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Following the line of (Das et al., 2011, Savas and Das, 2011), we make a new approach in this paper to extend the notion of strong
convergence and more general strong statistical convergence (Şençimen and Pehlivan, 2008) using ideals and introduce the notion
of strong I- and I∗-statistical convergence and two related concepts, namely, strong I-lacunary statistical convergence and
strong I-𝜆-statistical convergence in a probabilistic metric space endowed with strong topology. We mainly investigate their
interrelationship and study some of their important properties.

1. Introduction and Background

The usual idea of convergence is not enough to understand
behaviours of those sequences which are not convergent. One
of the approaches to include more sequences under purview
is to consider those sequences which are convergent when
restricted to some “big set of natural numbers.” To accomplish
this, the idea of convergence of real sequences was extended
to statistical convergence by Fast [1], and it was further
developed by several authors [2–4]. Recall that “asymptotic
density” of a set 𝐴 ⊆ N is defined as

𝑑 (𝐴) = lim
𝑛 → ∞

1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐴}| , (1)

provided that the limit exists, where N denotes the set of
natural numbers and the vertical bar stands for cardinality
of the enclosed set. The sequence {𝑥

𝑛
}
𝑛∈N of real is said to be

statistically convergent to a real number 𝑥 if for each 𝜖 > 0,

lim
𝑛 → ∞

1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝑥𝑘

− 𝑥
󵄨󵄨󵄨󵄨 ≥ 𝜖}

󵄨󵄨󵄨󵄨 = 0. (2)

In another direction, a new type of convergence called
lacunary statistical convergence was introduced and studied

in [5]. More results related to this convergence can be found
in [6]. The concept of 𝜆-statistical convergence was intro-
duced by Mursaleen in [7] as a further extension of statistical
convergence. Afterward, in [8], Karakaya et al. defined statis-
tical convergence of sequences of functions in intuitionistic
fuzzy normed spaces and also used the concepts of lacunary
and 𝜆-statistical convergence for sequences of functions in
these spaces in [9, 10]. It must be mentioned in this context
that some of the above mentioned convergence methods
have applications in number theory, measure theory, fourier
analysis, optimization, and many branches of mathematics.

The concepts ofI andI∗-convergence were introduced
and investigated by Kostyrko et al. [11] as further generaliza-
tions of statistical convergence.Theyweremuchmore general
than other approaches as they were based on the very general
notion of ideals of N. In recent years, a lot of investigations
have been done on ideal convergence and in some particular
new approaches were made in [12, 13] to generalize the above
mentioned convergences (forworks on ideal convergence, see
e.g., the papers [12–17] where many more references can be
found).

On the other hand, the idea of probabilistic metric space
was first introduced byMenger [18] in the name of “statistical
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metric space.” In this theory, the concept of distance is proba-
bilistic rather than deterministic. More precisely, the distance
between two points 𝑝, 𝑞 is defined as a distribution function
𝐹

𝑝𝑞
instead of a nonnegative real number. For a positive

number 𝑡, 𝐹
𝑝𝑞
(𝑡) is interpreted as the probability that the

distance between the points 𝑝 and 𝑞 is less than 𝑡. The theory
of probabilistic metric spaces was brought to prominence by
path breaking works of Schweizer et al. [19–22] and Tardiff
[23] among others. Detailed theory of probabilistic metric
space can be found in the famous book written by Schweizer
and Sklar [24]. Several topologies can be defined on this
space, but the topology that was found to be most useful is
the “strong topology.” Şençimen and Pehlivan [25] noted in
their paper that as the strong topology is first countable and
Hausdorff, it can be completely specified in terms of strong
convergence of sequences. Since probabilistic metric spaces
have many applications in applied mathematics, in order to
provide amore general framework for applications, they have
recently studied the statistical convergence and then strong
ideal convergence in probabilistic metric spaces [25, 26] and
also carried out further investigations in [27, 28].

In this paper, first of all, we introduce the notion
of strong I-statistical convergence in probabilistic metric
spaces which happens to bemore general than strong statisti-
cal convergence.We also introduce the concepts of strongI-
lacunary statistical convergence and strong I-𝜆-statistical
convergence in probabilistic metric spaces and investigate
some of their important properties, in particular their rela-
tions with strong I-statistical convergence. As these con-
cepts are more general than the concept of strong statistical
convergence, we believe that they can extend the general
framework introduced by [25] which in the future may
enhance the applicability of strong convergence in probabilis-
tic metric spaces.

2. Preliminaries

First, we recall some basic concepts related to the probabilistic
metric spaces (in short PM spaces) (see [24]).

Definition 1. A nondecreasing function 𝐹 : R → [0, 1]

defined on R with 𝐹(−∞) = 0 and 𝐹(∞) = 1, where R =

[−∞,∞], is called a distribution function.
The set of all left continuous distribution functions over

(−∞,∞) is denoted by Δ.
We consider the relation “≤” onΔ defined by 𝐹 ≤ 𝐺 if and

only if 𝐹(𝑥) ≤ 𝐺(𝑥) for all 𝑥 ∈ R. It can be easily verified that
the relation “≤” is a partial order on Δ.

Definition 2. For any 𝑎 ∈ R, the unit step function at 𝑎 is
denoted by 𝜀

𝑎
and is defined to be a function in Δ given by

𝜀
𝑎
(𝑥) = {

0, −∞ ≤ 𝑥 ≤ 𝑎

1, 𝑎 < 𝑥 ≤ ∞.
(3)

Definition 3. A sequence {𝐹
𝑛
}
𝑛∈N of distribution functions

converges weakly to a distribution function 𝐹, and one writes
𝐹

𝑛

𝑤

󳨀→ 𝐹 if and only if the sequence {𝐹
𝑛
(𝑥)}

𝑛∈N converges to
𝐹(𝑥) at each continuity point 𝑥 of 𝐹.

