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Based on Buckley-Leverett theory, one inverse problemmodel of the oil-water relative permeability was modeled and proved when
the oil-water relative permeability equations obey the exponential form expression, and under the condition of the formation
permeability that natural logarithmdistribution always obey normal distribution, the other inverse problemmodel on the formation
permeability was proved. These inverse problem models have been assumed in up-scaling cases to achieve the equations by
minimization of objective function different between calculation water cut and real water cut, which can provide a reference for
researching oil-water two-phase flow theory and reservoir numerical simulation technology.

1. Introduction

Reservoir numerical simulation technology is a growing new
discipline with the emergence and development of the com-
puter technology and computational mathematics, which has
achieved rapid development and wide application all over the
world, for example, the study of reservoir numerical simu-
lation based on formation parameters [1], the well models
and impacts [2], a numerical simulator for low-permeability
reservoirs [3], and so on. However, the majority of methods
have a great amount of calculation. It will waste a lot
of time and energy when we research the oil-water relative
permeability equations or the formation permeability distri-
bution.Therefore, according to the inverse problemmodeling
based on oil-water two-phase flow, we propose a method to
obtain the relevant results for our research. It is important
to define the formation permeability distribution and oil-
water relative permeability equations, which provide neces-
sary information for oil reservoir evaluation, for example,
large-scaling evaluation, which could be applied in reservoir
numerical simulation during evaluation.

In order to get the answers which will be able to apply in
large-scaling cases and solve the corresponding problems in

reservoir scaling, inverse problemmodels have to be assumed
to achieve the equations by minimization of objective func-
tion differently between real water cut and calculation water
cut. The theoretical grid model is shown in Figure 1.

If we know the distribution {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑛
}, then the

inverse problem model will be as shown in (1).
The first question: The optimization distribution

{𝑎
𝑤
, 𝑏
𝑤
, 𝑎
𝑜
, 𝑏
𝑜
} and the relative permeability equations

𝐾
𝑟𝑤
(𝑆
𝑤
),𝐾
𝑟𝑜
(𝑆
𝑤
).

The inverse problem mathematical model on oil-water
relative permeability is as follows:
objective function:

𝐸 = min
𝑛𝑡

∑
𝑡=1

(𝑓
𝑤
(𝑡) − 𝑓

(history)
𝑤

(𝑡))
2

,

where 𝑛𝑡 is time steps;

initial condition:

𝑆
𝑤

𝑖(0)

𝑗
= 𝑆
𝐼𝑤𝑗

, 𝑄
0

𝑗
= 0

0 ≤ 𝐾𝑟𝑜
𝑖

𝑗
< 1, 0 ≤ 𝐾𝑟𝑤

𝑖

𝑗
< 1
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Figure 1: Reservoir profile model.

𝐾
𝑟𝑤

(𝑆
𝑤
) = 𝑎
𝑤
(

𝑆
𝑤
− 𝑆
𝑤𝑐

1 − 𝑆
𝑤𝑐

− 𝑆
𝑜𝑟

)

𝑏
𝑤

𝐾
𝑟𝑜
(𝑆
𝑤
) = 𝑎
𝑜
(
1 − 𝑆
𝑜𝑟
− 𝑆
𝑤

1 − 𝑆
𝑤𝑐

− 𝑆
𝑜𝑟

)

𝑏
𝑜

if 𝑟
𝑒
> 𝑟
𝑤𝑓

𝑖

𝑗
, then 𝑆

𝑤

𝑖(𝑡)

𝑗
= 𝑆
𝐼𝑤𝑗

if 𝑟
𝑒
≤ 𝑟
𝑤𝑓

𝑖

𝑗
, then 𝑆

𝑤

𝑖(𝑡)

𝑗
= 𝑓
−1

𝑤

󸀠

(𝑆
𝑤
)

𝑓
𝑤
= 𝑓
𝑤
(𝑆
𝑤
) ;

mathematical model:

𝐾𝑟𝑜
𝑖

𝑗
= 𝐾𝑟𝑜 (𝑆

𝑤

𝑖(𝑡)

𝑗
) , 𝐾𝑟𝑤

𝑖

𝑗
= 𝐾𝑟𝑤 (𝑆

𝑤

𝑖(𝑡)

𝑗
)

𝑇
𝑖

𝑗
=

2𝜋ℎ
𝑗
𝐾
𝑗
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𝑗
)
(
𝐾
𝑟𝑜

𝑖

𝑗

𝜇
𝑜
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𝐾
𝑟𝑤

𝑖

𝑗

𝜇
𝑤

)

