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We propose a new modification of the Adomian decomposition method for Volterra integral equations of the second kind.
By the Taylor expansion of the components apart from the zeroth term of the Adomian series solution, this new technology
overcomes the problems arising from the previous decomposition method. The validity and applicability of the new technique
are illustrated through several linear and nonlinear equations by comparing with the standard decomposition method and the
modified decomposition method. The results obtained indicate that the new modification is effective and promising.

1. Introduction

The Adomian decomposition method (ADM) [1, 2] has been
efficiently used to solve linear and nonlinear problems such
as differential equations and integral equations. The method
provides the solution as an infinite series in which each
term can be easily determined. The rapid convergence of the
series obtained by this method is thoroughly discussed by
Cherruault et al. [3].

Recently, Wazwaz [4] proposed a reliable modified tech-
nique of ADM that accelerates the rapid convergence of
decomposition series solution. The modified decomposition
needs only a slight variation from the standard decomposi-
tion method. Although the modified decomposition method
may provide the exact solution by using two iterations
only and sometimes without using the so-called Adomian
polynomials, its effectiveness is based on the assumption that
the function 𝑓 can be divided into two parts, and thus the
success of themodifiedmethod depends on the proper choice
of 𝑓
1
and 𝑓

2
.

More recently, another new modification of decompo-
sition method was proposed by Wazwaz and El-Sayed [5].
In the new modification, the process of dividing 𝑓 into
two components was replaced by a Taylor series of infinite
components. The ideas have been shown to be compu-
tationally efficient in applying the proposed technique in

several differential and integral equations. However, as will be
seen from the examples below, the modified decomposition
method will sometimes encounter obstacles to obtain the
exact solution. After that, several authors further proposed
expressing the function 𝑓 by the orthogonal polynomial
series, such as Chebyshev series [6], Legendre series [7, 8],
and Jacobi and Gegenbauer series [9].

In this paper, we introduce a newmodification of decom-
position method and make further progress beyond the
achievements made so far in this regard. Several examples
concerning integral equations are tested, and the results
suggest that this new idea proposes a promising tool for the
computation of integral equations both linear and nonlinear.

2. Description of the New Modification

Since the beginning of the 1980s, theAdomiandecomposition
method has been applied to a wide class of integral equations.
To illustrate the procedure, consider the following Volterra
integral equations of the second kind given by

𝑢 (𝑥) = 𝑓 (𝑥)

+ 𝜆∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢 (𝑡)) + 𝑁 (𝑢 (𝑡))) d𝑡, 𝜆 ̸= 0,

(1)



2 Journal of Applied Mathematics

where the kernel𝐾(𝑥, 𝑡) and the function𝑓(𝑥) are given real-
valued functions, 𝜆 is a parameter, 𝐿(𝑢(𝑥)) and 𝑁(𝑢(𝑥)) are
linear and nonlinear operators of 𝑢(𝑥), respectively, and the
unknown function 𝑢(𝑥) is the solution to be determined.

In the decomposition method, we usually express the
solution of (1) in a series form defined by

𝑢 (𝑥) =
+∞

∑
𝑘=0

𝑢
𝑘
(𝑥) . (2)

Moreover, the decomposition method identifies the nonlin-
ear term𝑁(𝑢(𝑥)) by the decomposition series

𝑁(𝑢 (𝑥)) =
+∞

∑
𝑘=0

𝐴
𝑘
(𝑥) , (3)

where 𝐴
𝑘
(𝑥) is the so-called Adomian polynomials, which

can be evaluated by the following formula [10, 11]:

𝐴
𝑛
=

1

𝑛!

d𝑛

d𝜆𝑛
𝑁(
𝑛

∑
𝑖=0

𝜆𝑖𝑢
𝑖
) , 𝑛 = 0, 1, 2, . . . . (4)

Substituting (2) and (3) into both sides of (1) gives

+∞

∑
𝑘=0

𝑢
𝑘
(𝑥) = 𝑓 (𝑥)

+ 𝜆∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) [𝐿(
+∞

∑
𝑘=0

𝑢
𝑘
(𝑡)) +

+∞

∑
𝑘=0

𝐴
𝑘
(𝑡)] d𝑡.