Definition 4. The distance between 𝐹 and 𝐺 in Δ is denoted
by 𝑑

𝐿
(𝐹, 𝐺) and is defined as the infimum of all numbers ℎ ∈

(0, 1] such that the inequalities

𝐹 (𝑥 − ℎ) − ℎ ≤ 𝐺 (𝑥) ≤ 𝐹 (𝑥 + ℎ) + ℎ,

𝐺 (𝑥 − ℎ) − ℎ ≤ 𝐹 (𝑥) ≤ 𝐺 (𝑥 + ℎ) + ℎ

(4)

hold for every 𝑥 ∈ (−1/ℎ, 1/ℎ).

Here, we are interested in the subset of Δ consisting of
those elements 𝐹 that satisfy 𝐹(0) = 0.

Definition 5. A distance distribution function is a nonde-
creasing function 𝐹 defined on R+

= [0,∞] that satisfies
𝐹(0) = 0 and 𝐹(∞) = 1 and is left continuous on (0,∞).

The set of all distance distribution functions is denoted by
Δ

+.
The function𝑑

𝐿
is clearly ametric onΔ+.Themetric space

(Δ
+

, 𝑑
𝐿
) is compact and hence complete (see [29]).

Theorem 6 (see [24]). Let 𝐹 ∈ Δ
+ be given. Then, for any 𝑡 >

0, 𝐹(𝑡) > 1 − 𝑡 if and only if 𝑑
𝐿
(𝐹, 𝜀

0
) < 𝑡. >

Note 7. Geometrically, 𝑑
𝐿
(𝐹, 𝜀

0
) is the abscissa of the point

of intersection of the line 𝑦 = 1 − 𝑥 and the graph of 𝐹
(if necessary we add vertical line segment at the point of
discontinuity).

Definition 8. A triangle function is a binary operation 𝜏 on
Δ

+, 𝜏 : Δ
+

× Δ
+

→ Δ
+ which is commutative, associative,

and nondecreasing in each place and has 𝜀
0
as identity.

Definition 9. A PM space is a triplet (𝑋,F, 𝜏) where 𝑋 is a
nonempty set, F is a function from 𝑋 × 𝑋 into Δ

+, and 𝜏 is
a triangle function. The following conditions for a PM space
are satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(1) F(𝑥, 𝑥) = 𝜀
0
,

(2) F(𝑥, 𝑦) ̸= 𝜀
0
if 𝑥 ̸= 𝑦,

(3) F(𝑥, 𝑦) = F(𝑦, 𝑥),
(4) F(𝑥, 𝑧) ≥ 𝜏(F(𝑥, 𝑦),F(𝑦, 𝑧)).

In the sequel, we shall denoteF(𝑥, 𝑦) by 𝐹
𝑥𝑦

and its value
at 𝑡 by𝐹

𝑥𝑦
(𝑡).Throughout this paper𝑋 shall represent the PM

space (𝑋,F, 𝜏).

Definition 10. Let 𝑋 be a PM space. For 𝑥 ∈ 𝑋 and 𝑡 > 0, the
strong 𝑡-neighbourhood of 𝑥 is defined as the set

N
𝑥
(𝑡) = {𝑦 ∈ 𝑋 : 𝐹

𝑥𝑦
(𝑡) > 1 − 𝑡} . (5)

The collection N
𝑥
= {N

𝑥
(𝑡) : 𝑡 > 0} is called the strong

neighbourhood system at 𝑥, and the union N = ⋃
𝑥∈𝑋

N
𝑥
is

called the strong neighbourhood system for𝑋.

By Theorem 6, we can write

N
𝑥
(𝑡) = {𝑦 ∈ 𝑆 : 𝑑

𝐿
(𝐹

𝑥𝑦
, 𝜀

0
) < 𝑡} . (6)
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If 𝜏 is continuous then the strong neighbourhood system
N determines a Hausdorff topology for 𝑋. This topology is
called the strong topology for𝑋.

Definition 11. Let 𝑋 be a PM space. Then, for any 𝑡 > 0 the
subsetU(𝑡) of𝑋×𝑋 is given byU(𝑡) = {(𝑥, 𝑦) : 𝐹

𝑥𝑦
(𝑡) > 1−𝑡}

and it is called the strong 𝑡-vicinity.

Theorem 12 (see [24]). Let𝑋 be a PM space, and, 𝜏 be contin-
uous. Then, for any 𝑡 > 0, there exists a 𝜂 > 0 such thatU(𝜂) ∘

U(𝜂) ⊂ U(𝑡), whereU(𝜂) ∘U(𝜂) = {(𝑥, 𝑧) : 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦, (𝑥, 𝑦)
𝑎𝑛𝑑 (𝑦, 𝑧) ∈ U(𝑡)}.

Note 13. Under the hypothesis ofTheorem 12, we can say that
for any 𝑡 > 0 there is a 𝜂 > 0 such that 𝐹

𝑥𝑧
(𝑡) > 1−𝑡whenever

𝐹
𝑥𝑦
(𝜂) > 1 − 𝜂 and 𝐹

𝑦𝑧
(𝜂) > 1 − 𝜂. Equivalently, it can be

written as follows: for any 𝑡 > 0 there is an 𝜂 > 0 such that
𝑑

𝐿
(𝐹

𝑥𝑧
, 𝜀

0
) < 𝑡, whenever 𝑑

𝐿
(𝐹

𝑥𝑦
, 𝜀

0
) < 𝜂 and 𝑑

𝐿
(𝐹

𝑦𝑧
, 𝜀

0
) < 𝜂.