𝑇
𝑗
=

1

∑
𝑚

𝑖=1
(1/𝑇𝑖
𝑗
)
, 𝑇 =

𝑛

∑
𝑗=1

𝑇
𝑗
, 𝑄

𝑡

𝑗
=
𝑇
𝑗

𝑇
⋅ 𝑄
𝑡

𝑟
2

𝑒
− 𝑟
𝑖

𝑗

2

=
𝑓
𝑡

𝑤
(𝑆
𝑤

𝑖

𝑗
)
󸀠

𝑄
𝑡

𝑗

𝜙
𝑗
⋅ 𝜋ℎ
𝑗

, 𝑟
𝑤𝑓

2

𝑗
= 𝑟
2

𝑒
−
𝑓
𝑡

𝑤
(𝑆
𝑤𝑓

𝑖

𝑗
)
󸀠

𝑄
𝑡

𝑗

𝜙
𝑗
⋅ 𝜋ℎ
𝑗

𝑄
𝑡

𝑤𝑗
= 𝑄
𝑡

𝑗
⋅ 𝑓
𝑡

𝑤
(𝑆
1

𝑤𝑗
) , 𝑄

𝑡

𝑜𝑗
= 𝑄
𝑡

𝑗
⋅ (1 − 𝑓

𝑡

𝑤
(𝑆
1

𝑤𝑗
))

𝑄
𝑡

𝑤
=

𝑛

∑
𝑗=1

𝑄
𝑡

𝑤𝑗
, 𝑄

𝑡

𝑜
=

𝑛

∑
𝑗=1

𝑄
𝑡

𝑜𝑗
, 𝑓

𝑤
(𝑡) =

𝑄
𝑡

𝑤

𝑄𝑡
𝑤
+ 𝑄𝑡
𝑜

.

(1)

If we know the equations 𝐾
𝑟𝑤
(𝑆
𝑤
), 𝐾
𝑟𝑜
(𝑆
𝑤
), another

inverse problem model will be obtained as shown in (2).
The second question: an optimization distribution prob-

lem {𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑛
} and the standard deviation 𝜎.

The inverse problem mathematical model of the forma-
tion permeability is as follows:

objective function:

𝐸 = min
𝑛𝑡

∑
𝑡=1

(𝑓
𝑤
(𝑡) − 𝑓

(history)
𝑤

(𝑡))
2

,

where 𝑛𝑡 is time steps;

initial condition:

𝑆
𝑤

𝑖(0)

𝑗
= 𝑆
𝑤𝑐𝑗

, 𝑄
0

𝑗
= 0

𝑓 (𝐾
𝑗
) =

1

√2𝜋 ⋅ 𝜎
𝑒
−(ln𝐾

𝑗
−𝜇)
2

/2𝜎
2

𝜇 = Ln𝐾

if 𝑟
𝑒
> 𝑟
𝑤𝑓

𝑖

𝑗
, then 𝑆

𝑤

𝑖(𝑡)

𝑗
= 𝑆
𝑤𝑐𝑗

if 𝑟
𝑒
≤ 𝑟
𝑤𝑓

𝑖

𝑗
, then 𝑆

𝑤
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𝑗
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−1

𝑤

󸀠

(𝑆
𝑤
)

𝑓
𝑤
= 𝑓
𝑤
(𝑆
𝑤
)

mathematical model:

𝐾𝑟𝑜
𝑖

𝑗
= 𝐾𝑟𝑜 (𝑆

𝑤

𝑖(𝑡)

𝑗
) , 𝐾𝑟𝑤

𝑖

𝑗
= 𝐾𝑟𝑤 (𝑆

𝑤

𝑖(𝑡)

𝑗
)

𝑇
𝑖

𝑗
=

2𝜋ℎ
𝑗
𝐾
𝑗

ln (𝑟/𝑟𝑖
𝑗
)
(
𝐾
𝑟𝑜

𝑖

𝑗

𝜇
𝑜

+
𝐾
𝑟𝑤

𝑖

𝑗

𝜇
𝑤

)