(5)

In the following we outline the basic feature of the standard
decomposition method [1, 2] and the modified decomposi-
tion method [4, 5].

The Standard Adomian Decomposition Method (SADM). By
the standard decomposition method, the components 𝑢

0
(𝑥),

𝑢
1
(𝑥), 𝑢

2
(𝑥), . . . of the solution 𝑢(𝑥) of (1), are completely

determined in the following recurrence manner:

𝑢
0
(𝑥) = 𝑓 (𝑥) , (6a)

𝑢
𝑘+1

(𝑥) = 𝜆∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢
𝑘
) + 𝐴
𝑘
) d𝑡, 𝑘 ≥ 0. (6b)

Having determined the components 𝑢
0
(𝑥), 𝑢

1
(𝑥), 𝑢

2
(𝑥), . . .,

the solution 𝑢(𝑥) in a series form defined by (2) follows
immediately.

The Modified Decomposition Method 1 (MADM1). The stan-
dard decomposition method by Adomian [1, 2] was modified
by Wazwaz [4]. The modification is based on the assumption
that the function 𝑓(𝑥) can be divided into two parts, namely,
𝑓
1
(𝑥) and 𝑓

2
(𝑥). Under this assumption we set

𝑓 (𝑥) = 𝑓
1
(𝑥) + 𝑓

2
(𝑥) . (7)

Accordingly, a slight variation was proposed only for the
components 𝑢

0
(𝑥) and 𝑢

1
(𝑥). The suggestion was that only

the part𝑓
1
(𝑥)will be assigned to the zeroth component 𝑢

0
(𝑥),

whereas the remaining part 𝑓
2
(𝑥) will be combined with the

other terms given into (6b) to define 𝑢
1
(𝑥). Consequently, the

modified recursive relation

𝑢
0
(𝑥) = 𝑓

1
(𝑥) ,

𝑢
1
(𝑥) = 𝑓

2
(𝑥) + 𝜆∫

𝑥

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢
0
) + 𝐴
0
) d𝑡,

𝑢
𝑘+1

(𝑥) = 𝜆∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢
𝑘
) + 𝐴
𝑘
) d𝑡, 𝑘 ≥ 1,

(8)

was developed.
It is important to note here that there were some conclu-

sions made in [4]. First, the slight variation in reducing the
number of terms of 𝑢

0
will result in a reduction of the com-

putational work and will accelerate the convergence. Second,
this slight variation in the definition of the components 𝑢

0

and 𝑢
1
may provide the solution by using two iterations only.

Third, there is no need sometimes to evaluate the so-called
Adomian polynomials required for the nonlinear equations.

TheModified Decomposition Method 2 (MADM2). In [5], it is
pointed that sometimes it may be useful to express 𝑓(𝑥) in
Taylor series as follows:

𝑓 (𝑥) =
+∞

∑
𝑖=0

𝑓
𝑖
(𝑥) . (9)

Meanwhile, a new recursive relationship in the following
form can be obtained:

𝑢
0
(𝑥) = 𝑓

0
(𝑥) ,

𝑢
1
(𝑥) = 𝑓

1
(𝑥) + 𝜆∫

𝑥

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢
0
) + 𝐴
0
) d𝑡,

𝑢
𝑘+1

(𝑥) = 𝑓
𝑘+1

(𝑥)

+ 𝜆∫
𝑥

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢
𝑘
) + 𝐴
𝑘
) d𝑡, 𝑘 ≥ 1.

(10)

According to (10), the terms 𝑢
0
(𝑥), 𝑢
1
(𝑥), 𝑢
2
(𝑥), . . . of the

solution 𝑢(𝑥) follow immediately, and the solution 𝑢(𝑥) can
be obtained using (2).

