent at 𝑥∗, then it is positive-linear
dependent at a vicinity of 𝑥∗.

The Slater condition for a convex MP is also a common
regularity condition.

Remark 3. In this paper, for convenience, when we use the
KKT theorem, we always assume that the local optimal 𝑥∗
meets the LICQ regularity condition.The same goes for other
regularity conditions.

Definition 4 (see [21]). Let 𝑋 be a vector space, 𝑌 a normed
space, and 𝑇 a transformation from𝑋 to 𝑌. If the limit

𝛿𝑇 (𝑥; ℎ) = lim
𝛼→0

[𝑇 (𝑥 + 𝛼ℎ) − 𝑇 (𝑥)]

𝛼
(6)

exists, it is called the Gateaux differential of 𝑇 at 𝑥with incre-
ment ℎ. If the limit exists for each ℎ ∈ 𝑋, the transformation
𝑇 is said to be Gateaux differentiable at 𝑥.

Definition 5 (see [21]). Let𝑋 be a vector space and𝑍 a Banach
space with a positive cone 𝑃 having nonempty interior. Let 𝐺
be a mapping from 𝑋 to 𝑍 which has a Gateaux differential
that is linear in its increment. A point 𝑥

0
∈ 𝑋 is said to be

a regular point of the inequality 𝐺(𝑥) ≤ 0, if 𝐺(𝑥
0
) ≤ 0 and

there is an ℎ ∈ 𝑋 such that 𝐺(𝑥
0
) + 𝛿𝐺(𝑥

0
; ℎ) < 0.

Definition 6 (see [21]). Let𝑋 be a vector space and𝑍 a Banach
space. Let 𝐻(𝑥) = [ℎ

1
(𝑥), . . . , ℎ

1
(𝑥)]
𝑇 be a mapping from

𝑋 to 𝑍 which has a Gateaux differential that is linear in its
increment. A point 𝑥

0
∈ 𝑋 is said to be a regular point of

the equality𝐻(𝑥) = 0, if 𝛿ℎ
1
(𝑥
0
; ℎ), . . . , 𝛿ℎ

𝑛
(𝑥
0
; ℎ) are linearly

independent.
On the basis of the definitions above, let us discuss the

KKT theorem in Banach space, where the objective function
and the constraint functions in MP are functionals.

Let us consider

min 𝑓 (𝑥)

s.t. 𝐺 (𝑥) ≤ 0

𝐻 (𝑥) = 0.

(MP I)

As a special case,

min 𝑓 (𝑥)

s.t. 𝐺 (𝑥) ≤ 0

(MP II)

has the local necessary condition as follows.

Lemma 7 (see [21] (generalized KKT theorem)). Let 𝑋 be
a vector space and 𝑍 a Banach space having positive cone 𝑃.
Assume that 𝑃 contains an interior point. Let 𝑓 be a Gateaux
differentiable functional on 𝑋 and 𝐺 a Gateaux differentiable
mapping from 𝑋 to 𝑍. Assume that the Gateaux differentials
are linear in their increments. Suppose that 𝑥

0
minimizes 𝑓

subject to 𝐺(𝑥) ≤ 0 and that 𝑥
0
is a regular point of the

inequality 𝐺(𝑥) ≤ 0. Then there is a 𝑧∗
0
≥ 0 in 𝑍, such that

the Lagrangian function 𝑓(𝑥) + 𝑧∗
0
𝐺(𝑥) is stationary at 𝑥

0
.

Furthermore 𝑧∗
0
𝐺(𝑥
0
) = 0.

The following theorem is the local necessary condition of
(MP I).

Theorem 8. Let 𝑋 be a vector space and 𝑍 a Banach space
having positive cone 𝑃. Assume that 𝑃 contains an interior
point. Let 𝑓 be a Gateaux differentiable functional on 𝑋.
Let 𝐺 and 𝐻 be Gateaux differentiable mappings from 𝑋 to
𝑍. Assume that the Gateaux differentials are linear in their
increments. Suppose that 𝑥

0
minimizes 𝑓 subject to 𝐺(𝑥) ≤ 0,

𝐻(𝑥) = 0 and that 𝑥
0
is a regular point of𝐺(𝑥) ≤ 0,𝐻(𝑥) = 0.

Then there is a 𝜆∗ ≥ 0 in 𝑍, 𝜇∗ ∈ 𝑍, such that the Lagrangian
function 𝑓(𝑥) + 𝜆∗𝐺(𝑥) + 𝜇∗𝐻(𝑥) is stationary at 𝑥

0
. Namely,

𝛿𝑓(𝑥
0
; ℎ) + 𝜆

∗
𝛿𝐺(𝑥
0
; ℎ) + 𝜇

∗
𝛿𝐻(𝑥
0
; ℎ) = 0. Furthermore,

𝑧
∗

0
𝐺(𝑥
0
) = 0.

