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The forced Korteweg-de Vries (fKdV) equations are solved using Homotopy Analysis Method (HAM). HAM is an approximate
analytical techniquewhich provides a novel way to obtain series solutions of such nonlinear problems. It has the auxiliary parameter
ℎ, where it is easy to adjust and control the convergence region of the series solution. Some examples of forcing terms are employed
to analyse the behaviours of the HAM solutions for the different fKdV equations. Finally, this form of HAM solution is compared
with the analytical soliton-type solution of fKdV equation as derived by Zhao andGuo.The results is found to be in good agreement
with Zhao and Guo.

1. Introduction

An analytical model of Tsunami propagation was proposed
by Pelinovsky et al. [1] as follows:
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where 𝜂 = 𝜂(𝑥, 𝑡) refers to the elevation of free water surface,
𝑧 = 𝑧(𝑥, 𝑡) represents the solid bottom, ℎ is assumed to be
the constant mean water depth, and 𝑐 ≈ √𝑔ℎ is the long wave
speed with 𝑔 being gravity acceleration. If the right-hand side
of (1), that is, 𝜕𝑓/𝜕𝑥 = 0, then (1) will be the Korteweg-
de Vries equation which is completely integrable [2]. But if
𝜕𝑓/𝜕𝑥 ̸= 0, then the equation is difficult to be integrable where
the term 𝜕𝑓/𝜕𝑥 is called forcing term.Therefore, (1) is known
as “KdV equation with forcing term” or “forced KdV (fKdV)”
equation [3].

The fKdV equation to be considered in this paper is as
follows:
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where 𝛼 and 𝛽 are constant.
This form (3) is an alternative approach in describ-

ing the governing equations for the basic hydrodynamic
model of Tsunami generation, for example, by atmospheric
disturbances (Akylas [4] and Nosov and Skachko [5]).
The appropriate evolution equation, which asymptotically
approximates the Boussinesq equation, leads to this fKdV
equation (3).The forcing term in the fKdV can be assumed to
be derivable from atmospheric disturbances. Various forms
of this equation have been extensively studied (see Grimshaw
et al. [6], Pelinovsky et al. [7]) and numerical results show
that the solution contains the set of solitary waves. Evidently,
the behaviour of Tsunami waves on the open ocean is
considerablymore complicated than the solitary wavemodel;
nonetheless this fKdV equation has been used in Yaacob et
al. [8] as a simple mathematical model that could describe
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the Tsunami waves modelling. In the present paper, the
above-mentioned considerations motivate us to investigate
the approximate analytical solutions of the fKdV equation by
using HAM.

Up to now, to the best of our knowledge, the solutions
of fKdV equation of (3) can only be obtained by numerical
or perturbation techniques [3, 9, 10]. Recently, the analytical
solution of fKdV equationwith a certain form of forcing term
has been solved by Zhao and Guo [3], using Hirota direct
method. Thus the main reason of this work is to solve fKdV
equation by using the homotopy analysis method (HAM)
for various forcing terms, including in [3]. This approximate
analytical HAM solution will be used to be compared with
the analytical soliton-type solution of Zhao and Guo [3].This
analysis would in a way demonstrate the effectiveness and the
potential of HAM to solve difficult nonlinear equations.

The homotopy analysis method (HAM) is an analytic
method to solve nonlinear partial differential problems,
which was first introduced by Liao in 1992 [11]. It is known
that HAM has greater flexibility in the selection of a proper
set of base functions for the solution and a much simpler way
in the control of the convergence rate and region compared
to perturbation approach [12–19]. Furthermore, this analytic
technique does not have restriction of nonperturbationmeth-
ods, such as Lyapunov’s artificial small parametermethod, the
𝛿-expansion method, and Adomian’s decomposition method
[20]. The analytic technique had been applied successfully
in many nonlinear problems in engineering and science
[21, 22], for example, the magnetohydrodynamic flows of
non-Newtonian fluids over a stretching sheet [23], nonlinear
progressive waves [24], free oscillations of positively damped
systemswith algebraically decaying amplitude [25], free oscil-
lations of self-excited systems [26], and similarity boundary
layer equations [27].

The paper is organized as follows. The HAM of the
fKdV equation (3) is presented in Section 2. Section 3 briefly
illustrates the HAM solution of KdV equation. Section 4
is divided into 2 parts. The first (Section 4.1) discusses the
concept of HAM and is followed by some examples of
external forces employed on the fKdV equation. Meanwhile,
Section 4.2 compares the results of the analytical solution of
[3] with the generatedHAMsolution. Conclusion is concisely
laid out in Section 5.