If 𝜏 is continuous in a PM space 𝑋, then the strong
neighbourhood system N determines a Kuratowski closure
operation. It is termed as the strong closure. For any subset𝐴
of𝑋, the strong closure of𝐴 is denoted by 𝜅(𝐴) and is defined
as

𝜅 (𝐴) = {𝑥 ∈ 𝑋 : for any 𝑡 > 0, there is a

𝑦 ∈ 𝐴 such that 𝐹
𝑥𝑦
(𝑡) > 1 − 𝑡} .

(7)

Remark 14. Throughout the rest of the paper, we always
assume that in a PM space 𝑋, the triangle function 𝜏 is
continuous and𝑋 is endowed with strong topology.

Definition 15. Let𝑋 be a PM space. A sequence {𝑥
𝑛
}
𝑛∈N in𝑋

is said to be strongly convergent to a point 𝜉 ∈ 𝑋 if for any
𝑡 > 0 there exists a natural number 𝑁 such that 𝑥

𝑛
∈ N

𝜉
(𝑡)

whenever 𝑛 ≥ 𝑁. One writes 𝑥
𝑛
→ 𝜉 or lim

𝑛 → ∞
𝑥

𝑛
= 𝜉.

Similarly, a sequence {𝑥
𝑛
}
𝑛∈N in 𝑋 is called a strong

Cauchy sequence if for any 𝑡 > 0 there exists a natural number
𝑁 such that (𝑥

𝑚
, 𝑥

𝑛
) ∈ U(𝑡) whenever𝑚, 𝑛 ≥ 𝑁.

Next, we recall some of the basic concepts related to the
theory ofI-convergence, andwe refer to [11] formore details.

Definition 16. Let 𝑋 be any nonempty set. Then, the family
I ⊆ P(𝑋) is called an ideal in𝑋 if

(1) 𝐴, 𝐵 ∈ I imply 𝐴 ∪ 𝐵 ∈ I,
(2) if 𝐴 ∈ I and 𝐵 ⊆ 𝐴 then 𝐵 ∈ I.

Definition 17. Let 𝑋 be any nonempty set. The family F ⊆

P(𝑋) is called a filter in𝑋 if

(1) 0 ∉ F,
(2) 𝐴, 𝐵 ∈ F imply 𝐴 ∩ 𝐵 ∈ F,
(3) if 𝐴 ∈ F and 𝐴 ⊆ 𝐵 then 𝐵 ∈ F.

IfI is an ideal in 𝑋, thenF(I) = {𝑋 \ 𝐴 : 𝐴 ∈ I} is a
filter in 𝑋, which is called the filter associated with the ideal
I. An idealI in 𝑋 is called proper if and only if 𝑋 ∉ I.I
is called nontrivial ifI ̸= {0}. An ideal is called an admissible

ideal if it is proper and contains {𝑥} for all 𝑥 ∈ 𝑋. In other
words, it is called an admissible ideal if it is proper and
contains all of its finite subsets.

Definition 18. An admissible ideal I is said to satisfy the
condition (AP) if for every countable family of mutually dis-
joint sets {𝐴

1
, 𝐴

2
, . . .} belonging toI there exists a countable

family of sets {𝐵
1
, 𝐵

2
, . . .} such that 𝐴

𝑗
Δ𝐵

𝑗
is a finite set for

every 𝑗 ∈ N and 𝐵 = ⋃
∞

𝑗=1
𝐵

𝑗
∈ I.

Throughout the paperI stands for a nontrivial admissi-
ble ideal ofN, andF(I) is the filter associated with the ideal
I of N.

3. Strong I- and I∗-Statistical
Convergence in PM Space

In this section, we extend the concept of strong statistical con-
vergence in PM spaces [25] via ideals and prove some associ-
ated results.

Definition 19. A sequence {𝑥
𝑛
}
𝑛∈N in a PM space 𝑋 is said to

be strong statistically convergent to 𝑥 in𝑋 if for 𝜖 > 0,

lim
𝑛 → ∞

1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 : 𝑥
𝑛
∉ N

𝑥
(𝜖)}

󵄨󵄨󵄨󵄨 = 0. (8)

Definition 20. A sequence {𝑥
𝑛
}
𝑛∈N of real numbers is said to

be strongI-statistically convergent to 𝑥 if for each 𝜖 > 0 and
𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝑥𝑘

− 𝑥
󵄨󵄨󵄨󵄨 ≥ 𝜖}

󵄨󵄨󵄨󵄨 ≥ 𝛿} ∈ I. (9)

In this case, we write 𝑥
𝑛
→ 𝑥(𝑆(I)).

We now introduce the definition of strong I-statistical
convergence in PM space. So, consider the following [12].

Definition 21. A sequence {𝑥
𝑛
}
𝑛∈N in a PM space 𝑋 is said to

be strongI-statistically convergent to 𝑥 if for each 𝜖 > 0 and
𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 : 𝑥
𝑘
∉ N

𝑥
(𝜖)}

󵄨󵄨󵄨󵄨 ≥ 𝛿} ∈ I. (10)

In this case, we write 𝑥
𝑛
→ 𝑥 (𝑆PM(I)) and the class of all

strongI-statistically convergent sequences is simply denot-
ed by 𝑆PM(I).

Theorem 22. Let 𝑋 be a PM space, and, let 𝜏 be continuous.
Then, the strongI-statistical limit of a sequence in𝑋 is unique.