Proof. 𝐻(𝑥) = 0 is equivalent to 𝐻(𝑥) ≤ 0 and −𝐻(𝑥) ≤
0. If 𝑥

0
is a regular point of 𝐻(𝑥) = 0, then 𝛿ℎ

1
(𝑥
0
; ℎ), . . . ,

𝛿ℎ
𝑛
(𝑥
0
; ℎ) are linearly independent. So 𝛿ℎ

1
(𝑥
0
; ℎ), . . . ,

𝛿ℎ
𝑛
(𝑥
0
; ℎ) are all nonzero, because the Gateaux differentials

are linear in their increments. Using Definition 5, it is easy
to verify that 𝑥

0
is a regular point of both −𝐻(𝑥) ≤ 0

and 𝐻(𝑥) ≤ 0. According to Lemma 7, we know that the
multiplier 𝜇∗ of equality 𝐻(𝑥) = 0 has no nonnegative
requirement.

Definition 9 (see [22]). Suppose that 𝑓(𝑋) is a scalar-valued
function of the elements 𝑥

𝑖𝑗
of𝑋.Then the gradient matrix of

𝑓(𝑋) is defined as

∇ [𝑓 (𝑋)] =
𝜕𝑓 (𝑋)

𝜕 (𝑋)
(7)

with

[
𝜕𝑓 (𝑋)

𝜕 (𝑋)
]

𝑖𝑗

=
𝜕𝑓 (𝑋)

𝜕𝑥
𝑖𝑗

. (8)

Based on Definition 9, we can easily extend KKT theorem
from Banach space to matrix space. Because 𝑋(𝑡) can be
treated as a vector [𝑋

1
(𝑡), . . . , 𝑋

𝑛
(𝑡)]
𝑇, one can work out

∇[𝑋
𝑖
(𝑡)] and the KKT theorem holds.
When we apply the matrix KKT theorem, we need to

give the partial list of gradient matrices [22] that we will
use in this paper. In the following formulas, 𝑋 is an 𝑛 × 𝑚
matrix. The formulas are not valid if the elements 𝑥

𝑖𝑗
of 𝑋

are not independent. 𝐴, 𝐵 are assumed to have appropriate
dimensions determined from context.

Consider the following:

𝜕

𝜕𝑋
tr (𝑋) = 𝐼,

𝜕

𝜕𝑋
tr (𝑋𝑋𝑇) = 2𝑋,

𝜕

𝜕𝑋
tr (𝐴𝑋𝑇) = 𝐴,

𝜕

𝜕𝑋
tr (𝐴𝑋) = 𝐴𝑇,
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𝜕

𝜕𝑋
tr (𝐴𝑋𝑇𝐵) = 𝐵𝐴,

𝜕

𝜕𝑋
tr (𝐴𝑋𝐵) = 𝐴𝑇𝐵𝑇,

𝜕

𝜕𝑋
tr (𝐴𝑋𝐵𝑋𝑇) = 𝐴𝑇𝑋𝐵𝑇 + 𝐴𝑋𝐵,

𝜕

𝜕𝑋
tr (𝐴𝑋𝐵𝑋) = 𝐴𝑇𝑋𝑇𝐵𝑇 + 𝐵𝑇𝑋𝑇𝐴𝑇.

(9)

3. KKT Conditions and a New Type of GDREs

Definition 10. Problem 1 is well-posed, if for any 𝑥
0
∈ 𝑅
𝑛,

−∞ < 𝑉(𝑥
0
) = inf

𝑢(⋅)∈𝑈ad
{𝐽(𝑥
0
, 𝑢(⋅))}. 𝑢

∗
is called an optimal

control, if𝑉(𝑥
0
) = 𝐽(𝑥

0
, 𝑢
∗
), and 𝑥

∗
denotes the correspond-

ing optimal trajectory.
Let the control law be 𝑢 = 𝐾𝑥 (𝐾 ∈ 𝐶

𝑚×𝑛
[0, 𝑇]), and

𝑋(𝑡) = 𝐸[𝑥(𝑡)𝑥
𝑇
(𝑡)]. By substituting 𝑢 = 𝐾𝑥 into (1a) of

Problem 1, we obtain the new objective functional:

𝐽 (𝑋,𝐾) = tr ∫
𝑇

0

[𝑄𝑋 + 𝐾
𝑇
𝑅𝐾𝑋]𝑑𝑡, (10)

where 𝐶𝑛×𝑛[0, 𝑇] is the space of 𝑛-order square matrix whose
elements are continuous functions. By substituting 𝑢 = 𝐾𝑥
into (1b) of Problem 1, we obtain a closed-loop system:

𝑑𝑥 = (𝐴 + 𝐵𝐾) 𝑥𝑑𝑡

+ (𝐶 + 𝐷𝐾) 𝑥𝑑𝑤, 𝑥 (0) = 𝑥0.

