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We define and study both neutral slant and semineutral slant submanifolds of an almost para-Hermitianmanifold and, in particular,
of a para-Kähler manifold. We give characterization theorems for neutral slant and semi-neutral slant submanifolds. We also
investigate the integrability conditions for the distributions involved in the definition of a semi-neutral slant submanifold when
the ambient manifold is a para-Kähler manifold.

1. Introduction

The geometry of slant submanifolds was initiated by Chen,
as a generalization of both holomorphic and totally real
submanifolds in complex geometry [1, 2]. Since then, many
mathematicians have studied these submanifolds. Slant sub-
manifolds have been studied by many geometers in various
manifolds [3–5]. In particular, Papaghiuc [6] introduced
semislant submanifolds. Lotta [7, 8] defined and studied
slant submanifolds in contact geometry. Cabrerizo et al.
studied slant, semislant, and bislant submanifolds in contact
geometry [9, 10]. Recently, Arslan et al. [11] studied these
submanifolds in the setting of neutral Kähler manifolds.

In this paper we define and study both neutral slant and
semineutral slant submanifolds of an almost para-Hermitian
manifold and, in particular, of a para-Kähler manifold.
The paper is organized as follows. In Section 2, we review
some formulas and definitions for an almost para-Hermitian
manifold and their submanifolds. In Section 3, we define
neutral slant submanifolds for an almost para-Hermitian
manifold and give theorem for a neutral slant submanifold.
In the last section, we define and study semineutral slant
submanifolds of an almost para-Hermitianmanifold.We give
theorems for a semineutral slant submanifold. In the last part
of Section 4, we obtain that the distributions are integrable
and their leaves are totally geodesic in semineutral slant
submanifold under the condition ∇𝑓 = 0. Finally, the paper
contains some examples.

2. Preliminaries

An almost para-Hermitian manifold (𝑀, 𝑔, 𝐽) is a smooth
manifold endowed with an almost paracomplex structure 𝐽

and a pseudo-Riemannian metric 𝑔 compatible in the sense
that

𝐽
2
= 𝐼, 𝑔 (𝐽𝑋, 𝑌) + 𝑔 (𝑋, 𝐽𝑌) = 0, 𝑋, 𝑌 ∈ Γ (𝑇𝑀) ,

(1)

where Γ(𝑇𝑀) is the module of differentiable vector fields
on 𝑀. It follows that the metric 𝑔 is neutral; that is, it
has signature (𝑚,𝑚), and the eigenbundles 𝑇𝑀

± are totally
isotropic with respect to 𝑔.

An almost para-Hermitian manifold 𝑀 is called a para-
Kähler manifold if

(∇
𝑋
𝐽) 𝑌 = 0, ∀𝑋, 𝑌 ∈ Γ (𝑇𝑀) , (2)

where ∇ is the Levi-Civita connection on𝑀 [12, 13].
Let 𝑀 be an isometrically immersed submanifold of an

almost para-Hermitian manifold 𝑀. We denote the Levi-
Civita connections on 𝑀 and 𝑀 by ∇ and ∇, respectively.
Then, the Gauss and Weingarten formulas are given by

∇
𝑋
𝑌 = ∇

𝑋
𝑌 + ℎ (𝑋, 𝑌) ,

∇
𝑋
𝑁 = −𝐴

𝑁
𝑋 + ∇

⊥

𝑋
𝑁,

(3)
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for any 𝑋,𝑌 ∈ Γ(𝑇𝑀) and 𝑁 ∈ Γ(𝑇𝑀
⊥
), where ∇

⊥ is
the connection in the normal bundle 𝑇𝑀

⊥
, ℎ is the second

fundamental form of 𝑀, and 𝐴
𝑁
is the shape operator. The

second fundamental form ℎ and the shape operator 𝐴
𝑁
are

related by

𝑔 (𝐴
𝑁
𝑋,𝑌) = 𝑔 (ℎ (𝑋, 𝑌) ,𝑁) , (4)

where the induced pseudo-Riemannian metric on 𝑀 is
denoted by the same symbol 𝑔.