Proof. If possible, let the sequence {𝑥
𝑛
}
𝑛∈N converge to two

different limits 𝑥
1
and 𝑥

2
in 𝑋. Since 𝑥

1
̸= 𝑥

2
, we have

𝐹
𝑥
1
𝑥
2

̸= 𝜀
0
and so there exists a positive real number 𝑡 such that

𝑑
𝐿
(𝐹

𝑥
1
𝑥
2

, 𝜀
0
) = 𝑡. Choose 𝜂 > 0 such that 𝑑

𝐿
(𝐹

𝑥𝑦
, 𝜀

0
) < 𝜂

and 𝑑
𝐿
(𝐹

𝑦𝑧
, 𝜀

0
) < 𝜂 imply that 𝑑

𝐿
(𝐹

𝑥𝑧
, 𝜀

0
) < 𝑡. Since
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𝑥
𝑛

→ 𝑥
1
(𝑆PM(I)) and 𝑥

𝑛
→ 𝑥

2
(𝑆PM(I)) for this 𝜂 > 0

and 0 < 𝛿 < 1,

𝐴 = {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑥

𝑘
∉ N

𝑥
1

(𝜂)}
󵄨󵄨󵄨󵄨󵄨
<
𝛿

3
} ∈ F (I) ,

𝐵 = {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑥

𝑘
∉ N

𝑥
2

(𝜂)}
󵄨󵄨󵄨󵄨󵄨
<
𝛿

3
} ∈ F (I) .

(11)

Clearly, 𝐴 ∩ 𝐵 ̸= 0. Let𝑚 ∈ 𝐴 ∩ 𝐵. Hence,
1

𝑚

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑚 : 𝑥

𝑘
∉ N

𝑥
1

(𝜂)}
󵄨󵄨󵄨󵄨󵄨
<
𝛿

3
,

1

𝑚

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑚 : 𝑥

𝑘
∉ N

𝑥
2

(𝜂)}
󵄨󵄨󵄨󵄨󵄨
<
𝛿

3
,

(12)

and consequently,
1

𝑚

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑚 : 𝑥

𝑘
∉ N

𝑥
1

(𝜂) or 𝑥
𝑘
∉ N

𝑥
2

(𝜂)}
󵄨󵄨󵄨󵄨󵄨
< 𝛿 < 1. (13)

Then, there exists some 𝑘 ≤ 𝑚 such that 𝑥
𝑘
∈ N

𝑥
1

(𝜂) and
𝑥

𝑘
∈ N

𝑥
2

(𝜂), that is, 𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
1

, 𝜀
0
) < 𝜂 and 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
2

, 𝜀
0
) < 𝜂.

Combining these two, we have 𝑑
𝐿
(𝐹

𝑥
1
𝑥
2

, 𝜀
0
) < 𝑡, which is a

contradiction. Hence, the limit is unique.

Theorem 23. Let (𝑋,F, 𝜏) be a PM space. If {𝑥
𝑛
}
𝑛∈N and

{𝑦
𝑛
}
𝑛∈N are two sequences in 𝑋 such that 𝑥

𝑛
→ 𝑥 (𝑆PM(I))

and 𝑦
𝑛

→ 𝑦(𝑆PM(I)), then one has 𝑑
𝐿
(𝐹

𝑥
𝑛
𝑦
𝑛

, 𝐹
𝑥𝑦
) →

0 (𝑆(I)).

Proof. For 𝑡 > 0 there exists a 𝜂(𝑡) > 0 such that 𝑑
𝐿
(𝐹

𝑥𝑦
,

𝐹
𝑥
󸀠
𝑦
󸀠) < 𝑡 whenever 𝑥󸀠

∈ N
𝑥
(𝜂) and 𝑦

󸀠

∈ N
𝑦
(𝜂). Now,

assume that 𝑥
𝑛
→ 𝑥 (𝑆PM(I)) and 𝑦

𝑛
→ 𝑦 (𝑆PM(I)).Then,

for any 𝑡 > 0, we have

{𝑛 ∈ N : 𝑑
𝐿
(𝐹

𝑥
𝑛
𝑦
𝑛

, 𝐹
𝑥𝑦
) ≥ 𝑡} ⊆ {𝑛 ∈ N : 𝑥

𝑛
∉ N

𝑥
(𝜂)}

∪ {𝑛 ∈ N : 𝑦
𝑛
∉ N

𝑦
(𝜂)} .

(14)

Clearly,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑦
𝑘

, 𝐹
𝑥𝑦
) ≥ 𝑡}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜂}

󵄨󵄨󵄨󵄨󵄨
≥
𝛿

2
}

∪ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑦
𝑘
𝑦
, 𝜀

0
) ≥ 𝜂}

󵄨󵄨󵄨󵄨󵄨
≥
𝛿

2
} .

(15)

Since 𝑥
𝑛
→ 𝑥 (𝑆PM(I)) and 𝑦

𝑛
→ 𝑦 (𝑆PM(I)), we have

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜂}

󵄨󵄨󵄨󵄨󵄨
≥
𝛿

2
} ∈ I,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑦
𝑘
𝑦
, 𝜀

0
) ≥ 𝜂}

󵄨󵄨󵄨󵄨󵄨
≥
𝛿

2
} ∈ I.

(16)

Therefore, union of these two sets also belongs to I, and
consequently {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑦
𝑘

, 𝐹
𝑥𝑦
) ≥ 𝑡}| ≥

𝛿} ∈ I. This completes the proof.

Definition 24. A sequence {𝑥
𝑛
}
𝑛∈N in a PM space𝑋 is said to

be I∗-statistically convergent to 𝑥 if there exists a set 𝑀 =

{𝑚
1
< 𝑚

2
< ⋅ ⋅ ⋅ } ∈ F(I) such that for all 𝑡 > 0,

lim
𝑘 → ∞

1

𝑚
𝑘

󵄨󵄨󵄨󵄨{𝑟 ≤ 𝑚
𝑘
: 𝑥

𝑟
∉ N

𝑥
(𝑡)}

󵄨󵄨󵄨󵄨 = 0. (17)

In this case, we write 𝑥
𝑛
→ 𝑥 (𝑆PM(I

∗

)).