(11)

By applying Itô’s formula to𝑋(𝑡), we obtain

𝑋̇ = (𝐴 + 𝐵𝐾)𝑋 + 𝑋(𝐴 + 𝐵𝐾)
𝑇

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
𝑇
,

𝑋 (0) = 𝑋0 = 𝑥0𝑥
𝑇

0
.

(12)

Define the transformation 𝐻(𝑋,𝐾) from 𝐶
𝑛×𝑛
[0, 𝑇] × 𝐶

𝑚×𝑛

[0, 𝑇] to 𝐶𝑛×𝑛[0, 𝑇]:

𝐻(𝑋,𝐾) := 𝑋 (𝑡) − 𝑋 (0)

− ∫

𝑡

0

[(𝐴 + 𝐵𝐾)𝑋 + 𝑋 (𝐴 + 𝐵𝐾)
𝑇

+(𝐶 + 𝐷𝐾)𝑋 (𝐶 + 𝐷𝐾)
𝑇
] 𝑑𝑡.

(13)

By substituting 𝑢 = 𝐾𝑥 into (1c) of Problem 1, we obtain

tr𝑋(𝑇) − 𝑐 ≤ 0. (14)

Define the transformation 𝐺(𝑋,𝐾) from 𝐶𝑛×𝑛[0, 𝑇] to 𝑅1:

𝐺 (𝑋 (𝑇)) := tr𝑋(𝑇) − 𝑐. (15)

So the original stochastic Problem 1 can be transformed into
the deterministic Problem 11 as follows.

Problem 11. Consider the following:

min 𝐽 (𝑋,𝐾) = tr ∫
𝑇

0

[𝑄𝑋 + 𝐾
𝑇
𝑅𝐾𝑋]𝑑𝑡, (16a)

s.t. 𝐻 (𝑋,𝐾) = 0, ∀𝑡 ∈ [0, 𝑇] , (16b)

𝐺 (𝑋 (𝑇)) ≤ 0. (16c)

Lemma 12. 𝐽(𝑋,𝐾),𝐻(𝑋,𝐾), and 𝐺(𝑋(𝑇)) have continuous
Gateaux derivative as follows:

𝛿𝐽
𝑋 (𝑋,𝐾; Δ𝑋) = tr∫

𝑇

0

(𝑄 + 𝐾
𝑇
𝑅𝐾)Δ𝑋𝑑𝑡,

𝛿𝐽
𝐾 (𝑋,𝐾; Δ𝑋) = tr∫

𝑇

0

(Δ𝐾
𝑇
𝑅𝐾𝑋 + 𝐾

𝑇
𝑅Δ𝐾𝑋)𝑑𝑡,

𝛿𝐻
𝑋 (𝑋,𝐾; Δ𝑋) (𝑡)

= Δ𝑋 (𝑡) − tr ∫
𝑡

0

[(𝐴 + 𝐵𝐾)Δ𝑋 + Δ𝑋(𝐴 + 𝐵𝐾)
𝑇

+ (𝐶 + 𝐷𝐾)Δ𝑋(𝐶 + 𝐷𝐾)
𝑇
] 𝑑𝑡,

𝛿𝐻
𝐾 (𝑋,𝐾; Δ𝐾) (𝑡)

= − tr∫
𝑡

0

[𝐵Δ𝐾𝑋 + 𝑋Δ𝐾
𝑇
𝐵
𝑇
+ (𝐶 + 𝐷𝐾)𝑋(𝐷Δ𝐾)

𝑇

+ (𝐷Δ𝐾)𝑋(𝐶 + 𝐷𝐾)
𝑇
] 𝑑𝑡,

𝛿𝐺
𝑋 (𝑋; Δ𝑋 (𝑇)) = trΔ𝑋 (𝑇) .

(17)

Proof. We prove only the most complicated one.The rest can
be verified in the same way. From Definition 4,

𝛿𝐻
𝑋 (𝑋,𝐾; Δ𝑋) = lim

𝛼→0

[𝐻 (𝑋 + 𝛼Δ𝑋,𝐾) − 𝐻 (𝑋,𝐾)]

𝛼
,

𝐻 (𝑋,𝐾)

:= 𝑋 (𝑇) − 𝑋 (0) − ∫

𝑡

0

[(𝐴 + 𝐵𝐾)𝑋 + 𝑋(𝐴 + 𝐵𝐾)
𝑇

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
𝑇
] 𝑑𝑡.

(18)

Replace the𝑋 in𝐻(𝑋,𝐾)with (𝑋+𝛼Δ𝑋) and then let𝛼 → 0

showing the conclusion.