Let us consider that𝑀 is an immersed submanifold of an
almost para-Hermitianmanifold𝑀. For any𝑋 ∈ Γ(𝑇𝑀) and
𝑁 ∈ Γ(𝑇𝑀

⊥
), we put

𝐽𝑋 = 𝑓𝑋 + 𝜔𝑋, (5)

𝐽𝑁 = 𝐵𝑁 + 𝐶𝑁, (6)

where 𝑓𝑋 (resp., 𝜔𝑋) is tangential (resp., normal) part of 𝐽𝑋
and 𝐵𝑁 (resp., 𝐶𝑁) is tangential (resp., normal) part of 𝐽𝑁.
From (1) and (5), we have

𝑔 (𝑓𝑋, 𝑌) = −𝑔 (𝑋, 𝑓𝑌) , (7)

for any𝑋,𝑌 ∈ Γ(𝑇𝑀).
The submanifold 𝑀 is said to be invariant if 𝜔 is

identically zero; that is, 𝐽𝑋 = 𝑓𝑋 ∈ Γ(𝑇𝑀), for any 𝑋 ∈

Γ(𝑇𝑀). On the other hand, 𝑀 is said to be anti-invariant
submanifold if 𝑓 is identically zero; that is, 𝐽𝑋 = 𝜔𝑋 ∈

Γ(𝑇𝑀
⊥
), for any𝑋 ∈ Γ(𝑇𝑀).

For any𝑋 ∈ Γ(𝑇𝑀), by a direct calculation, we have

𝑋 = 𝑓
2
𝑋 + 𝐵𝜔𝑋, that is, 𝐼 = 𝑓

2
+ 𝐵𝜔, (8)

𝜔𝑓𝑋 + 𝐶𝜔𝑋 = 0, that is, 𝜔𝑓 + 𝐶𝜔 = 0. (9)

Similarly, for any𝑁 ∈ Γ(𝑇𝑀
⊥
), we have

𝑁 = 𝜔𝐵𝑁 + 𝐶
2
𝑁, that is, 𝐼 = 𝜔𝐵 + 𝐶

2
,

𝑓𝐵𝑁 + 𝐵𝐶𝑁 = 0, that is, 𝑓𝐵 + 𝐵𝐶 = 0.

(10)

Now, let 𝑀 be an immersed submanifold of an almost
para-Kähler manifold 𝑀. For any 𝑋,𝑌 ∈ Γ(𝑇𝑀), from
∇
𝑋
𝐽𝑌 = 𝐽(∇

𝑋
𝑌), taking into account (3), (5), and (6), then

we have

∇
𝑋
𝑓𝑌 + ℎ (𝑋, 𝑓𝑌) − 𝐴

𝜔𝑌
𝑋 + ∇

⊥

𝑋
𝜔𝑌

= 𝑓∇
𝑋
𝑌 + 𝜔∇

𝑋
𝑌 + 𝐵ℎ (𝑋, 𝑌) + 𝐶ℎ (𝑋, 𝑌) .

(11)

Comparing the tangential and normal components of
(11), respectively, we get

(∇
𝑋
𝑓)𝑌 = 𝐴

𝜔𝑌
𝑋 + 𝐵ℎ (𝑋, 𝑌) , (12)

(∇
𝑋
𝜔)𝑌 = 𝐶ℎ (𝑋, 𝑌) − ℎ (𝑋, 𝑓𝑌) , (13)

where the covariant derivations of 𝑓 and 𝜔 are, respectively,
defined by

(∇
𝑋
𝑓)𝑌 = ∇

𝑋
𝑓𝑌 − 𝑓∇

𝑋
𝑌,

(∇
𝑋
𝜔)𝑌 = ∇

⊥

𝑋
𝜔𝑌 − 𝜔∇

𝑋
𝑌,

(14)

for any𝑋,𝑌 ∈ Γ(𝑇𝑀).