𝑇
𝑗
=

1

∑
𝑚

𝑖=1
(1/𝑇𝑖
𝑗
)
, 𝑇 =

𝑛

∑
𝑗=1

𝑇
𝑗
, 𝑄

𝑡

𝑗
=
𝑇
𝑗

𝑇
⋅ 𝑄
𝑡

𝑟
2

𝑒
− 𝑟
𝑖

𝑗

2

=
𝑓
𝑡

𝑤
(𝑆
𝑤

𝑖

𝑗
)
󸀠

𝑄
𝑡

𝑗

𝜙
𝑗
⋅ 𝜋ℎ
𝑗

, 𝑟
𝑤𝑓

2

𝑗
= 𝑟
2

𝑒
−
𝑓
𝑡

𝑤
(𝑆
𝑤𝑓

𝑖

𝑗
)
󸀠

𝑄
𝑡

𝑗

𝜙
𝑗
⋅ 𝜋ℎ
𝑗

𝑄
𝑡

𝑤𝑗
= 𝑄
𝑡

𝑗
⋅ 𝑓
𝑡

𝑤
(𝑆
1

𝑤𝑗
) , 𝑄

𝑡

𝑜𝑗
= 𝑄
𝑡

𝑗
⋅ (1 − 𝑓

𝑡

𝑤
(𝑆
1

𝑤𝑗
))

𝑄
𝑡

𝑤
=

𝑛

∑
𝑗=1

𝑄
𝑡

𝑤𝑗
, 𝑄

𝑡

𝑜
=

𝑛

∑
𝑗=1

𝑄
𝑡

𝑜𝑗
, 𝑓

𝑤
(𝑡) =

𝑄
𝑡

𝑤

𝑄𝑡
𝑤
+ 𝑄𝑡
𝑜

.

(2)

Here, 𝑓(history)
𝑤

(𝑡) is history water cut and 𝑓
𝑤
(𝑡) is cal-

culation water cut; the first water cut is a known amount
from production and another is calculated by our inverse
problem models. Water cut means water production rate is a
key parameter in reservoir engineering, which can represent
water production capacity in reservoir development. If water
cut is too high, it may bring negative effects to reservoir
production. Therefore, the history matching for water pro-
duction rate plays an important role in reservoir dynamic
analysis and numerical simulation [4–6].

And thus 𝑖 = 1, 2, 3, . . . , 𝑚, 𝑗 = 1, 2, 3, . . . , 𝑛, 𝑚

is the average partition total, 𝑛 is the partition total, 𝑇
is grid conductivity, ℎ

𝑗
is each longitudinal layer stratum
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Figure 2: Radial flow unit model.

thickness, 𝐾
𝑗
is each longitudinal layer permeability, 𝜙

𝑗
is

each longitudinal layer porosity, 𝑆𝑖
𝑤𝑗

is grid water saturation
at different time, 𝑆

𝑤𝑐
is the initial water saturation, 𝐸 is

the objective function, 𝑟
𝑒
is reservoir radius, 𝐾 is average

permeability, 𝐾
𝑟𝑜

is oil relative permeability, 𝐾
𝑟𝑤

is water
relative permeability,𝑄

𝑡
is the total fluid production,𝑄𝑡

𝑤
is the

total water yield of fluid producing edge at different time, 𝑄𝑡
𝑜

is the total oil production of fluid producing edge at different
time, 𝑄𝑡

𝑗
is the total fluid production of each longitudinal

layer at different time, 𝑆
𝑤𝑓

is the frontier saturation, 𝑟
𝑤𝑓

is the
corresponding displacement of frontier saturation.

The inverse models (1) and (2) contain Buckley-Leverett
theory of two-phase flow [7] and establish the oil-water two-
phase plane radial flow function: 𝑟2

𝑒
− 𝑟
2
= 𝑓
󸀠

𝑤
⋅ 𝑄
𝑡
/𝜙 ⋅ 𝜋 ⋅ ℎ

without considering these factors of gravity and capillary
pressure; in addition, that shows the movement rules of
isosaturation surface. As said above, most researchers always
rely on forward problems [8] of core sampling experiment
and mathematical statistics for an answer, As a result, there
is always a large error between the calculation water cut and
the history water cut in reservoir water cut analysis. In this
paper, according to historical water cut and calculation water
cut to establish the objective function, 𝐸 = min∑𝑛𝑡

𝑡=1
(𝑓
𝑤
(𝑡) −

𝑓
(history)
𝑤

(𝑡))
2. By the end an inverse problem model on the

optimal solution distribution {𝑎
𝑤
, 𝑏
𝑤
, 𝑎
𝑜
, 𝑏
𝑜
} and oil-water

relative permeability equations 𝐾
𝑟𝑤
(𝑆
𝑤
), 𝐾
𝑟𝑜
(𝑆
𝑤
) based on

the Buckley-Leveret theory of two-phase flow can be realized,
and another inverse problem model was modeled under the
condition of the formation permeability logarithmic function
are always obey normal distribution, Finally, it can provide a
key information for reservoir numerical simulation studies.