Lemma 13 (see [21]). If 𝛼(𝑡) and 𝛽(𝑡) are continuous in [𝑡
1
, 𝑡
2
]

and ∫𝑡2
𝑡
1

[𝛼(𝑡)ℎ(𝑡) + 𝛽(𝑡)ℎ(𝑡)]𝑑𝑡 = 0 for every continuously dif-
ferentiable ℎ(𝑡) with ℎ(𝑡

1
) = ℎ(𝑡

1
) = 0, then 𝛽 is differentiable

and 𝛼(𝑡) ≡ 𝛽(𝑡) in [𝑡
1
, 𝑡
2
].
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Lemma 14 (see [21]). If 𝛼(𝑡) is continuous in [𝑡
1
, 𝑡
2
] and

∫
𝑡
2

𝑡
1

[𝛼(𝑡)ℎ(𝑡)]𝑑𝑡 = 0 for every continuously differentiable ℎ(𝑡)
with ℎ(𝑡

1
) = ℎ(𝑡

1
) = 0, then 𝛼(𝑡) ≡ 0 on [𝑡

1
, 𝑡
2
].

Theorem 15. Assume that 𝐾
∗
is the optimal solution of Prob-

lem 1, and then there exist a symmetric matrix 𝑃 ∈ 𝑁𝐵𝑉𝑛×𝑛
[0, 𝑇] and a nonnegative 𝜆 ∈ 𝑅1, such that

−𝑃̇ = (𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) + 𝑃 (𝐴 + 𝐵𝐾

∗
) + (𝐴 + 𝐵𝐾

∗
)
𝑇
𝑃

+ (𝐶 + 𝐷𝐾
∗
) 𝑃(𝐶 + 𝐷𝐾

∗
)
𝑇
,

(19a)

𝑃 (𝑇) = 𝜆𝐼𝑛, (19b)

𝐾
𝑇

∗
𝑅 + 𝑃𝐵 + (𝐶 + 𝐷𝐾

∗
)
𝑇
𝑃𝐷 = 0, (19c)

𝜆 [ tr𝑋 (𝑇) − 𝑐] = 0, (19d)

where 𝑁𝐵𝑉𝑛×𝑛[0, 𝑇] is a matrix space whose elements are
bounded functions in [0, 𝑇] with 0 value at point 0 and right
continuous at (0, 𝑇).

Proof. 𝐾
∗
is also the optimal solution of Problem 11. Problem

11 is the type of (MP I). Assume that the optimal solution
to Problem 11 is (𝑋

∗
, 𝐾
∗
). Using Theorem 8 and Lemma 12,

there exist a symmetric matrix 𝑃 ∈ 𝑁𝐵𝑉
𝑛×𝑛
[0, 𝑇] and a

nonnegative 𝜆 ∈ 𝑅1, such that

tr∫
𝑇

0

(𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) Δ𝑋𝑑𝑡

+ tr∫
𝑇

0

{Δ𝑋 (𝑡)

− ∫

𝑡

0

[(𝐴 + 𝐵𝐾
∗
) Δ𝑋 + Δ𝑋(𝐴 + 𝐵𝐾

∗
)
𝑇

+ (𝐶 + 𝐷𝐾
∗
) Δ𝑋(𝐶 + 𝐷𝐾

∗
)
𝑇
] 𝑑𝑡} 𝑑𝑃

+𝜆 tr [Δ𝑋 (𝑇)] = 0,
(20)

tr∫
𝑇

0

(Δ𝐾
𝑇
𝑅𝐾
∗
𝑋
∗
+ 𝐾
𝑇

∗
𝑅Δ𝐾𝐾

∗
) 𝑑𝑡

− tr∫
𝑇

0

{∫

𝑡

0

[𝐵Δ𝐾𝑋
∗
+ 𝑋
∗
Δ𝐾
𝑇
𝐵
𝑇

+ (𝐶 + 𝐷𝐾
∗
)𝑋
∗
(𝐷Δ𝐾)

𝑇
+ (𝐷Δ𝐾)𝑋∗

× (𝐶 + 𝐷𝐾
∗
)
𝑇
] 𝑑𝑡} 𝑑𝑃 = 0,

(21)

𝜆 [tr𝑋 (𝑇) − 𝑐] = 0. (22)

For all (Δ𝑋, Δ𝐾) ∈ C𝑛×𝑛[0, 𝑇] × 𝐶𝑚×𝑛[0, 𝑇], (20)-(21) are
established. According to Riesz representation theorem, we
obtain the second item of (20) and the same of (21).