2. Basic Ideas of HAM

We consider differential equation in the form of 𝑢(𝑟, 𝑡),

𝑁[𝑢 (𝑟, 𝑡)] = 0, (4)

where𝑁 is the nonlinear operator and 𝑢(𝑟, 𝑡) is the unknown
function.

Using concept of HAM, we construct the so-called
zeroth-order deformation equation
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an auxiliary parameter with condition, ℎ ̸= 0;𝐻, an auxiliary

function; ℓ, an auxiliary linear operator; 𝑞, an embedding
parameter with condition, 𝑞 ∈ [0, 1].
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and when 𝑞 = 1, it holds for 𝜑(𝑟, 𝑡; 1) = 𝑢(𝑟, 𝑡). As 𝑞 increases
from 0 to 1, the solution of 𝑢(𝑟, 𝑡, 𝑞) varies from the initial
guess, 𝑢

0
(𝑟, 𝑡), to the exact solution, 𝑢(𝑟, 𝑡).
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Let us define the following vectors:
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Differentiating the zeroth-order deformation equation (5)
𝑚-times with respect to the embedding parameter 𝑞 and
dividing it by 𝑚! and finally letting 𝑞 = 0, we obtain the
following𝑚th-order deformation equation:
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It is noted that HAM contains control-convergence param-
eter ℎ where it provides an easy way to adjust and control
the convergence region. This can be done by plotting the ℎ-
curves.

3. HAM Solution on KdV

When the forcing termof (3) becomes zero, then the equation
becomes the Korteweg-de Vries (KdV) equation. Wazwaz [2]
gave a form of the exact solution of KdV equation. Nazari
et al. [28] used HAM to obtain a comparable approximate
analytical solution of the KdV equation, which is in good
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Figure 1: The HAM solution of KdV whereby forcing term is zero.

agreement with Wazwaz’s exact solution of KdV equation.
Figure 1 is given the graphical representation of the HAM
solution of KdV equation, where the forcing term of (3) is
zero; 𝜕𝑓/𝜕𝑥 = 0.

Further to this research output, we will now apply HAM
to solve different fKdV equations based on various forcing
terms.

4. Approximate Analytical Solution
for fKdV Using HAM

For HAM, the zeroth-order deformation equation is given by

(1 − 𝑞) ℓ [𝑢 (𝑥, 𝑡; 𝑞) − 𝑢
0
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(12)

and we use
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where 𝑐 is constant.
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Figure 2: The ℎ-curves according to 10th-order approximation.
Dashed point: 𝑢(0.01, 0.01), solid line: �̇�(0.01, 0.01), and dashed line:
�̈�(0.01, 0.01).

with

𝑢
𝑚
(𝑥, 0) = 0 for 𝑚 > 1. (17)

4.1. UsingDifferent Forcing Terms for fKdV. For simplicity, we
let 𝛼 = −6 and 𝛽 = 1 for all the cases studied below.

4.1.1. Forcing Term, 𝜕𝑓/𝜕𝑥=𝑥2. Consider the nonlinear KdV
equation with the quadratic term 𝑥

2 as the forcing term.
Then (3) is simplified as follows:
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In this paper, MATHEMATICA© is used to solve the
nonlinear differential equation (16) for the case 𝜕𝑓/𝜕𝑥 = 𝑥

2.
It is found that the solution for 10th-order approximation

is

𝑢 (𝑥, 𝑡) = −
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2

−
ℎ𝑡 (2𝑒
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2
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2
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2𝑥
𝑥
2
+ 𝑒
3𝑥
𝑥
2
)

(1 + 𝑒𝑥)
3

+ ⋅ ⋅ ⋅ .

(19)

Liao [11] pointed out that the valid region of ℎ is a
horizontal line segment. Looking at ℎ-curves in Figure 2, the
valid region of convergence interval is −1.5 < ℎ < −0.4.
We choose three different values of ℎ in the valid interval.
The outcomes for the first case are shown in Figure 3.

The HAM solution at 10th-order approximation is pre-
sented with various values of ℎ, where convergence interval
is shown in Figure 3. Figures 3(a) and 3(b) obtained for ℎ =

−0.6, where the interval for Figure 3(a) is 0 ≤ 𝑡 ≤ 0.2 and
for Figure 3(b) is 0 ≤ 𝑡 ≤ 0.3, respectively. It is observed
that there is a slight formation on the waves when time had
been increased from 𝑡 is 0.2 s to 0.3 s. The phenomenon is
similar to the result for ℎ = −1 of Figures 3(c) and 3(d).
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Figure 3:TheHAMsolution at 10th-order approximationwith different convergence values of ℎ. (a and b) for ℎ = −0.6, (c and d) for ℎ = −1.0,
and (e and f) for ℎ = −1.4.
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Figure 4: The ℎ-curves according to 9th-order approximation.
Dashed point: 𝑢(0.01, 0.01), solid line: �̇�(0.01, 0.01), and dashed line:
�̈�(0.01, 0.01).