Let 𝑀 be a submanifold of a para-Hermitian manifold
𝑀. A tangent vector 𝑋 ∈ 𝑇𝑀 is said to be spacelike (resp.,
timelike) if 𝑔(𝑋,𝑋) > 0 (resp., 𝑔(𝑋,𝑋) < 0). If 𝑋 is a
spacelike vector (resp., timelike), we have ‖𝑋‖ = √𝑔(𝑋,𝑋)

(resp., ‖𝑋‖ = √−𝑔(𝑋,𝑋)) [11].

3. Neutral Slant Submanifolds of Almost
Para-Hermitian Manifolds

In this section, we study neutral slant immersions of an
almost para-Hermitian manifold 𝑀. First, we present def-
inition of a neutral slant submanifold of an almost para-
Hermitian manifold following Chen’s [1] definition for a
Hermitian manifold. Let 𝑀 be a semi-Riemannian manifold
isometrically immersed in an almost para-Hermitian mani-
fold 𝑀. For each nonzero spacelike vector 𝑋 tangent to 𝑀

at 𝑥, the angle 𝜃(𝑋), 0 ≤ 𝜃(𝑋) ≤ 𝜋/2 between 𝐽𝑋 and
𝑇
𝑥
𝑀 is called the Wirtinger angle of 𝑋. Then, 𝑀 is said

to be neutral slant if the angle 𝜃(𝑋) is a constant, which is
independent of the choice of 𝑥 ∈ 𝑀 and 𝑋 ∈ Γ(𝑇𝑀).
The angle 𝜃 of a neutral slant immersion is called the slant
angle of the immersion.Thus, the invariant and anti-invariant
immersions are neutral slant immersions with slant angle
𝜃 = 0 and 𝜃 = 𝜋/2, respectively. A neutral slant immersion
which is neither invariant nor anti-invariant is called a proper
neutral slant immersion.

We note that our definition is quite different from Chen’s
definition for slant submanifold [1], and the slant submani-
fold is given by Arslan et al. [11].

Next we give a useful characterization of neutral slant
submanifolds in an almost para-Hermitian manifold.

Theorem 1. Let 𝑀 be a submanifold of a para-Hermitian
manifold𝑀. Then,

(i) 𝑀 is neutral slant if and only if there exists a constant
𝜆 ∈ [0, 1] such that 𝑓2 = 𝜆𝐼. Furthermore, in this case,
if 𝜃 is the slant angle of 𝑀, it satisfies 𝜆 = cos2𝜃;

(ii) 𝑀 is a neutral slant submanifold if and only if there
exists a constant 𝜆 ∈ [0, 1] such that 𝐵

2
𝜔 = 𝜆𝐼.

Furthermore, in this case, if 𝜃 is the slant angle of𝑀, it
satisfies 𝜆 = sin2𝜃.

Proof. (i) Suppose that𝑀 is a neutral slant submanifold. For
any𝑋 ∈ Γ(𝑇𝑀), we can write

cos 𝜃 (𝑋) =

󵄩󵄩󵄩󵄩𝑓𝑋
󵄩󵄩󵄩󵄩

‖𝐽𝑋‖
, (15)

where 𝜃(𝑋) is the slant angle. By using (7), (15), and (1), we
get

𝑔 (𝑓
2
𝑋,𝑋) = − 𝑔 (𝑓𝑋, 𝑓𝑋)

= − cos2𝜃 (𝑋) 𝑔 (𝐽𝑋, 𝐽𝑋)

= cos2𝜃 (𝑋) 𝑔 (𝑋,𝑋) ,

(16)
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for all 𝑋 ∈ Γ(𝑇𝑀). Since 𝑔 is a neutral metric, from (16), we
have

𝑓
2
𝑋 = cos2𝜃 (𝑋)𝑋, 𝑋 ∈ Γ (𝑇𝑀) . (17)

Let 𝜆 = cos2𝜃. Then it is obvious that 𝜆 ∈ [0, 1].
Conversely, let us assume that there exists a constant 𝜆 ∈