Without loss of generality, let 𝑝(𝑇) = 0. Integrate (20) by
parts yielding

tr∫
𝑇

0

(𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) Δ𝑋𝑑𝑡 + tr ∫

𝑇

0

Δ𝑋𝑑𝑃

+ tr∫
𝑇

0

{𝑃 [(𝐴 + 𝐵𝐾
∗
) Δ𝑋 + Δ𝑋(𝐴 + 𝐵𝐾

∗
)
𝑇

+(𝐶 + 𝐷𝐾
∗
)
𝑇
Δ𝑋(𝐶 + 𝐷𝐾

∗
)
𝑇
] } 𝑑𝑡

+ 𝜆 tr [Δ𝑋 (𝑇)] = 0.

(23)

Clearly, 𝑃 has no jump on [0, 𝑇). But 𝑃 has a jump at 𝑇, and
the value is −𝜆𝐼

𝑛
. Because the above results are established for

all continuous Δ𝑋, then

∫

𝑇

0

Δ𝑋𝑑𝑃 = 𝑃Δ𝑋|
𝑇

0
− ∫

𝑇

0

𝑃Δ𝑋̇𝑑𝑡 = −∫

𝑇

0

𝑃Δ𝑋̇𝑑𝑡. (24)

Thus, (20) becomes

tr∫
𝑇

0

[(𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) Δ𝑋 + 𝑃 (𝐴 + 𝐵𝐾

∗
) Δ𝑋

+ (𝐴 + 𝐵𝐾
∗
)
𝑇
𝑃Δ𝑋 + (𝐶 + 𝐷𝐾

∗
)
𝑇
𝑃(𝐶 + 𝐷𝐾

∗
)
𝑇
Δ𝑋

− 𝑃Δ𝑋̇] 𝑑𝑡 = 0.

(25)

From Lemma 13, 𝑃 is differential in [0, 𝑇) and (19a) is ob-
tained.

In the same way, integrating (21) by parts, we obtain

tr∫
𝑇

0

[𝐾
𝑇

∗
𝑅 (Δ𝐾𝑋

∗
) + 𝑃𝐵 (Δ𝐾𝑋

∗
)

+ (𝐶 + 𝐷𝐾
∗
)
𝑇
𝑃𝐷 (Δ𝐾𝑋

∗
)] 𝑑𝑡 = 0.

(26)

From Lemma 14, (19c) is obtained.
To ensure the continuity of 𝑃, replace 𝑃(𝑇) = 0with 𝑃(𝑇)

= 𝜆𝐼
𝑛
(i.e., (19b)).

Equation (19d) is called complementary slackness condi-
tions.

Remark 16. Equations (16b)-(16c) of Problem 11 and (19a)–
(19c) of Theorem 15 are 2𝑛-dimensional, first-order differen-
tial equations including 2𝑛 terminal conditions and 𝑚 alge-
braic equations. Equation (19d) is called a complementary
slackness condition. By using these conditions,𝑋

∗
,𝐾
∗
,𝑃, and

𝜆 are obtained.

Remark 17. As for the complementary slackness condition,
if the inequality constraint of Problem 11 is strict, then
𝜆 = 0, and the problem becomes easier. If the inequality
constraint of Problem 11 is an equality constraint, it simplifies
Theorem 15 as Lagrange multiplier method.
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Definition 18. 𝑀 ∈ 𝑅
𝑛×𝑛 is a given matrix. One calls𝑀+ the

Moore-Penrose generalized inverse of𝑀, if

𝑀𝑀
†
𝑀 = 𝑀, 𝑀

†
𝑀𝑀
†
= 𝑀
†
,

(𝑀𝑀
†
)
𝑇

= 𝑀𝑀
†
, (𝑀

†
𝑀)
𝑇

= 𝑀
†
𝑀.

(27)

Based onDefinition 18, we can rewriteTheorem 15 by express-
ing 𝐾
∗
in terms of 𝑃.

Lemma 19 (see [13]). Let matrices 𝐿,𝑀, and𝑁 be given with
appropriate sizes. Then the matrix equation

𝐿𝑋𝑀 = 𝑁 (28)

has a solution𝑋 if and only if

𝐿𝐿
†
𝑁𝑀
†
𝑀 = 𝑁. (29)

Moreover, any solution to 𝐿𝑋𝑀 = 𝑁 is represented by

𝑋 = 𝐿
†
𝑁𝑀
†
+ 𝑆 − 𝐿

†
𝐿𝑆𝑀𝑀

†
, (30)

where 𝑆 is a matrix with an appropriate size.