Theorem 25. If a sequence {𝑥
𝑛
}
𝑛∈N in a PM space 𝑋 is I∗-

statistically convergent, then it is strongI-statistically conver-
gent. Moreover, ifI is an admissible ideal satisfying the prop-
erty (AP), then strong I-statistical convergence implies I∗-
statistical convergence for any sequence {𝑥

𝑛
}
𝑛∈N in𝑋.

Proof. Let {𝑥
𝑛
}
𝑛∈N in 𝑋 be a sequence such that 𝑥

𝑛
→

𝑥 (𝑆PM(I
∗

)). Then, there exists a set𝑀 = {𝑚
1
< 𝑚

2
< ⋅ ⋅ ⋅ } ∈

F(I) such that

lim
𝑘 → ∞

1

𝑚
𝑘

󵄨󵄨󵄨󵄨{𝑟 ≤ 𝑚
𝑘
: 𝑥

𝑟
∉ N

𝑥
(𝑡)}

󵄨󵄨󵄨󵄨 = 0, (18)

that is, for 𝛿 > 0 there exists a natural number 𝑘
0
such that

(1/𝑚
𝑘
) |{𝑟 ≤ 𝑚

𝑘
: 𝑥

𝑟
∉ N

𝑥
(𝑡)}| < 𝛿 for all 𝑘 > 𝑘

0
. Now, we

have

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 : 𝑥
𝑘
∉ N

𝑥
(𝑡)}

󵄨󵄨󵄨󵄨 ≥ 𝛿}

⊆ 𝐻 ∪ {𝑚
1
, 𝑚

2
, . . . , 𝑚

𝑘
0

} ,

(19)

where𝐻 = N \ 𝑀 ∈ I. SinceI is admissible, the set on the
right hand side belongs to I and consequently {𝑛 ∈ N : (1/

𝑛)|{𝑘 ≤ 𝑛 : 𝑥
𝑘

∉ N
𝑥
(𝑡)}| ≥ 𝛿} ∈ I. Hence, 𝑥

𝑛
→

𝑥 (𝑆PM(I)).
Next, suppose that 𝑥

𝑛
→ 𝑥 (𝑆PM(I)). Clearly, the

sequence (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑥
𝑘
∉ N

𝑥
(𝑡)}| is I-convergent to

zero. Since the ideal I has the property (AP), the sequence
(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑥

𝑘
∉ N

𝑥
(𝑡)}| is I∗-convergent to zero.

Therefore, 𝑥
𝑛
→ 𝑥 (𝑆PM(I

∗

)).

Definition 26. A sequence {𝑥
𝑛
}
𝑛∈N in a PM space𝑋 is said to

be strongI-statistically Cauchy if for every 𝜖 > 0, there exists
a positive integer𝑁 = 𝑁(𝜖) ∈ N such that for any 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑥

𝑘
∉ N

𝑥
𝑁
(𝜖)}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} ∈ I. (20)

Theorem 27. In a PM space 𝑋 every strong I-statistically
convergent sequence is strongI-statistically Cauchy.

Proof. Since 𝑥
𝑛
→ 𝑥 (𝑆PM(I)), then for any 𝜖 > 0 and 0 <

𝛿 < 1,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑥

𝑘
∉ N

𝑥
(
𝜖

2
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝛿} ∈ F (I) . (21)

It follows that

1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑥

𝑘
∉ N

𝑥
(
𝜖

2
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝛿 < 1. (22)
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Then, there exists a𝑁 ≤ 𝑛 such that𝑥
𝑁
∈ N

𝑥
(𝜖/2).Therefore,

𝑑
𝐿
(𝐹

𝑥
𝑁

𝑥
, 𝜀

0
) < 𝜖/2, and so

{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
𝑁

, 𝜀
0
) ≥ 𝜖}

⊆ {𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
𝑁

, 𝐹
𝑥
𝑁

𝑥
) ≥

𝜖

2
} .

(23)

Consequently,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
𝑁

, 𝜀
0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
𝑁

, 𝐹
𝑥
𝑁

𝑥
) ≥

𝜖

2
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} ∈ I.

(24)

This completes the proof.

Definition 28. A sequence {𝑥
𝑛
}
𝑛∈N in 𝑋 is said to beI∗-sta-

tistically Cauchy if for every 𝜖 > 0 there exists 𝑁 ∈ N and a
set𝑀 = {𝑚

1
< 𝑚

2
< ⋅ ⋅ ⋅ } ∈ F(I) such that

lim
𝑘 → ∞

1

𝑚
𝑘

󵄨󵄨󵄨󵄨󵄨
{𝑟 ≤ 𝑚

𝑘
: 𝑥

𝑟
∉ N

𝑥
𝑁
(𝜖)}

󵄨󵄨󵄨󵄨󵄨
= 0. (25)

Theorem 29. In a PM space𝑋, everyI∗-statistically Cauchy
sequence is strongI-statistically Cauchy. Moreover, ifI is an
admissible ideal satisfying the property (AP), then strong I-
statistically Cauchy sequence coincides with I∗-statistically
Cauchy sequence.

Proof. The proof is straightforward, and so it has been omit-
ted.

4. Strong I-Lacunary Statistical Convergence
in PM Space

In this section, we discuss some of the results associated
with the lacunary statistical convergence and extend certain
summability methods using this notion.

By a lacunary sequence, we mean an increasing integer
sequence 𝜃 = {𝑘

𝑟
} such that 𝑘

0
= 0 and ℎ

𝑟
= 𝑘

𝑟
− 𝑘

𝑟−1
→ ∞

as 𝑟 → ∞. Throughout this paper, the interval determined
by 𝜃 shall be denoted by 𝐼

𝑟
= (𝑘

𝑟−1
, 𝑘

𝑟
], and the ratio 𝑘

𝑟
/𝑘

𝑟−1

shall be denoted by 𝑞
𝑟
[5]. The lacunary sequence 𝛽 = {𝑙

𝑟
} is

said to be the lacunary refinement of the lacunary sequence
𝜃 = {𝑘

𝑟
} if {𝑘

𝑟
} ⊆ {𝑙

𝑟
} [30].