It is noted that the wave is normal with no turbulence in
Figure 3(e) where then ℎ value is chosen to be 1.4. Comparing
Figures 3(e) and 3(f) with the same value of ℎ, it is observed
that the wave exhibits anomalous behaviour when time is
increased. For all cases above, we found that the wave displays
certain chaotic manner when we increase the time. Figure 3
shows clearly that the wave changes in abnormal mode
corresponding to the quadratic force in the right-hand side
of (18).

4.1.2. Forcing Term, 𝜕𝑓/𝜕𝑥 = sin(x). Consider the nonlinear
KdV equation with the quadratic term sin(𝑥) as the forcing
term.
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Figure 5: The HAM solution at 9th-order approximation with different convergence values of ℎ. (a, b, c, and d) for ℎ = −0.3, (e and f) for
ℎ = −1.0, and (g and h) for ℎ = −1.7.
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Figure 6: The ℎ-curves according to 17th-order approximation.
Dashed point: 𝑢(0.01, 0.01), solid line: �̇�(0.01, 0.01), and dashed line:
�̈�(0.01, 0.01).

The fKdV equation is as follows:

𝜕𝑢

𝜕𝑡
− 6𝑢

𝜕𝑢

𝜕𝑥
+
𝜕
3
𝑢

𝜕𝑥3
= sin (𝑥) . (20)

Similarly MATHEMATICA© is used to solve the nonlinear
differential equation (16) for the case 𝜕𝑓/𝜕𝑥 = sin(𝑥).

The solution at 9th-order approximation is

𝑢 (𝑥, 𝑡) = −
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(1 + 𝑒𝑥)
2

− ℎ𝑡 (2𝑒
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𝑥 sin (𝑥)

+ 3𝑒
2𝑥 sin (𝑥) + 𝑒

3𝑥 sin (𝑥))

× ((1 + 𝑒
𝑥
)
3
)
−1

+ ⋅ ⋅ ⋅ .

(21)

Liao [11] pointed out that the horizontal line segment will
be the valid region of ℎ. Based on Figure 4, the admissible
interval will be −1.7 < ℎ < −0.3, so we choose ℎ = −0.3,
ℎ = −1, and ℎ = −1.7.

The outcomes for the sin(𝑥) force term are shown in
Figure 5.

Figure 5 shows the HAM solution at 9th-order approxi-
mation with three different convergent values of ℎ. Figures
5(a), 5(b), 5(c), and 5(d) are the outcomes for different
intervals of time less than ℎ = −0.3. The interval for
Figure 5(a) is 0 ≤ 𝑡 ≤ 0.1 and the wave portrays a
normal wave without any disturbance. The wave seems to be
disturbed and the transition seen clearly in Figures 5(b) and
5(c) after the time is increased. In Figure 5(d), the time is
increased to 0.7 s and it is observed that the wave starts to
fluctuate. Upon considering ℎ = −1, the output is shown in
Figures 5(e) and 5(f) where the suddenness and large energy
of waves are created in short period of time. Figures 5(g) and
5(h) are the outcomes of ℎ = −1.7 for 0 ≤ 𝑡 ≤ 0.06 and 0 ≤ 𝑡 ≤

0.1 where the waves are compressed and propagate in short
time. As a whole it can be concluded that the wave changes
tremendously over time with the sine force incorporated in
fKdV equation.

4.1.3. Forcing Term, 𝜕𝑓/𝜕𝑥 = 𝑒
𝑥. Consider the nonlinear

KdV equation with the quadratic term 𝑒
𝑥 as the forcing term.

The fKdV equation is as follows:
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𝑥
. (22)

Similarly MATHEMATICA© is used to solve the nonlinear
differential equation (16) for the case 𝜕𝑓/𝜕𝑥 = 𝑒

𝑥.
The solution at 17th-order approximation is
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ℎ𝑡 + 𝑒

4𝑥
ℎ𝑡) + ⋅ ⋅ ⋅ .

(23)

Based on Figure 6, the accepted convergence interval will be
−1.7 ≤ ℎ ≤ −0.5. For further deliberation, the convergence
values of ℎ are chosen as, ℎ = −0.5, ℎ = −1, and ℎ = −1.7.