Theorem 20. If𝐾
∗
is optimal solution of Problem 1, then there

exist a unique 𝑃 ∈ 𝑁𝐵𝑉𝑛×𝑛[0, 𝑇] and a nonnegative 𝜆 ∈ 𝑅1,
such that

−𝑃̇ = (𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) + 𝑃 (𝐴 + 𝐵𝐾

∗
)

+ (𝐴 + 𝐵𝐾
∗
)
𝑇
𝑃 + (𝐶 + 𝐷𝐾

∗
) 𝑃(𝐶 + 𝐷𝐾

∗
)
𝑇
,

𝑃 (𝑇) = 𝜆𝐼𝑛,

𝐾
𝑇

∗
𝑅 + 𝑃𝐵 + (𝐶 + 𝐷𝐾

∗
)
𝑇
𝑃𝐷 = 0,

𝜆 [ tr𝑋 (𝑇) − 𝑐] = 0,

𝐾
∗
= − (𝑅 + 𝐷

𝑇
𝑃𝐷)
†

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶)

+ 𝑌− (𝑅 + 𝐷
𝑇
𝑃𝐷)
†

(𝑅 + 𝐷
𝑇
𝑃𝐷)𝑌,

(31)

where 𝑌 ∈ 𝐿2(0, 𝑇; 𝑅𝑚×𝑛).

Proof. Form (19c) in Theorem 15, we obtain

(𝑅 + 𝐷
𝑇
𝑃𝐷)𝐾

∗
= − (𝐵

𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶) . (32)

According to Lemma 19,

𝐾
∗
(𝑅 + 𝐷

𝑇
𝑃𝐷)
+

(𝐵
𝑇
𝑃 + 𝐷𝑇𝑃𝐶) + 𝑌

− (𝑅 + 𝐷
𝑇
𝑃𝐷)
+

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶)𝑌,

(33)

where 𝑌 ∈ 𝐿2(0, 𝑇; 𝑅𝑚×𝑛).

As a special case, let us consider the following discrete sto-
chastic LQ control problem without inequality constraint.

Problem 21. Consider the following.

min 𝐽 (𝑋,𝐾) = tr∫
𝑇

0

[𝑄𝑋 (𝑡) + 𝐾(𝑡)
𝑇
𝑅𝐾 (𝑡)𝑋 (𝑡)] 𝑑𝑡

s.t. 𝑋̇ = (𝐴 + 𝐵𝐾)𝑋 + 𝑋(𝐴 + 𝐵𝐾)
𝑇

+ (𝐶 + 𝐷𝐾)𝑋(𝐶 + 𝐷𝐾)
𝑇

𝑋 (0) = 𝑋0.

(34)

Corollary 22. If 𝐾
∗
is optimal solution of Problem 21, then

there exists a unique 𝑃 ∈ 𝑁𝐵𝑉𝑛×𝑛[0, 𝑇] to the following con-
strained GDRE [13]

−𝑃̇ = 𝑃𝐴 + 𝐴𝑃
𝑇
+ 𝐶
𝑇
𝑃𝐶 + 𝑄

− (𝑃𝐵 + 𝐶
𝑇
𝑃𝐷) (𝑅 + 𝐷

𝑇
𝑃𝐷) (𝑃𝐵 + 𝐶

𝑇
𝑃𝐷)
𝑇

,

𝑃 (𝑇) = 0,

(𝑅 + 𝐷
𝑇
𝑃𝐷) (𝑅 + 𝐷

𝑇
𝑃𝐷)
+

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶)

= 𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶,

(𝑅 + 𝐷
𝑇
𝑃𝐷) ≥ 0,

𝐾
∗
= − (𝑅 + 𝐷

𝑇
𝑃𝐷)
†

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶)

+ 𝑌 − (𝑅 + 𝐷
𝑇
𝑃𝐷)
†

(𝑅 + 𝐷
𝑇
𝑃𝐷)𝑌,

(35)

where 𝑌 ∈ 𝐿2(0, 𝑇; 𝑅𝑚×𝑛).

Proof. Because of Problem 21 without the equality constraint,
𝜆 = 0, therefore 𝑃(𝑇) = 0. Theorem 20 yields this corollary
directly.

4. Application

4.1. A Necessary and Sufficient Condition. In Theorem 15,
to ensure the uniqueness of 𝜆 and 𝑃, let us strengthen the
condition (𝑅 + 𝐷𝑇𝑃𝐷) ≥ 0 as (𝑅 + 𝐷𝑇𝑃𝐷) > 0.

Theorem 23. If 𝐾
∗
is optimal solution of Problem 1, then 𝑃 ∈

𝑁𝐵𝑉
𝑛×𝑛
[0, 𝑇] and 𝜆 ∈ 𝑅1 > 0, such that

− 𝑃̇ = (𝑄 + 𝐾
𝑇

∗
𝑅𝐾
∗
) + 𝑃 (𝐴 + 𝐵𝐾

∗
)

+ (𝐴 + 𝐵𝐾
∗
)
𝑇
𝑃 + (𝐶 + 𝐷𝐾

∗
) 𝑃(𝐶 + 𝐷𝐾

∗
)
𝑇
,

𝑃 (𝑇) = 𝜆𝐼𝑛,

𝐾
𝑇

∗
𝑅 + 𝑃𝐵 + (𝐶 + 𝐷𝐾

∗
)
𝑇
𝑃𝐷 = 0,

𝜆 [ tr𝑋(𝑇) − 𝑐] = 0,

(36)
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and if (𝑅 + 𝐷𝑇𝑃𝐷) > 0 hold, then Problem 1 is well posed. The
optimal solutions of Problem 1 are

𝑈
∗
= −(𝑅 + 𝐷

𝑇
𝑃𝐷)
−1

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶) 𝑥,

𝐽
∗
= 𝑥
𝑇

0
𝑃 (0) 𝑥0 − 𝜆𝑐.