Definition 30. Let 𝜃 = {𝑘
𝑟
} be a lacunary sequence. A

sequence {𝑥
𝑛
}
𝑛∈N in a PM space 𝑋 is said to be strong I-

lacunary statistically convergent to 𝑥 if for every 𝜖 > 0 and
𝛿 > 0,

{𝑟 ∈ N :
1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼
𝑟
: 𝑥

𝑘
∉ N

𝑥
(𝜖)}

󵄨󵄨󵄨󵄨 ≥ 𝛿} ∈ I. (26)

In this case, we write 𝑥
𝑛

→ 𝑥 (𝑆
𝜃

PM(I)). The class of all
strong I-lacunary statistically convergent sequences is sim-
ply denoted by (𝑆𝜃

PM(I)).

Theorem 31. In a PM space𝑋, the strongI-lacunary statisti-
cal limit of a sequence is unique.

Proof. It is similar to the proof of Theorem 22, and therefore
it has been omitted.

Theorem 32. For a sequence {𝑥
𝑛
}
𝑛∈N in a PM space 𝑋, the

following conditions are equivalent:

(1) {𝑥
𝑛
}
𝑛∈N is strongI-lacunary statistically convergent to

𝑥;

(2) for all 𝜖 > 0,

{

{

{

𝑟 ∈ N :
1

ℎ
𝑟

∑

𝑘∈𝐼
𝑟

𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖

}

}

}

∈ I. (27)

Proof. (1) ⇒ (2): First suppose that 𝑥
𝑛
→ 𝑥 (𝑆

𝜃

PM(I)). Since
𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≤ 1 for all 𝑘 ∈ N then for 𝜖 > 0, we have

1

ℎ
𝑟

∑

𝑘∈𝐼
𝑟

𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) =

1

ℎ
𝑟

∑

𝑘∈𝐼
𝑟

𝑑
𝐿
(𝐹
𝑥
𝑘
𝑙
,𝜀
0
)≥𝜖/2

𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
)

+
1

ℎ
𝑟

∑

𝑘∈𝐼
𝑟

𝑑
𝐿
(𝐹
𝑥
𝑘
𝑥
,𝜀
0
)<𝜖/2

𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
)

≤
1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥

𝜖

2
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
𝜖

2
.

(28)

Consequently, we have

{

{

{

𝑟 ∈ N :
1

ℎ
𝑟

∑

𝑘∈𝐼
𝑟

𝑑
𝑙
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖

}

}

}

⊆ {𝑟 ∈ N :
1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜀}

󵄨󵄨󵄨󵄨󵄨
≥

𝜖

2
} ∈ I.

(29)

(2) ⇒ (1): Next suppose that condition (2) holds. Now, for
𝜖 > 0, we have

∑

𝑘∈𝐼
𝑟

𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ ∑

𝑘∈𝐼
𝑟

𝑑
𝐿
(𝐹
𝑥
𝑘
𝑥
,𝜀
0
)≥𝜖

𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
)

≥ 𝜖
󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
.

(30)

Therefore,

1

𝜖ℎ
𝑟

∑

𝑘∈𝐼
𝑟

𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
. (31)
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Then, for any 𝛿 > 0, we have

{𝑟 ∈ N :
1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆
{

{

{

𝑟 ∈ N :
1

ℎ
𝑟

∑

𝑘∈𝐼
𝑟

𝑑
𝐿
(𝐹

𝑥
𝑘
𝑙
, 𝜀

0
) ≥ 𝜀𝛿

}

}

}

∈ I.

(32)

Therefore, 𝑥
𝑛
→ 𝑥 (𝑆

𝜃

PM(I)). This completes the proof.

Theorem 33. For any lacunary sequence 𝜃 = {𝑘
𝑟
}, strong I-

statistical convergence in a PM space implies strongI-lacunar-
y statistical convergence if and only if lim inf

𝑟 → ∞
𝑞

𝑟
> 1.

Proof. Suppose first that lim inf
𝑟 → ∞

𝑞
𝑟

> 1. Then, there
exists a 𝛼 > 0 such that 𝑞

𝑟
≥ 1 + 𝛼 for sufficiently large 𝑟.

This implies that ℎ
𝑟
/𝑘

𝑟
≥ 𝛼/(1 + 𝛼). Since 𝑥

𝑘
→ 𝑥 (𝑆PM(I)),

for every 𝜖 > 0 and for sufficiently large 𝑟, we have

1

𝑘
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑘

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

≥
1

𝑘
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

≥
𝛼

1 + 𝛼
⋅
1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
.

(33)

Then, for any 𝛿 > 0, we have

{𝑟 ∈ N :
1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑟 ∈ N :
1

𝑘
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑘

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥

𝛿𝛼

1 + 𝛼
} ∈ I.

(34)

This proves the result.

LetI be an admissible ideal of N, and let 𝑓 : N → N be
any function. Define I𝑓

= {𝐴 ⊆ N : 𝑓(𝐴) ∈ I}. We can
easily show that I𝑓 is also an ideal of N. First, we note that
0 = 𝑓(0) ∈ I and so 0 ∈ I𝑓. If 𝐴, 𝐵 ∈ I𝑓, then 𝑓(𝐴 ∪ 𝐵) =

𝑓(𝐴) ∪ 𝑓(𝐵) ∈ I which implies that 𝐴 ∪ 𝐵 ∈ I𝑓. Also if
𝐵 ∈ I𝑓 and 𝐴 ⊆ 𝐵, then 𝑓(𝐴) ⊆ 𝑓(𝐵) and 𝑓(𝐵) ∈ I which
in turn implies that 𝐴 ∈ I𝑓. Therefore,I𝑓 is an ideal of N.