It is evident that algorithm (10) reduces the number of
terms involved in each component, and hence the size of cal-
culations is minimized compared to the standard Adomian
decomposition method. Moreover, this reduction of terms
in each component facilitates the construction of Adomian
polynomials for nonlinear operators [5].

The New Modified Decomposition Method. As indicated ear-
lier, MADM1 may provide the exact solution by using two
iterations only and sometimes without any need for Adomian
polynomials, but its effectiveness depends on the proper
choice of 𝑓

1
(𝑥) and 𝑓

2
(𝑥), which may need quite a little com-

putational work. Regarding SADM andMADM2, sometimes
one will inevitably encounter the difficulties as will be seen
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from the examples below. In this newmodification, we obtain
the first two terms by

𝑢
0
(𝑥) = 𝑓 (𝑥) , (11a)

𝑢
1
(𝑥) = 𝜆∫

𝑥

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢
0
) + 𝐴
0
) d𝑡, (11b)

which are the same as the results by SADM. However, some-
times 𝑢

1
(𝑥) is too complicated to continue or is analytically

impossible. Here, we suggest that 𝑢
1
(𝑥) may be expressed in

Taylor series form as

𝑢
1
(𝑥) =

+∞

∑
𝑖=0

𝑢
1𝑖
(𝑥) , (12)

next, we set

𝑢
2
(𝑥) = 𝜆∫

𝑥

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢
1
) + 𝐴
1
) d𝑡, (13)

where the Adomian polynomial 𝐴
1
can be evaluated by (4)

with 𝑢
0
(𝑥) and 𝑢

1
(𝑥), whichwill be obtained by (11a) and (12),

respectively. Also, we suggest that the same series expansion
can be acted upon 𝑢

2
(𝑥), that is,

𝑢
2
(𝑥) =

+∞

∑
𝑖=0

𝑢
2𝑖
(𝑥) . (14)

Similarly, we set

𝑢
𝑘
(𝑥) = 𝜆∫

𝑥

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢
𝑘
) + 𝐴
𝑘
) d𝑡, 𝑘 ≥ 3, (15)

and their Taylor expansions given by

𝑢
𝑘
(𝑥) =

+∞

∑
𝑖=0

𝑢
𝑘𝑖
(𝑥) , 𝑘 ≥ 3. (16)

By combining (11a), (12), (14), and (16), the solution 𝑢(𝑥) can
be obtained using the series (2).

In practice, for some problems, we have to determine a
few terms in the series such as𝑢(𝑥) = ∑

𝑀

𝑖=0
𝑢
𝑖
(𝑥) by truncating

the series at certain term, regardless of the standard decom-
position method and the modified decomposition method.
Because of the uniformly convergence property of the infinite
series, a few terms will attain the maximum accuracy.

To give a clear overview of this study, we have chosen
several linear and nonlinear Volterra integral equations to
testify the validity and applicability of the new modification.
For comparison, examples will also be discussed by using
SADM,MADM1, andMADM2.

3. Application for Linear Integral Equations

Example 1. Consider the linearVolterra integral equation [12]

𝑢 (𝑥) = sin𝑥 + 𝑒 − 𝑒cos𝑥 − ∫
𝑥

0

𝑒cos 𝑡𝑢 (𝑡) d𝑡. (17)

Following suggestions (6a) and (6b) of SADM, the second
component 𝑢

1
(𝑥) of the solution 𝑢(𝑥) cannot be obtained

because of the impossible integration, which also appears
by using MADM2. If we turn to MADM1, the six different
choices of 𝑓

1
(𝑥) and 𝑓

2
(𝑥) need quite a little computational

work only if we set 𝑓
1
(𝑥) = sin𝑥 and 𝑓

2
(𝑥) = 𝑒 − 𝑒cos𝑥

directly. In the following part, we solve (17) by the new
modification with the help of computer algebraic system
Maple 12.

According to suggestions (11a) and (11b), we obtain

𝑢
0
(𝑥) = sin𝑥 + 𝑒 − 𝑒cos𝑥,

𝑢
1
(𝑥) = −∫

𝑥

0

𝑒cos 𝑡𝑢
0
(𝑡) d𝑡.