2. Mathematical Model of Oil-Water
Two-Phase Plane Radial Flow

Theorem 1. Without considering these factors of gravity and
capillary pressure, through the Buckley-Leveret theory of two-
phase flow one established the oil-water two-phase plane radial
flow mathematical model:

𝑟
2

𝑒
− 𝑟
2
=
𝑓
󸀠

𝑤
⋅ 𝑄
𝑡

𝜙 ⋅ 𝜋ℎ
. (3)

Proof. We suppose the liquid flow rule is a plane radial flow
from reservoir limit to well and choose a volume element in
the vertical direction of streamline, as shown in Figure 2.

According to the seepage principle [9], we can get a flow
equation of the volume element:

𝑞
𝑤
= 𝑞 ⋅ 𝑓

𝑤
. (4)

In the 𝑑𝑡 time, the flow volume of the volume element is

𝑄out = 𝑑𝑞
𝑤
⋅ 𝑑𝑡. (5)

We can derive from (4) and (5) that

𝑄out = 𝑞 ⋅ 𝑑𝑓
𝑤
⋅ 𝑑𝑡. (6)

Meanwhile, the inflow volume of the volume element is

𝑄in = 𝜙 ⋅ 2𝜋ℎ ⋅ 𝑟𝑑𝑟 ⋅ 𝑑𝑠
𝑤
. (7)

In the 𝑑𝑡 time, relying on the Buckley-Leveret theory of
two-phase flow, 𝑄in = 𝑄out. from (6) and (7), we have that
𝑞 ⋅ 𝑑𝑓
𝑤
⋅ 𝑑𝑡 = 𝜙 ⋅ 2𝜋ℎ ⋅ 𝑟𝑑𝑟 ⋅ 𝑑𝑆𝑤 as follows:

𝑞 ⋅
𝑑𝑓
𝑤

𝑑𝑆𝑤
⋅ 𝑑𝑡 = 𝜙 ⋅ 2𝜋ℎ ⋅ 𝑟𝑑𝑟. (8)

From 𝑓
𝑤
= 𝑓
𝑤
(𝑆
𝑤
), we can get that 𝑓󸀠

𝑤
= 𝑑𝑓
𝑤
/𝑑𝑆
𝑤
.

Then deriving from (8) that 𝑞 ⋅𝑑𝑓
𝑤
(𝑆𝑤) ⋅𝑑𝑡 = 𝜙 ⋅2𝜋ℎ ⋅𝑟𝑑𝑟,

after infinitesimal calculus, we obtain

𝑓
󸀠

𝑤
∫
𝑡

0

𝑞 ⋅ 𝑑𝑡 = 𝜙 ⋅ 2𝜋ℎ ⋅ ∫
𝑟
𝑒

𝑟

𝑟𝑑𝑟. (9)

If𝑄𝑡 = ∫
𝑡

0
𝑞 ⋅𝑑𝑡, then (9) turns to𝑓󸀠

𝑤
⋅𝑄
𝑡
= 𝜙⋅𝜋ℎ ⋅ (𝑟

2

𝑒
−𝑟
2
).

We obtain

𝑟
2

𝑒
− 𝑟
2
=
𝑓
󸀠

𝑤
⋅ 𝑄
𝑡

𝜙 ⋅ 𝜋ℎ
. (10)

From the reservoir profile grid model, the plane radial flow
model of the grids in the longitudinal each layer can shows
that

𝑟
2

𝑒
− 𝑟
𝑖

𝑗

2

=
𝑓
𝑡

𝑤
(𝑆
𝑤

𝑖

𝑗
)
󸀠

𝑄
𝑡

𝑗

𝜙
𝑗
⋅ 𝜋ℎ
𝑗

. (11)

Theorem 2. A special saturation definition about “𝑆
𝑤𝑓
”: from

the water cut function curve 𝑓
𝑤

= 𝑓
𝑤
(𝑆
𝑤
), selecting the

point of the irreducible water saturation as a fixed point and
joining any other point on the curve, and constructing function
𝑘(𝑆
𝑤𝑓
) = (𝑓