[0, 1] such that 𝑓2 = 𝜆𝐼 is satisfied. From (7), (17), and (1), we
get

cos 𝜃 (𝑋) =
𝑔 (𝐽𝑋, 𝑓𝑋)

‖𝐽𝑋‖
󵄩󵄩󵄩󵄩𝑓𝑋

󵄩󵄩󵄩󵄩

= −

𝑔 (𝑋, 𝑓
2
𝑋)

‖𝐽𝑋‖
󵄩󵄩󵄩󵄩𝑓𝑋

󵄩󵄩󵄩󵄩

= −𝜆

𝑔 (𝑋, 𝐽
2
𝑋)

‖𝐽𝑋‖
󵄩󵄩󵄩󵄩𝑓𝑋

󵄩󵄩󵄩󵄩

= 𝜆
𝑔 (𝐽𝑋, 𝐽𝑋)

‖𝐽𝑋‖
󵄩󵄩󵄩󵄩𝑓𝑋

󵄩󵄩󵄩󵄩

,

(18)

for all𝑋 ∈ Γ(𝑇𝑀). Thus we have

cos 𝜃 (𝑋) =
𝜆 ‖𝐽𝑋‖

󵄩󵄩󵄩󵄩𝑓𝑋
󵄩󵄩󵄩󵄩

. (19)

Since cos 𝜃(𝑋) = ‖𝑓𝑋‖/‖𝐽𝑋‖, then by using the last equation
we obtain cos2𝜃(𝑋) = 𝜆, which implies that 𝜃(𝑋) is a constant
and so𝑀 is a neutral slant.

(ii) From (8) and (i), we have (ii).

Corollary 2. Let 𝑀 be a neutral slant submanifold of an
almost para-Hermitian manifold 𝑀 with slant angle 𝜃. Then,
for any 𝑋,𝑌 ∈ Γ(𝑇𝑀), we have

𝑔 (𝑓𝑋, 𝑓𝑌) = −cos2𝜃𝑔 (𝑋, 𝑌) , (20)

𝑔 (𝜔𝑋, 𝜔𝑌) = −sin2𝜃𝑔 (X, 𝑌) . (21)

Proof. FromTheorem 1(i) and (7), we get

𝑔 (𝑓𝑋, 𝑓𝑌) = −𝑔 (𝑓
2
𝑋,𝑌) ,

𝑔 (𝑓𝑋, 𝑓𝑌) = −cos2𝜃𝑔 (𝑋, 𝑌) ,

(22)

for any 𝑋,𝑌 ∈ Γ(𝑇𝑀). On the other hand, from (1), (5), and
(20), we obtain

𝑔 (𝐽𝑋, 𝐽𝑌) = 𝑔 (𝑓𝑋 + 𝜔𝑋, 𝑓𝑌 + 𝜔𝑌) ,

−𝑔 (𝑋, 𝑌) = 𝑔 (𝑓𝑋, 𝑓𝑌) + 𝑔 (𝜔𝑋, 𝜔𝑌) .

(23)

This completes the proof.

Now, we give some examples of the neutral slant subman-
ifolds in almost para-Hermitianmanifolds inspirited byChen
[1].

Note that given a semi-Euclidean space 𝑅
2𝑛

𝑛
with coordi-

nates (𝑥
1
, . . . , 𝑥

2𝑛
) on 𝑅

2𝑛

𝑛
, we can naturally choose an almost

paracomplex structure 𝐽 on 𝑅
2𝑛

𝑛
as follows:

𝐽 (
𝜕

𝜕𝑥
2𝑖

) =
𝜕

𝜕𝑥
2𝑖−1

, 𝐽 (
𝜕

𝜕𝑥
2𝑖−1

) =
𝜕

𝜕𝑥
2𝑖

, (24)

where 𝑖 = 1, . . . , 𝑛. Let 𝑅
2𝑛

𝑛
be a semi-Euclidean space of

signature (+, −, +, −, . . .) with respect to the canonical basis
(𝜕/𝜕𝑥

1
, . . . , 𝜕/𝜕𝑥

2𝑛
).