The outcomes for the 𝑒𝑥 force term are shown in Figure 7.
Figure 7 presents the solution of HAM at 17th-order

approximationwith different convergence values of ℎ. Figures
7(a) and 7(b) are observed for ℎ = −0.5 under the time
interval of 0 ≤ 𝑡 ≤ 0.001 and 0 ≤ 𝑡 ≤ 0.05, respectively. The
wave is undisturbed when 𝑡 is 0.001 s but the wave changes
over time. This similar scenario occurs in Figure 7(c), upon
using ℎ = −1.0. When ℎ = −1.7 is used the outcome is
depicted in Figure 7(d) for the interval of 0 ≤ 𝑡 ≤ 0.01.
It is found that the wave steadily rises over at a point in
Figure 7(d).

4.2. Comparison of fKdV HAM Solution with Zhao and
Guo’s Analytical Solution. In 2009, Zhao and Guo [3] gave
a number of analytical solutions corresponding to the fKdV
equation by using Hirota’s direct method. In this paper,
we will compare the analytical solution of [3] with the
corresponding HAM solution. This comparison would again
reveal the effectiveness andpotential ofHAMto solve difficult
nonlinear equations.

The fKdV equation used in [3] is as follows:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝜆

𝜕
3
𝑢

𝜕𝑥3
= 𝜑

𝜕𝑓

𝜕𝑥
(24)

with

𝑓 =
12𝑘𝜆

𝜑
(𝑘
3
(4𝜆 − 𝜙) −

𝜕𝑎 (𝑡)

𝜕𝑡
)

× sech2 (𝑘 (𝑥 − 𝜙𝑘
2
𝑡) − 𝑎 (𝑡)) ,

(25)

𝑎 (𝑡) = 𝑏 arctan (𝐴𝑡) + 𝑏
1
𝑡 + 𝑏
0
. (26)
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Figure 7:The HAM solution at 17th-order approximation with different convergence values of ℎ. (a and b) for ℎ = −0.5, (c) for ℎ = −1.0, and
(d) for ℎ = −1.7.

The parameters chosen by Zhao and Guo [3] and the
same input are used in our HAM procedure and are shown
in Figure 8, that are

𝑘 = 1, 𝜙 = 4, 𝜆 =
1

4
, 𝜑 = 2,

𝐴 = 3, 𝑏 = −1, 𝑏
1
= −3, 𝑏

0
= 0.

(27)

Figure 8 shows the comparison between the graphs of ana-
lytical solution of [3] with the HAM solution. Due to very
high computational and some limitations on technologies
being used, we have simplified (25), by making the term 𝑡 as
constant in the forcing term. For purpose of comparison with
the result of [3], we have chosen to show four cases at 𝑡 =
0.25 s, 0.5 s, 0.75 s, and 1 s. It should be noted that, since the
time has been fixed as constant in the right-hand side term,
then for each case of different ℎ, the ensuing different orders
of approximation are obtained. HAM solution shows perfect
agreement at 𝑢(𝑥, 1) with the analytical solution of [3]. As a
whole, based on the graphs obtained, HAM solution shows
good approximation with the analytical solution of [3].

5. Conclusion

In this paper, HAM is used to get the approximate analytical
solutions of forced KdV equations for different applied
forcing terms. With the existence of auxiliary parameter ℎ,
HAM provides us with a straightforward way to control
the convergence of approximation series whereby it makes
a noticeable difference between HAM and the existing per-
turbation methods. Figures 2–7 show distinct fluctuations
in the wave profiles of the HAM solutions, with various
forcing terms being incorporated in the fKdV equations.
Nonetheless, Figure 8 shows very close approximation of
HAM solution with the analytical solution of Zhao and Guo
[3]. These outcomes bring to light that HAM has flexibility
and potential to solve complicated nonlinear problems. Since
fKdV equation is associated with modelling of Tsunami
propagation, as proposed by Pelinovsky et al. [1], we are
hopeful that this work would have some added insight into
more complicated Tsunami propagation models. In order to
achieve more practical oriented results, there are suggestions
that further work could be considered under data-driven
(measurements) framework, for example, a recent overview
can be seen from [29].
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Figure 8: MATHEMATICA© graphs depicting 𝑢(𝑥, 0.25), 𝑢(𝑥, 0.50), 𝑢(𝑥, 0.75), and 𝑢(𝑥, 1) against 𝑥. Solid line is for analytical solution of
[3], and dash line is the HAM solution.
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