(37)

Proof. In Remark 3, in order for a minimum point 𝑥∗ of a
mathematical programming to satisfy the KKT conditions,
we have assumed that 𝑥∗ satisfies LICQ regularity condition.
From (19c) of Theorem 15, we obtain

𝐾
∗
(𝑅 + 𝐷

𝑇
𝑃𝐷) = − (𝐵

𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶) . (38)

Because (𝑅 + 𝐷𝑇𝑃𝐷) > 0, Problem 11 has a unique solution;
namely,

𝐾
∗
= −(𝑅 + 𝐷

𝑇
𝑃𝐷)
−1

(𝐵
𝑇
𝑃 + 𝐷

𝑇
𝑃𝐶) . (39)

From the relationship between Problems 1 and 11 and by using
Itô’s formula, we have

𝐽
∗
= 𝑉 (𝑥

0
) = 𝑥
𝑇

0
𝑃 (0) 𝑥0 − 𝜆𝑐. (40)

4.2. A Dynamic Programming Algorithm. Amethod for solv-
ing the indefinite stochastic linear quadratic (LQ) optimal
control problem with unequal terminal state constraint is
proposed as follows.

Reconsider the following LQ Problem 1󸀠

𝑑𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)] 𝑑𝑡

+ [𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)] 𝑑𝑤 (𝑡) ,

𝑥 (𝑠) = 𝑦,

𝐸 {‖𝑥 (𝑇)‖
2
} = 𝐸 {𝑥

𝑇
(𝑇) 𝑥 (𝑇)} ≤ 𝑐,

𝐽 (𝑥
0
, 𝑢) = 𝐸{∫

𝑇

0

[𝑥
𝑇
(𝑡) 𝑄 (𝑡) 𝑥 (𝑡) + 𝑢

𝑇
(𝑡) 𝑅 (𝑡) 𝑢 (𝑡)]} 𝑑𝑡,

𝑉 (𝑠, 𝑦) = inf
𝑢(⋅)∈𝑈ad

𝐽 (𝑠, 𝑦; 𝑢 (⋅)) .

(41)

Then the backward dynamic programming optimality
principle [8] yields the following theorem.

Theorem 24. Let 𝑥
∗
(⋅) and 𝑢

∗
(⋅) be an optimal solution of

Problem 1󸀠, then 𝑥
∗
(⋅), and 𝑢

∗
(⋅) satisfy the following Bellman

equation:

𝑉 (𝑠, 𝑦) = min
𝑢(⋅)∈𝑈ad

𝐸{∫

𝑠+ℎ

𝑠

[𝑥
𝑇

∗
(𝑡) 𝑄 (𝑡) 𝑥∗ (𝑡)

+𝑢
𝑇

∗
(𝑡) 𝑅 (𝑡) 𝑢∗ (𝑡)] 𝑑𝑡

+𝑉 (𝑠 + ℎ, 𝑥
∗ (𝑠 + ℎ)) } ∀ℎ > 0,

𝑉 (𝑇 − ℎ, 𝑦) = min
𝑢(⋅)∈𝑈ad

𝐸{∫

𝑇

𝑇−ℎ

[𝑥
𝑇

∗
(𝑡) 𝑄 (𝑡) 𝑥∗ (𝑡)

+𝑢
𝑇

∗
(𝑡) 𝑅 (𝑡) 𝑢∗ (𝑡)] } 𝑑𝑡,

𝐸 {‖𝑥 (𝑇)‖
2
} = 𝐸 [𝑥

𝑇
(𝑇) 𝑥 (𝑇)] ≤ 𝑐.