Theorem 34. Let 𝛽 = {𝑙
𝑟
} be a lacunary refinement of the

lacunary sequence 𝜃 = {𝑘
𝑟
}. Let 𝐼

𝑟
= (𝑘

𝑟−1
, 𝑘

𝑟
] and 𝐽

𝑟
=

(𝑙
𝑟−1

, 𝑙
𝑟
], 𝑟 = 1, 2, . . .. If there exists a 𝛿 > 0 such that

󵄨󵄨󵄨󵄨󵄨
𝐽

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐼𝑖

󵄨󵄨󵄨󵄨

≥ 𝛿 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝐽
𝑗
⊆ 𝐼

𝑖
,

𝑖 = 𝑓 (𝑗) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 : N → N,

(35)

then 𝑥
𝑘
→ 𝑥 (𝑆

𝜃

PM(I)) implies that 𝑥
𝑘
→ 𝑥 (𝑆

𝛽

PM(I
𝑓

)).

Proof. Let 𝑥
𝑘
→ 𝑥 (𝑆

𝜃

PM(I)). Therefore,

{𝑟 ∈ N :
1
󵄨󵄨󵄨󵄨𝐼𝑟

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} ∈ I. (36)

For 𝜖 > 0 and for every 𝐽
𝑗
, we can find 𝐼

𝑖
such that 𝐽

𝑗
⊆ 𝐼

𝑖
.

Thus, we obtain

1
󵄨󵄨󵄨󵄨󵄨
𝐽

𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐽

𝑗
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

≤
1

𝛿
(

1
󵄨󵄨󵄨󵄨𝐼𝑖

󵄨󵄨󵄨󵄨

)
󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑖
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
.

(37)

For 𝜂 > 0, we have

1
󵄨󵄨󵄨󵄨𝐼𝑖

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑖
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

≥
𝛿
󵄨󵄨󵄨󵄨󵄨
𝐽

𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐽

𝑗
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝜂𝛿.

(38)

Since 𝑥
𝑘
→ 𝑥 (𝑆

𝜃

PM(I)), there exists some 𝑗 ∈ N such that

𝐴

= {𝑓 (𝑗) ∈ N :
1
󵄨󵄨󵄨󵄨󵄨
𝐽

𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐽

𝑗
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝜂} ∈ I.

(39)

Therefore,

{𝑗 ∈ N :
1
󵄨󵄨󵄨󵄨󵄨
𝐽

𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐽

𝑗
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝜂} ∈ I

𝑓

.

(40)

This completes the proof.

5. Strong I-𝜆-Statistical Convergence in
PM Space

In this section, we introduce the concepts of strong I-𝜆-
statistical convergence and [𝑉, 𝜆](I)-summability in a PM
space.

Let 𝜆 = {𝜆
𝑛
}
𝑛∈N be a nondecreasing sequence of positive

numbers tending to ∞ such that 𝜆
𝑛+1

≤ 𝜆
𝑛
+ 1, 𝜆

1
=

1. The collection of all such sequences 𝜆 is denoted by D.
The generalised de la Vallée-Poussin mean is defined for the
sequence {𝑥

𝑛
}
𝑛∈N of reals by

𝑡
𝑛
(𝑥) =

1

𝜆
𝑛

∑

𝑘∈𝑄
𝑛

𝑥
𝑘
, (41)

where𝑄
𝑛
= [𝑛−𝜆

𝑛
+1, 𝑛]. A sequence {𝑥

𝑛
}
𝑛∈N of reals is said

to be [𝑉, 𝜆](I) summable to 𝑥 ifI-lim 𝑡
𝑛
(𝑥) = 𝑥, that is, for

𝜖 > 0, {𝑛 ∈ N : |𝑡
𝑛
(𝑥) − 𝑥| ≥ 𝜖} ∈ I [13, 31].

We now introduce the main definitions for this section.
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Definition 35. Any sequence {𝑥
𝑛
}
𝑛∈N in a PM space 𝑋 is said

to be strongI-𝜆-statistically convergent to 𝑥 if for every 𝜖 >
0 and 𝛿 > 0,

{𝑛 ∈ N :
1

𝜆
𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} ∈ I. (42)

In this case, we write 𝑥
𝑛
→ 𝑥 (𝑆

𝜆

PM(I)). The collection of all
such sequences is simply denoted by (𝑆𝜆

PM(I)).

Definition 36. Any sequence {𝑥
𝑛
}
𝑛∈N in a PM space 𝑋 is said

to be [𝑉, 𝜆](I)-summable to 𝑥 in𝑋 if for every 𝛿 > 0,

{

{

{

𝑛 ∈ N :
1

𝜆
𝑛

∑

𝑘∈𝑄
𝑛

𝑑
𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝛿

}

}

}

∈ I. (43)

In this case, we write 𝑥
𝑛
→ 𝑥[𝑉, 𝜆]PM(I). The collection of

all such sequences is simply denoted by [𝑉, 𝜆]PM(I).

Theorem 37. For any sequence {𝑥
𝑛
}
𝑛∈N in a PM space 𝑋, the

following conditions are equivalent.

(1) The sequence {𝑥
𝑛
}
𝑛∈N is strongI-𝜆-statistically conver-

gent to 𝑥 in𝑋.
(2) The sequence {𝑥

𝑛
}
𝑛∈N is [𝑉, 𝜆](I) summable to 𝑥 in𝑋.

Proof. It is similar to the proof of Theorem 32, and therefore
it has been omitted.