𝑤
(𝑆
𝑤𝑓
)−𝑓
𝑤
(𝑆
𝑤1
))/(𝑆
𝑤𝑓
−𝑆
𝑤1
), ifMax{𝑘(𝑆

𝑤𝑓
)}, then

one can call “𝑆
𝑤𝑓
” frontier saturation. Now the corresponding

displacement of frontier saturation 𝑟
𝑤𝑓

is

𝑟
𝑤𝑓

2

𝑗
= 𝑟
2

𝑒
−
𝑓
𝑡

𝑤
(𝑆
𝑤𝑓

𝑖

𝑗
)
󸀠

𝑄
𝑡

𝑗

𝜙
𝑗
⋅ 𝜋ℎ
𝑗

. (12)
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3. The Inverse Problem Model on Oil-Water
Relative Permeability

3.1. The Oil-Water Relative Permeability Equations. In the
reservoir engineering, the different lithological character has
the different corresponding oil-water relative permeability
curve equations [10], but the most commonly form is used
as a kind of the exponential form expression, as follows:

𝐾
𝑟𝑤

(𝑆
𝑤
) = 𝑎
𝑤
(

𝑆
𝑤
− 𝑆
𝑤𝑐

1 − 𝑆
𝑤𝑐

− 𝑆
𝑜𝑟

)

𝑏
𝑤

,

𝐾
𝑟𝑜
(𝑆
𝑤
) = 𝑎
𝑜
(
1 − 𝑆
𝑜𝑟
− 𝑆
𝑤

1 − 𝑆
𝑤𝑐

− 𝑆
𝑜𝑟

)

𝑏
𝑜

.

(13)

In reservoir profile grid model, the oil-water relative perme-
ability curve equations of each grid can be showed:

𝐾
𝑟𝑤

(𝑆
𝑖

𝑤𝑗
) = 𝑎
𝑤
(

𝑆
𝑖

𝑤𝑗
− 𝑆
𝑤𝑐

1 − 𝑆
𝑤𝑐

− 𝑆
𝑜𝑟

)

𝑏
𝑤

,

𝐾
𝑟𝑜
(𝑆
𝑖

𝑤𝑗
) = 𝑎
𝑜
(
1 − 𝑆
𝑜𝑟
− 𝑆
𝑖

𝑤𝑗

1 − 𝑆
𝑤𝑐

− 𝑆
𝑜𝑟

)

𝑏
𝑜

.

(14)

In the equations, we can know different {𝑎
𝑤
, 𝑏
𝑤
, 𝑎
𝑜
, 𝑏
𝑜
} corre-

sponding to its own 𝐾
𝑟𝑤
(𝑆
𝑤
), 𝐾
𝑟𝑜
(𝑆
𝑤
).

3.2. The Inverse Problem Mathematical Model of Oil-Water
Relative Permeability Equations

Theorem 3. If the oil-water relative permeability equations
𝐾
𝑟𝑤
(𝑆
𝑤
), 𝐾
𝑟𝑜
(𝑆
𝑤
) always obey (13) and one can calculate the

water cut 𝑓
𝑤
(𝑡) based on the model of the Theorem 1, if the

objective function 𝐸 = min∑𝑛𝑡
𝑡=1

(𝑓
𝑤
(𝑡) − 𝑓

(history)
𝑤

(𝑡))
2 can

be satisfied, then the inverse problem model (1) will have the
optimal solution of the distribution {𝑎

𝑤
, 𝑏
𝑤
, 𝑎
𝑜
, 𝑏
𝑜
} and oil-

water relative permeability equations 𝐾
𝑟𝑤
(𝑆
𝑤
), 𝐾
𝑟𝑜
(𝑆
𝑤
).

Proof. Relying on oil-water relative permeability equations
(14) and the conductivity definition of numerical reservoir
simulation [11], we get the following:

initial value: 𝑎
0

𝑤
, 𝑏
0

𝑤
, 𝑎
0

𝑜
, 𝑏
0

𝑜
,

𝐾
𝑟𝑤

(𝑆
𝑤
) = 𝑎
0

𝑤
(

𝑆
𝑤
− 𝑆
𝑤𝑐

1 − 𝑆
𝑤𝑐

− 𝑆
𝑜𝑟

)

𝑏
0

𝑤

𝐾
𝑟𝑜
(𝑆
𝑤
) = 𝑎
0

𝑜
(
1 − 𝑆
𝑜𝑟
− 𝑆
𝑤

1 − 𝑆
𝑤𝑐

− 𝑆
𝑜𝑟

)