(18)

We then set the Taylor expression for 𝑢
1
(𝑥) by

𝑢
1
(𝑥) = −

1

2
𝑒𝑥2 −

1

6
𝑒2𝑥3 +

1

6
𝑒𝑥4

+
1

12
𝑒2𝑥5 −

31

720
𝑒𝑥6 − ⋅ ⋅ ⋅ .

(19)

And also, we set the Taylor expansion for 𝑢
𝑖
(𝑥), 𝑖 = 2, 3, 4, . . .

because the evaluation of integrals, obtained by applying (13)
and (15) in this example, is analytically impossible. In thisway,
we have

𝑢
2
(𝑥) = −∫

𝑥

0

𝑒cos 𝑡𝑢
1
(𝑡) d𝑡

=
1

6
𝑒2𝑥3 +

1

24
𝑒3𝑥4 −

1

12
𝑒2𝑥5 −

1

36
𝑒3𝑥6 + ⋅ ⋅ ⋅ ,

𝑢
3
(𝑥) = −∫

𝑥

0

𝑒cos 𝑡𝑢
2
(𝑡) d𝑡

= −
1

24
𝑒3𝑥4 −

1

120
𝑒4𝑥5 +

1

36
𝑒3𝑥6 + ⋅ ⋅ ⋅ ,

𝑢
4
(𝑥) = −∫

𝑥

0

𝑒cos 𝑡𝑢
3
(𝑡) d𝑡

=
1

120
𝑒4𝑥5 +

1

720
𝑒5𝑥6 − ⋅ ⋅ ⋅ ,

𝑢
5
(𝑥) = −∫

𝑥

0

𝑒cos 𝑡𝑢
4
(𝑡) d𝑡

= −
1

720
𝑒5𝑥6 − ⋅ ⋅ ⋅ ,

...

(20)

Thus, the solution in a series form is given by

𝑢 (𝑥) = sin𝑥 + 𝑒 − 𝑒cos𝑥 + 𝑒 (−
1

2
𝑥2 +

1

6
𝑥4 −

31

720
𝑥6 + ⋅ ⋅ ⋅ ) .

(21)

Combining (21) with the Taylor expansion of

𝑒 − 𝑒cos𝑥 = 𝑒 (
1

2
𝑥2 −

1

6
𝑥4 +

31

720
𝑥6 − ⋅ ⋅ ⋅ ) , (22)
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the solution in a closed form is given by

𝑢 (𝑥) = sin𝑥. (23)

Example 2. Consider the linear Volterra integral equation [5,
13]

𝑢 (𝑥) = 1 + sinh𝑥 − cosh 𝑥 + ∫
𝑥

0

𝑢 (𝑡) d𝑡. (24)

In this example, both SADM and MADM2 can fulfil the
exact solution effectively. Whereas, MADM1 needs quite a
little computational work to obtain the exact solution only if
we set 𝑓

1
(𝑥) = sinh𝑥 and 𝑓

2
(𝑥) = 1 − cosh 𝑥 directly. In the

following part, we solve (24) by the new modification.
Proceeding as before, we set

𝑢
0
(𝑥) = 1 + sinh𝑥 − cosh 𝑥,

𝑢
1
(𝑥) = ∫

𝑥

0

𝑢
0
(𝑡) d𝑡 = cosh 𝑥 − sinh𝑥 + 𝑥 − 1.