Example 38. Consider that 𝑋 = R with the usual metric 𝑑
and 𝐺(𝑥) = 1 − 𝑒

−𝑥. Clearly, 𝐺 ∈ Δ
+. We defineF : 𝑋 ×𝑋 →

Δ
+ by F(𝑥, 𝑦)(𝑡) = 𝐹

𝑥𝑦
(𝑡) = 𝐺(𝑡/𝑑(𝑥, 𝑦)) = 1 − 𝑒

−𝑡/|𝑥−𝑦| for
all 𝑥, 𝑦 ∈ 𝑋. Let us define 𝐺(𝑥/0) = 𝐺(∞) = 1 for 𝑥 > 0 and
𝐺(0/0) = 𝐺(0) = 0. Clearly, (𝑋,F, 𝜏) is a PM space where 𝜏
is the continuous triangle function. Recall that for any 𝑡 > 0,
𝐹(𝑡) > 1 − 𝑡 if and only if 𝑑

𝐿
(𝐹, 𝜀

0
) < 𝑡 [24].

Let I be an admissible ideal of N and 𝜆
𝑛
∈ D. Take a

fixed 𝐴 ∈ I and define a sequence {𝑥
𝑘
}
𝑘∈N in𝑋 by

𝑥
𝑘
= {

𝑘𝑢, for 𝑛 − [√𝜆
𝑛
] + 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ∉ 𝐴

𝑘𝑢, for 𝑛 − 𝜆
𝑛
+ 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ∈ 𝐴,

(44)

where 𝑢 is a fixed element in𝑋with |𝑢| = 1. Clearly, 𝐹
𝑥
𝑘
0
(𝑡) =

1 − 𝑒
−𝑡/|𝑥k|

= 1 − 𝑒
−𝑡/𝑘. Now, for every 𝜖 > 0 (0 < 𝜖 < 1),

there exists a 𝑘
0
∈ N such that 𝐹

𝑥
𝑘
0
(𝜀) ≤ 1 − 𝜖 for all 𝑘 ≥ 𝑘

0
.

Therefore, for every 𝛿 > 0,

1

𝜆
𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
0
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
=
[√𝜆

𝑛
]

𝜆
𝑛

󳨀→ 0, (45)

as 𝑛 → ∞ and 𝑛 ∉ 𝐴. Consequently, for every 𝛿 > 0,

{𝑛 ∈ N :
1

𝜆
𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
0
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ 𝐴 ∪ {1, 2, . . . , 𝑚} ,

(46)

for some 𝑚 ∈ N. Since I is admissible, the expression on
the right hand side belongs to I. It follows that 𝑥

𝑘
→

0 (𝑆
𝜆

PM(I)).

Theorem 39. If lim inf
𝑛 → ∞

(𝜆
𝑛
/𝑛) > 0, then 𝑆PM(I) ⊆

𝑆
𝜆

PM(I).

Proof. For 𝜖 > 0, we have

1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

≥
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

=
𝜆

𝑛

𝑛

1

𝜆
𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
.

(47)

If lim inf
𝑛 → ∞

(𝜆
𝑛
/𝑛) = 𝑎 > 0, then from definition {𝑛 ∈ N :

𝜆
𝑛
/𝑛 < 𝑎/2} is finite. Thus, for 𝛿 > 0,

{𝑛 ∈ N :
1

𝜆
𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥
𝑎

2
𝛿}

∪ {𝑛 ∈ N :
𝜆

𝑛

𝑛
<
𝑎

2
} .

(48)

SinceI is admissible, the set on the right hand side belongs
toI, and this completes the proof.

Theorem 40. Let 𝜆 ∈ D be such that lim
𝑛 → ∞

(𝜆
𝑛
/𝑛) = 1.

Then, 𝑆𝜆

PM(I) ⊂ 𝑆PM(I).

Proof. Let 𝛿 > 0 be given. Since lim
𝑛 → ∞

(𝜆
𝑛
/𝑛) = 1, we can

choose𝑚 ∈ N such that |𝜆
𝑛
/𝑛 − 1| < 𝛿/2 for all 𝑛 ≥ 𝑚. Now,

observe that for 𝜖 > 0,
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

=
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 − 𝜆

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

+
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

≤
𝑛 − 𝜆

𝑛

𝑛
+
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

≤ 1 − (1 −
𝛿

2
) +

1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨

=
𝛿

2
+
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
,

(49)

for all 𝑛 ≥ 𝑚. Hence,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝑄

𝑛
: 𝑑

𝐿
(𝐹

𝑥
𝑘
𝑥
, 𝜀

0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥
𝛿

2
}

∪ {1, 2, . . . , 𝑚} .

(50)

If 𝑥
𝑘

→ 𝑥 (𝑆
𝜆

PM(I)), then the set on the right hand side
belongs toI and so the left hand side also belongs toI.This
shows that 𝑥

𝑘
→ 𝑥 (𝑆PM(I)).
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Remark 41. Consider the sequence {𝜆
𝑛
}
𝑛∈N where 𝜆

𝑛
= 1 for

𝑛 = 1, 2, . . . , 10 and 𝜆
𝑛
= 𝑛 − 10 for all 𝑛 ≥ 10. Construct the

sequence as in Example 38. ForI = I
𝑑
(the ideal of density

zero sets in N) and 𝐴 = {1
2

, 2
2

, 3
2

, . . .}, the sequence {𝑥
𝑘
}
𝑘∈N

is an example of a sequence which is strong I-statistically
convergent but is not statistically convergent in a PM space.
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[8] V. Karakaya, N. Şimşek, M. Ertürk, and F. Gürsoy, “Lacunary
statistical convergence of sequences of functions in intuitionis-
tic fuzzy normed space,” Journal of Intelligent & Fuzzy Systems.
In press.
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