𝑏
0

𝑜

𝑇
𝑖

𝑗
=

2𝜋ℎ
𝑗
𝐾
𝑗

ln (𝑟/𝑟𝑖
𝑗
)
(
𝐾
𝑟𝑜

𝑖

𝑗

𝜇
𝑜

+
𝐾
𝑟𝑤

𝑖

𝑗

𝜇
𝑤

)

𝑇
𝑗
=

1

∑
𝑚

𝑖=1
(1/𝑇𝑖
𝑗
)
, 𝑇 =

𝑛

∑
𝑗=1

𝑇
𝑗
,

𝑄
𝑡

𝑗
=
𝑇
𝑗

𝑇
⋅ 𝑄
𝑡
.

(15)

We can derive from (12) and (15): 𝑟
𝑤𝑓
.

If 𝑟
𝑒
> 𝑟
𝑤𝑓
, then 𝑆

𝑤

𝑖(𝑡)

𝑗
= 𝑆
𝑤𝑐𝑗

. If 𝑟
𝑒
≤ 𝑟
𝑤𝑓

solved inverse
function of (11) and calculated water saturation of the fluid
producing edge, then 𝑆

𝑤

𝑖(𝑡)

𝑗
= 𝑓
−1

𝑤

󸀠

(𝑆
𝑤
), and so forth 𝑖 = 1.

If we obtain the value of the water saturation [12], relying
on the function 𝑓

𝑤
(𝑆
𝑤
) ∼ 𝑆

𝑤
, we can calculate the value

of the longitudinal each layer water cut: 𝑓𝑡
𝑤
(𝑆
1

𝑤𝑗
) and the

constructing mathematic model as follows

𝑄
𝑡

𝑤𝑗
= 𝑄
𝑡

𝑗
⋅ 𝑓
𝑡

𝑤
(𝑆
1

𝑤𝑗
) ,

𝑄
𝑡

𝑜𝑗
= 𝑄
𝑡

𝑗
⋅ (1 − 𝑓

𝑡

𝑤
(𝑆
1

𝑤𝑗
)) ,

𝑄
𝑡

𝑤
=

𝑛

∑
𝑗=1

𝑄
𝑡

𝑤𝑗
, 𝑄

𝑡

𝑜
=

𝑛

∑
𝑗=1

𝑄
𝑡

𝑜𝑗
,

𝑓
𝑤
(𝑡) =

𝑄
𝑡

𝑤

𝑄𝑡
𝑤
+ 𝑄𝑡
𝑜

.

(16)

From (16) we can calculate the total water cut of the fluid
producing edge 𝑓

𝑤
(𝑡) and rely on the objective function: 𝐸 =

min∑𝑛𝑡
𝑡=1

(𝑓
𝑤
(𝑡) − 𝑓

(history)
𝑤

(𝑡))
2 with numerical optimization

calculation in the inverse problem model; an optimization
problem of the distribution {𝑎

𝑤
, 𝑏
𝑤
, 𝑎
𝑜
, 𝑏
𝑜
} will be obtained,

so the 𝐾
𝑟𝑤
(𝑆
𝑤
) and 𝐾

𝑟𝑜
(𝑆
𝑤
) can be formed. The proof of

Theorem 3 is completed.

4. The Inverse Problem Model on the
Formation Permeability Logarithmic
Function Always Obey Normal Distribution

Theorem 4. If the formation permeability logarithmic func-
tion distribution {Ln𝐾

1
, Ln𝐾

2
, . . . , Ln𝐾

𝑛
} always obey nor-

mal distribution 𝑓(𝐾) = (1/√2𝜋 ⋅ 𝜎)𝑒
−(ln𝐾−𝜇)2/2𝜎2 , 𝜇 =

Ln𝐾, meanwhile, one calculates the value of the 𝑓
𝑤
(𝑡) based

on the model of Theorem 1, which can be adapted to the
objective function 𝐸 = min∑𝑛𝑡

𝑡=1
(𝑓
𝑤
(𝑡)−𝑓

(history)
𝑤

(𝑡))
2; then the

inverse problem model (2) will have the optimal distribution
{Ln𝐾

1
, Ln𝐾

2
, . . . , Ln𝐾

𝑛
} and {𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑛
}.