(25)

We then set the Taylor expression for 𝑢
1
(𝑥) by

𝑢
1
(𝑥) =

1

2!
𝑥2 −

1

3!
𝑥3 +

1

4!
𝑥4 −

1

5!
𝑥5 +

1

6!
𝑥6 − ⋅ ⋅ ⋅ , (26)

and also

𝑢
2
(𝑥) = ∫

𝑥

0

𝑢
1
(𝑡) d𝑡

=
1

3!
𝑥3 −

1

4!
𝑥4 +

1

5!
𝑥5 −

1

6!
𝑥6 +

1

7!
𝑥7 − ⋅ ⋅ ⋅ ,

𝑢
3
(𝑥) = ∫

𝑥

0

𝑢
2
(𝑡) d𝑡

=
1

4!
𝑥4 −

1

5!
𝑥5 +

1

6!
𝑥6 −

1

7!
𝑥7 +

1

8!
𝑥8 − ⋅ ⋅ ⋅ ,

𝑢
4
(𝑥) = ∫

𝑥

0

𝑢
3
(𝑡) d𝑡

=
1

5!
𝑥5 −

1

6!
𝑥6 +

1

7!
𝑥7 −

1

8!
𝑥8 +

1

9!
𝑥9 − ⋅ ⋅ ⋅ ,

𝑢
5
(𝑥) = ∫

𝑥

0

𝑢
4
(𝑡) d𝑡

=
1

6!
𝑥6 −

1

7!
𝑥7 +

1

8!
𝑥8 −

1

9!
𝑥9 + ⋅ ⋅ ⋅ ,

...

(27)

The solution in a series form is given by

𝑢 (𝑥) = sinh𝑥 − cosh 𝑥 + (1 +
1

2!
𝑥2 +

1

4!
𝑥4 +

1

6!
𝑥6 + ⋅ ⋅ ⋅ ) ,

(28)

and in a closed form by

𝑢 (𝑥) = sinh𝑥. (29)

Example 3. Consider the system of linear Volterra integral
equations [12]

𝑢 (𝑥) = cos𝑥 − 𝑥 sin𝑥

+ ∫
𝑥

0

(sin (𝑥 − 𝑡) 𝑢 (𝑡) + cos (𝑥 − 𝑡) V (𝑡)) d𝑡,

V (𝑥) = sin𝑥 − 𝑥 cos𝑥

+ ∫
𝑥

0

(cos (𝑥 − 𝑡) 𝑢 (𝑡) − sin (𝑥 − 𝑡) V (𝑡)) d𝑡.

(30)

In this example, it is both difficult to obtain the exact solution
by using SADM and MADM2. And also, like the problem
mentioned in preceding examples, MADM1 needs much
computational work to obtain the exact solution only if we
set 𝑓
1
(𝑥) = cos𝑥 and 𝑓

2
(𝑥) = −𝑥 sin𝑥 for the first equation

and 𝑓
1
(𝑥) = sin𝑥 and 𝑓

2
(𝑥) = −𝑥 cos𝑥 for the second

equation, directly. In the following parts, we solve (30) by the
new modification.

Proceeding as before, the system (30) is transformed into
a set of recursive relations given by

𝑢
0
(𝑥) = cos𝑥 − 𝑥 sin𝑥,

V
0
(𝑥) = sin𝑥 − 𝑥 cos𝑥,

𝑢
1
(𝑥) = ∫

𝑥

0

(sin (𝑥 − 𝑡) 𝑢
0
(𝑡) + cos (𝑥 − 𝑡) V

0
(𝑡)) d𝑡,

V
1
(𝑥) = ∫

𝑥

0

(cos (𝑥 − 𝑡) 𝑢
0
(𝑡) − sin (𝑥 − 𝑡) V

0
(𝑡)) d𝑡.

(31)

We then set the Taylor expansion for 𝑢
1
(𝑥) and V

1
(𝑥) by

𝑢
1
(𝑥) =

1

2
𝑥2 −

1

12
𝑥4 +

1

240
𝑥6 − ⋅ ⋅ ⋅ ,

V
1
(𝑥) = 𝑥 −

2

3
𝑥3 +

7

120
𝑥5 − ⋅ ⋅ ⋅ .