(42)

Proof. By applying the backward dynamic programming
optimality principle, we obtain recursive relationships
between 𝑉(𝑠, 𝑥

∗
(𝑠)) and 𝑉(𝑠 + ℎ, 𝑥

∗
(𝑠 + ℎ)) as follows:

𝑉 (𝑠, 𝑦) = min
𝑢(⋅)∈𝑈ad

𝐸{∫

𝑠+ℎ

𝑠

[𝑥
𝑇

∗
(𝑡) 𝑄 (𝑡) 𝑥∗ (𝑡)

+ 𝑢
𝑇

∗
(𝑡) 𝑅 (𝑡) 𝑢∗ (𝑡)] 𝑑𝑡

+ 𝑉 (𝑠 + ℎ, 𝑥
∗ (𝑠 + ℎ)) } ,

(43)

where 𝑉(𝑠, 𝑥
∗
(𝑠)) is the objective of [𝑠, 𝑇] and 𝑉(𝑠 + ℎ, 𝑥

∗
(𝑠 +

ℎ)) of [𝑠 + ℎ, 𝑇]. Let 𝑉(𝑠, 𝑥
∗
(𝑠)) be the objective of [𝑇 − ℎ, 𝑇]

and then

𝑉 (𝑇 − ℎ, 𝑦) = min
𝑢(⋅)∈𝑈ad

𝐸∫

𝑇

𝑇−ℎ

[𝑥
𝑇

∗
(𝑡) 𝑄 (𝑡) 𝑥∗ (𝑡)

+𝑢
𝑇

∗
(𝑡) 𝑅 (𝑡) 𝑢∗ (𝑡)] 𝑑𝑡.

(44)

Combine the terminal state constraint

𝐸 {‖𝑥 (𝑇)‖
2
} = 𝐸 [𝑥

𝑇
(𝑇) 𝑥 (𝑇)] ≤ 𝑐,

𝑢 (𝑡) = 𝐾𝑥 (𝑡) (𝐾 is given by Theorem 20) ;

(45)

thus we can solve the above recursive relations. Furthermore,
let ℎ → 0 generating the dynamic programming algorithm.

Remark 25. The dynamic programming algorithm can be
applied to solve the stochastic LQ problem with inequality
constraint except for a heavy computation. Nonetheless, it
makes more sense in theory.
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Example 26. In Problem 1, let

𝐴 = −1, 𝐵 = 1, 𝐶 = −2,

𝐷 = 0, 𝑐 =

(1 + 𝑒
2
)
2

4𝑒2
,

𝑥
0
= 1, 𝑄 = 0,

𝑅 = 1, 𝑇 = 1.

(46)

ByTheorem 15, we have

−𝑃̇ = 𝐾
2

∗
+ 2𝑃 (−1 + 𝐾

∗
) + 4𝑃,

𝑃 (1) = 𝜆,

𝐾
∗
+ 𝑃 = 0,

𝜆[

[

𝑋 (1) −

(1 + 𝑒
2
)
2

4𝑒2
]

]

= 0,

𝜆 ≥ 0.

(47)

The constraints of Problem 11 are

−𝑋̇ = 2𝑋 + 2𝐾𝑋,

𝑋 (0) = 1,

𝑋 (1) ≤

(1 + 𝑒
2
)
2

4𝑒
2𝑡

.

(48)

Via a series of computations, we obtain

𝑋
∗
=

(1 + 𝑒
2
)
2

4𝑒2𝑡
, 𝑃 =

2

1 + 𝑒2𝑡
,

𝜆 =
2

1 + 𝑒2
, 𝐾

∗
= −

2

1 + 𝑒2𝑡
.

(49)

In Problem 11, the inequality constraint is

𝐺 (𝑋
∗ (1)) = 𝑋∗ (1) − 𝑐 ≤ 0. (50)

When 𝑇 = 1,

𝑋
∗ (1) =

(1 + 𝑒
2
)
2

4𝑒2
= 𝑐. (51)

Hence

𝐺 (𝑋
∗ (1)) = 𝑋∗ (1) − 𝑐 = 0. (52)

This shows that the optimal solution of Problem 11 satisfies the
inequality constraint. In this case, the inequality constraint is
a nonactive constraint. Because (𝑅 + 𝐷𝑇𝑃𝐷) = 1 > 0, using
Theorem 23, the optimal control of Problem 1 is

𝑢
∗ (𝑡) = −

2

1 + 𝑒2𝑡
𝑥
∗ (𝑡) , (53)

and the optimal value is

𝑉 (𝑥
0
) = 𝑥
𝑇

0
𝑃 (0) 𝑥0 − 𝜆𝑐 =

1 − 𝑒
−2

2
. (54)

5. Conclusion

We have studied the indefinite stochastic LQ optimal control
problem with unequal terminal state constraint, which can
be transformed into a hybrid constrained mathematical
programming problem. By applying KKT theorem, we have
presented a necessary condition for the constrained indefinite
stochastic LQ optimal control problem. By adding some
conditions, we obtain a necessary and sufficient condition
for indefinite stochastic LQ optimal control problem with
inequality constraint. We demonstrate that the solvability
of the generalized Riccati equation is sufficient for the well
posedness of the indefinite LQ problem. Since this kind
of LQ control problems can be transformed into a hybrid
constrained mathematical programming, we have given a
dynamic programming algorithm.
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