Proof. According to 3𝜎 principle: for normal distribution
curve, if 𝑃(𝜇−3𝜎−𝑎 < 𝑋 ≤ 𝜇+3𝜎+𝑎) → 1, then there are a
left end point value and a right end point value on the curve;
the𝑋 value of the left end point is ln𝐾min, or 𝜇 − 3𝜎 − 𝑎. The
𝑋 value of the right end point is ln𝐾max, or 𝜇 + 3𝜎 + 𝑎. And
thus 𝑎 > 0 and 𝜇 = ln𝐾 = 0.5 ⋅ (ln𝐾min + ln𝐾max).

According to the area superposition principle of normal
distribution curve, Select 𝑥 = ln𝐾 as the starting point, step
size Δ𝑥 and make a subdivision for probability curve; if the
area summation of these formed closed figures can infinitely
approach 1, then we can obtain the ln𝐾min value of the left
end point and the ln𝐾max value of the right end point, and
ln𝐾max = 2 ⋅ ln𝐾 − ln𝐾min.

According to the area superposition principle of normal
distribution curve and giving a initial value 𝜎 of normal
distribution, then𝑋

0
= ln𝐾min, and𝑋𝑛 = ln𝐾max. 𝐹(𝑋𝑗) is a

cumulative distribution function of the normal distribution
[13]. If we use equal step size Δ𝑋 make a subdivision for
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probability curve, then the area summation of every closed
figures 𝑆

𝑗
= 𝐹(𝑋

𝑗
) −𝐹(𝑋

𝑗−1
), each longitudinal layer stratum

thickness ℎ
𝑗
= ℎ ⋅ 𝑆

𝑗
, and 𝑋

𝑗
= Δ𝑋 ⋅ 𝑗 + 𝑋

0
, 𝐾
𝑗
= 𝑒
𝑋
𝑗 ;

if we use equal area Δ𝑆 make a subdivision for probability
curve, then the area summation of every closed figures 𝑆

𝑗
=

𝐹(𝑋
𝑗
)−𝐹(𝑋

𝑗−1
), 𝑆
𝑗
= Δ𝑆 = 1/𝑛, ℎ

𝑗
= ℎ⋅𝑆

𝑗
, and𝑋

𝑗
= 𝐹
−1
(𝑆
𝑗
),

𝐾
𝑗
= 𝑒
𝑋
𝑗 . And thus 𝑗 = 1, 2, 3, . . . , 𝑛 (𝑛 is the total number of

vertical stratification).
Relying on the distribution {𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑛
}, oil-water

relative permeability functions: 𝑘𝑟𝑜 = 𝑘𝑟𝑜(𝑆
𝑤
), 𝑘𝑟𝑤 =

𝑘𝑟𝑤(𝑆
𝑤
) [14], the conductivity definition of numerical reser-

voir simulation, we get the following equations:

𝑘𝑟𝑜
𝑖

𝑗
= 𝑘𝑟𝑜 (𝑆

𝑤

𝑖(𝑡)

𝑗
) , 𝑘𝑟𝑤

𝑖

𝑗
= 𝑘𝑟𝑤 (𝑆

𝑤

𝑖(𝑡)

𝑗
)

𝑇
𝑖

𝑗
=

2𝜋ℎ
𝑗
𝐾
𝑗

ln (𝑟/𝑟𝑖
𝑗
)
(
𝐾
𝑟𝑜

𝑖

𝑗

𝜇
𝑜

+
𝐾
𝑟𝑤

𝑖

𝑗

𝜇
𝑤

)

𝑇
𝑗
=

1

∑
𝑚

𝑖=1
(1/𝑇𝑖
𝑗
)
, 𝑇 =

𝑛

∑
𝑗=1

𝑇
𝑗

𝑄
𝑡

𝑗
=
𝑇
𝑗

𝑇
⋅ 𝑄
𝑡
.

(17)

We can derive from (12) and (17) that 𝑟
𝑤𝑓𝑗

.
If 𝑟
𝑒

≤ 𝑟
𝑤𝑓𝑗

, solving inverse function of (11) and
calculating water saturation of the fluid producing edge, then
𝑆
𝑤

𝑖(𝑡)

𝑗
= 𝐹
−1
(𝑟
𝑖

𝑗
, 𝜙
𝑗
, ℎ
𝑗
, 𝑄
𝑡

𝑗
), and thus 𝑖 = 1. If 𝑟

𝑒
> 𝑟
𝑤𝑓𝑗

, then

𝑆
𝑤

𝑖(𝑡)