(32)

Similarly,

𝑢
2
(𝑥) = ∫

𝑥

0

(sin (𝑥 − 𝑡) 𝑢
1
(𝑡) + cos (𝑥 − 𝑡) V

1
(𝑡)) d𝑡

=
1

2
𝑥2 −

1

6
𝑥4 +

1

80
𝑥6 − ⋅ ⋅ ⋅ ,

V
2
(𝑥) = ∫

𝑥

0

(cos (𝑥 − 𝑡) 𝑢
1
(𝑡) − sin (𝑥 − 𝑡) V

1
(𝑡)) d𝑡

=
1

60
𝑥5 −

1

840
𝑥7 + ⋅ ⋅ ⋅ ,
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𝑢
3
(𝑥) = ∫

𝑥

0

(sin (𝑥 − 𝑡) 𝑢
2
(𝑡) + cos (𝑥 − 𝑡) V

2
(𝑡)) d𝑡

=
1

24
𝑥4 −

1

240
𝑥6 + ⋅ ⋅ ⋅ ,

V
3
(𝑥) = ∫

𝑥

0

(cos (𝑥 − 𝑡) 𝑢
2
(𝑡) − sin (𝑥 − 𝑡) V

2
(𝑡)) d𝑡

=
1

6
𝑥3 −

1

24
𝑥5 +

1

420
𝑥7 − ⋅ ⋅ ⋅ ,

𝑢
4
(𝑥) = ∫

𝑥

0

(sin (𝑥 − 𝑡) 𝑢
3
(𝑡) + cos (𝑥 − 𝑡) V

3
(𝑡)) d𝑡

=
1

24
𝑥4 −

1

144
𝑥6 + ⋅ ⋅ ⋅ ,

V
4
(𝑥) = ∫

𝑥

0

(cos (𝑥 − 𝑡) 𝑢
3
(𝑡) − sin (𝑥 − 𝑡) V

3
(𝑡)) d𝑡

=
1

2520
𝑥7 −

1

45360
𝑥9 + ⋅ ⋅ ⋅ ,

𝑢
5
(𝑥) = ∫

𝑥

0

(sin (𝑥 − 𝑡) 𝑢
4
(𝑡) + cos (𝑥 − 𝑡) V

4
(𝑡)) d𝑡

=
1

720
𝑥6 −

1

10080
𝑥8 + ⋅ ⋅ ⋅ ,

V
5
(𝑥) = ∫

𝑥

0

(cos (𝑥 − 𝑡) 𝑢
4
(𝑡) − sin (𝑥 − 𝑡) V

4
(𝑡)) d𝑡

=
1

120
𝑥5 −

1

840
𝑥7 + ⋅ ⋅ ⋅ ,

𝑢
6
(𝑥) = ∫

𝑥

0

(sin (𝑥 − 𝑡) 𝑢
5
(𝑡) + cos (𝑥 − 𝑡) V

5
(𝑡)) d𝑡

=
1

720
𝑥6 −

1

6720
𝑥8 + ⋅ ⋅ ⋅ ,

...
(33)

The solution in a series form is given by

𝑢 (𝑥) = cos𝑥 − 𝑥 sin𝑥 + 𝑥(𝑥 −
1

6
𝑥3 +

1

120
𝑥5 − ⋅ ⋅ ⋅ ) ,

V (𝑥) = sin𝑥 − 𝑥 cos𝑥 + 𝑥(1 −
1

2
𝑥2 +

1

24
𝑥4 − ⋅ ⋅ ⋅ ) ,

(34)

and in a closed form by

(𝑢 (𝑥) , V (𝑥)) = (cos𝑥, sin𝑥) . (35)

4. Application for Nonlinear Integral
Equations

Example 4. Consider the nonlinear Volterra integral equa-
tion [12, 14]

𝑢 (𝑥) = 𝑒𝑥 −
1

3
𝑥𝑒3𝑥 +

1

3
𝑥 + ∫

𝑥

0

𝑥𝑢3 (𝑡) d𝑡. (36)

Following suggestions (6a) and (6b) of 𝑆𝐴𝐷𝑀, the second
component 𝑢

1
(𝑥) described via the sum of twenty-seven

terms is too complicated for no confidence to continue.
Meanwhile, there does not exist noise terms [15], which leads
to the result quickly. By MADM1, the six different choices
of 𝑓
1
(𝑥) and 𝑓

2
(𝑥) need quite a little computational work

as the examples given before, unless we set 𝑓
1
(𝑥) = 𝑒𝑥 and

𝑓
2
(𝑥) = −(1/3)𝑥𝑒3𝑥 + (1/3)𝑥 directly. The solution can be

obtained by MADM2 exactly. In the following part, we solve
(36) by the new modification.

According to suggestions (11a) and (11b), we obtain

𝑢
0
(𝑥) = 𝑒𝑥 −

1

3
𝑥𝑒3𝑥 +

1

3
𝑥,

𝑢
1
(𝑥) = ∫

𝑥

0

𝑥𝑢3
0
(𝑡) d𝑡.

(37)

We then set the Taylor expression for 𝑢
1
(𝑥) by

𝑢
1
(𝑥) = 𝑥2 +

3

2
𝑥3 +

1

2
𝑥4 −

3

2
𝑥5 −

21

8
𝑥6 −

227

120
𝑥7 + ⋅ ⋅ ⋅ .

(38)

And also, we set the Taylor expansion for 𝑢
𝑖
(𝑥), 𝑖 = 2, 3, 4, . . .

because of the complicated integration. In this way, we have

𝑢
2
(𝑥) = 3∫

𝑥

0

𝑥𝑢2
0
(𝑡) 𝑢
1
(𝑡) d𝑡

= 𝑥4 +
21

8
𝑥5 +

21

10
𝑥6 −

25

12
𝑥7 − ⋅ ⋅ ⋅ ,

𝑢
3
(𝑥) = 3∫

𝑥

0

𝑥 (𝑢2
0
(𝑡) 𝑢
2
(𝑡) + 𝑢

0
(𝑡) 𝑢
2

1
(𝑡)) d𝑡

=
6

5
𝑥6 +

69

16
𝑥7 + ⋅ ⋅ ⋅ ,

...

(39)

where the Adomian polynomials for nonlinear term 𝑢3 were
calculated by using (4). The solution in a series form is given
by

𝑢 (𝑥) = (𝑒𝑥 −
1

3
𝑥𝑒3𝑥 +

1

3
𝑥)

+ (𝑥2 +
3

2
𝑥3 +

3

2
𝑥4 +

9

8
𝑥5 +

27

40
𝑥6 +

27

80
𝑥7 + ⋅ ⋅ ⋅ ) .

(40)

Combining (40) with the Taylor expansion of

−
1

3
𝑥𝑒3𝑥 +

1

3
𝑥 = − 𝑥2 −

3

2
𝑥3 −

3

2
𝑥4

−
9

8
𝑥5 −

27

40
𝑥6 −

27

80
𝑥7 − ⋅ ⋅ ⋅ ,

(41)

the solution in a closed form is given by

𝑢 (𝑥) = 𝑒𝑥. (42)
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Example 5. Consider the nonlinear Volterra integrodifferen-
tial equation of the first kind [12]

∫
𝑥

0

(𝑥 − 𝑡) 𝑢
2
(𝑡) d𝑡 + ∫

𝑥

0

𝑒𝑥−𝑡𝑢󸀠 (𝑡) d𝑡 = 𝑥𝑒𝑥 +
1

4
𝑒2𝑥 −

1

4
−

1

2
𝑥,

𝑢 (0) = 1.

(43)

By integrating the second integral by parts and using the
initial conditions, (43) can be converted to Volterra integral
equation of the second kind given by

𝑢 (𝑥) = 𝑒𝑥 + 𝑥𝑒𝑥 +
1

4
𝑒2𝑥 −

1

4
−

1

2
𝑥

− ∫
𝑥

0

((𝑥 − 𝑡) 𝑢
2
(𝑡) + 𝑒𝑥−𝑡𝑢 (𝑡)) d𝑡.