𝑗
= 𝑆
𝑤𝑐𝑗

, and thus 𝑖 = 1.
If we obtain the value of the water saturation (𝑆

𝑤
), relying

on the function𝑓
𝑤
(𝑆
𝑤
) ∼ 𝑆
𝑤
, we can calculate the value of the

longitudinal each layer water cut: 𝑓𝑡
𝑤
(𝑆
1

𝑤𝑗
); then mathematic

model can be constructed as follows:

𝑄
𝑡

𝑤𝑗
= 𝑄
𝑡

𝑗
⋅ 𝑓
𝑡

𝑤
(𝑆
1

𝑤𝑗
) , 𝑄

𝑡

𝑜𝑗
= 𝑄
𝑡

𝑗
⋅ (1 − 𝑓

𝑡

𝑤
(𝑆
1

𝑤𝑗
))

𝑄
𝑡

𝑤
=

𝑛

∑
𝑗=1

𝑄
𝑡

𝑤𝑗
, 𝑄

𝑡

𝑜
=

𝑛

∑
𝑗=1

𝑄
𝑡

𝑜𝑗

𝑓
𝑤
(𝑡) =

𝑄
𝑡

𝑤

(𝑄𝑡
𝑤
+ 𝑄𝑡
𝑜
)
.

(18)

Equation (18) can calculate the total water cut of the fluid
producing edge: 𝑓

𝑤
(𝑡) and relies on the objective function:

𝐸 = min∑𝑛𝑡
𝑡=1

(𝑓
𝑤
(𝑡)−𝑓

(history)
𝑤

(𝑡))
2.With numerical optimiza-

tion calculation in the inverse problem model, the standard
deviation 𝜎 and an optimization problem of the distribution
{Ln𝐾
1
, Ln𝐾
2
, . . . , Ln𝐾

𝑛
} will be obtained, so the distribution

{𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑛
} will be given. The proof of Theorem 4 is

completed.

5. Discussions and Conclusions

The different distribution {𝑎
𝑤
, 𝑏
𝑤
, 𝑎
𝑜
, 𝑏
𝑜
} corresponds to a

group of oil-water relative permeability equations 𝐾
𝑟𝑤
(𝑆
𝑤
)

and 𝐾
𝑟𝑜
(𝑆
𝑤
). Combining with the objective function

𝐸 = min∑𝑛𝑡
𝑡=1

(𝑓
𝑤
(𝑡) − 𝑓

(history)
𝑤

(𝑡))
2 through the optimization

solution method, it will finally bring a set of the optimum
distribution {𝑎

𝑤
, 𝑏
𝑤
, 𝑎
𝑜
, 𝑏
𝑜
} and the oil-water relative

permeability equations𝐾
𝑟𝑤
(𝑆
𝑤
) and𝐾

𝑟𝑜
(𝑆
𝑤
).

According to the above inverse problem mathematical
model, based on the definition of the normal distribution,
different (𝜇

𝑖
, 𝜎
2

𝑖
) corresponds to its own normal distribution

curve with the certain expectation 𝜇
𝑖
. If 𝜎

𝑖
goes up, the

volatility of its normal distribution will be stronger according
to the definition of standard deviation, which will finally lead
to the large differential permeability distribution, namely,
the strong heterogeneity. With the certain expectation 𝜇

𝑖
,

each different value of 𝜎
𝑖
corresponds to a group of original

values of (𝜇
𝑖
, 𝜎
2

𝑖
), which will yield a group of values of

{𝐾
1
, 𝐾
2
, . . . 𝐾

𝑛−1
, 𝐾
𝑛
}, namely, the value of permeability of

each single formation. And it will also work out liquid
production, water production, and integrated water cut of the
whole liquid outlet of each single formation. Combining with
the objective function 𝐸 = min∑𝑛𝑡

𝑡=1
(𝑓
𝑤
(𝑡) − 𝑓

(history)
𝑤

(𝑡))
2,

it will finally bring a set of optimum normal distributions
of 𝑋 ∼ (𝜇

𝑖
, 𝜎
2

𝑖
) (Etc. 𝑋 = ln𝐾) through the optimization

solution method. Analysis of the changes of water driving
place, oil production, and water production can be done
through the related mathematical model.

Finally, the idea of constructing inverse problem models,
according to the historical dynamic production data, can
be realized, which attaches great importance to formation
heterogeneity, observation of water flooding front position,
and prediction of dynamic producing performance.
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