(44)

Following suggestions (6a) and (6b) of SADM, 𝑢
1
(𝑥)

consists of fourteen terms and 𝑢
2
(𝑥) twenty-nine terms. It

is so complicated that we can give up. The similar obstacle
derived from the selections of 𝑓

1
(𝑥) and 𝑓

2
(𝑥) will be

encountered if we use MADM1. By using MADM2, it is of
certain difficulty to obtain the exact solution through the first
finite terms of the series solution. In the following part, we
solve (43) by the new modification.

Following as before, we set

𝑢
0
(𝑥) = 𝑒𝑥 + 𝑥𝑒𝑥 +

1

4
𝑒2𝑥 −

1

4
−

1

2
𝑥,

𝑢
1
(𝑥) = −∫

𝑥

0

((𝑥 − 𝑡) 𝑢
2

0
(𝑡) + 𝑒𝑥−𝑡𝑢

0
(𝑡)) d𝑡

= −𝑥 − 2𝑥2 −
11

6
𝑥3 −

29

24
𝑥4 −

41

60
𝑥5 − ⋅ ⋅ ⋅ ,

𝑢
2
(𝑥) = −∫

𝑥

0

(2 (𝑥 − 𝑡) 𝑢
0
(𝑡) 𝑢
1
(𝑡) + 𝑒𝑥−𝑡𝑢

1
(𝑡)) d𝑡

=
1

2
𝑥2 +

7

6
𝑥3 +

4

3
𝑥4 + ⋅ ⋅ ⋅ ,

𝑢
3
(𝑥) = −∫

𝑥

0

((𝑥 − 𝑡) (2𝑢
0
(𝑡) 𝑢
2
(𝑡) + 𝑢2

1
(𝑡))

+𝑒𝑥−𝑡𝑢
2
(𝑡) ) d𝑡

= −
1

6
𝑥3 −

1

2
𝑥4 − ⋅ ⋅ ⋅ ,

𝑢
4
(𝑥) = −∫

𝑥

0

(2 (𝑥 − 𝑡) (𝑢
0
(𝑡) 𝑢
3
(𝑡) + 𝑢

1
(𝑡) 𝑢
2
(𝑡))

+𝑒𝑥−𝑡𝑢
3
(𝑡)) d𝑡

=
1

24
𝑥4 + ⋅ ⋅ ⋅ ,

(45)

where Adomian polynomials for nonlinear term 𝑢2 were
calculated by using (4). The solution in a series form is given
by

𝑢 (𝑥) = (𝑒𝑥 + 𝑥𝑒𝑥 +
1

4
𝑒2𝑥)

+ (−
1

4
−

3

2
𝑥 −

3

2
𝑥2 −

5

6
𝑥3 −

1

3
𝑥4 − ⋅ ⋅ ⋅ ) .

(46)

Combining (46) with the Taylor expansion of

𝑥𝑒𝑥 +
1

4
𝑒2𝑥 =

1

4
+

3

2
𝑥 +

3

2
𝑥2 +

5

6
𝑥3 +

1

3
𝑥4 + ⋅ ⋅ ⋅ , (47)

the solution in a closed form is given by

𝑢 (𝑥) = 𝑒𝑥. (48)

5. Discussion and Conclusion

In this work, we have carefully developed a newmodification
of Adomian decomposition method based on the Taylor
expansion of the components apart from the zeroth term for
Volterra integral equations. The new technology overcomes
such obstacles as the complicated integrals and the impossible
integrals analytically, which arise from either SADM or
MADM2. If the exact solution exists in the zeroth component,
MADM1 needs extensive workload for the suitable choice of
𝑓
1
(𝑥) and 𝑓

2
(𝑥), while the new modification can proceed

in a fixed manner. Therefore, it is appropriate for one to
implement through the mathematical software Maple with-
out manual tedious calculations.

The idea has been shown to be computationally efficient
in applying the proposed technique to several linear and
nonlinear Volterra integral equations and integrodifferential
equations. Also, through the examples, it is seen that the
newmodification suits for those integral equations where the
exact solution appears as part of the zeroth term. It is also
interesting to point out that one can obtain the approximate
solution of integral equations as mentioned in [16, 17] simply
by slightly varying the new modification of this work.
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