Example 3. Consider a submanifold𝑀 in 𝑅
4

2
given by

𝜑 (𝑢, V) = (𝑢 cos𝛼, V, 𝑢 sin𝛼, 0) . (25)

It is easy to see that𝑀 is a neutral slant submanifold with
the slant angle 𝛼.

Example 4. Consider a submanifold𝑀 in 𝑅
4

2
given by

𝑥 (𝑢, V) = (𝑢 sin𝛼, V cos𝛽, 𝑢 cos𝛼, V sin𝛽) , (26)

where 𝛼 and 𝛽 are constant. Then 𝑀 is a neutral slant
submanifold with the slant angle cos 𝜃 = | sin(𝛼 + 𝛽)|.

Remark 5. Consider𝑀2𝑝𝑝 a neutral submanifold of an almost
para-Hermitianmanifold (𝑀, 𝑔, 𝐽), in fact a neutral manifold
𝑀
2𝑛

𝑛
, with

󵄨󵄨󵄨󵄨𝑔 (𝑓𝑋, 𝐽𝑋)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑓𝑋
󵄩󵄩󵄩󵄩 ‖𝐽𝑋‖ . (27)

𝑀 is called a neutral slant submanifold if theWirtinger angle
between 𝐽𝑋 and𝑇

𝑥
𝑀 is constant, for all𝑋 ∈ 𝑇

𝑥
𝑀 a spacelike

vector field and all𝑥 ∈ 𝑀. It is well defined, because that angle
can be measured as usual, it the same angle between 𝐽𝑋 and
𝑓𝑋, and they both are timelike vector fields.

In fact, if that conditions hold, it would be the same angle
between 𝐽𝑌 and 𝑇

𝑥
𝑀 for 𝑌 ∈ 𝑇

𝑥
𝑀 a timelike vector, both

𝐽𝑌 and 𝑓𝑌 would be spacelike vector fields. This condition is
equivalent to

󵄨󵄨󵄨󵄨𝑔 (𝑓𝑋, 𝑓𝑋)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑔 (𝐽𝑋, 𝐽𝑋)
󵄨󵄨󵄨󵄨 , (28)

or ‖𝑓𝑋‖ ≤ ‖𝐽𝑋‖, in fact it is equivalent to Theorem 1 con-
dition 𝑓

2
𝑋 = cos2𝜃𝐼.

4. Semineutral Slant Submanifolds of Almost
Para-Hermitian Manifolds

Definition 6. Let (𝑀, 𝑔) be an almost para-Hermitian mani-
fold with an almost paracomplex structure 𝐽. A differentiable
distribution on 𝑀 is called a neutral slant distribution if
for each 𝑝 ∈ 𝑀 and each nonzero spacelike vector 𝑋 ∈

Γ(𝐷
𝑝
), the angle 𝜃

𝑝
between 𝐽𝑋 and 𝐷

𝑝
is a constant, that

is, independent of the choice of 𝑝 ∈ 𝑀 and 𝑋 ∈ Γ(𝐷
𝑝
). In

this case, we call the constant angle 𝜃
𝑝
the slant angle of the

distribution𝐷
𝑝
.

Let 𝑀 be an immersed submanifold of an almost para-
Hermitianmanifold𝑀 and𝐷 a differentiable distribution on
𝑀. We denote the orthogonal distribution to𝐷 on𝑀 by𝐷

⊥.
Then, for all𝑋 ∈ Γ(𝑇𝑀), we write

𝐽𝑋 = 𝑃
1
𝑓𝑋 + 𝑃

2
𝑓𝑋 + 𝜔𝑋, (29)

where 𝑃
1
and 𝑃

2
are orthogonal projections on 𝐷 and 𝐷

⊥,
respectively.

Next, we will give a sufficient and necessary condition for
a distribution to be slant.

Theorem 7. Let 𝑀 be a submanifold of an almost para-
Hermitian manifold 𝑀 and 𝐷 a differentiable distribution on
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𝑀. Then 𝐷 is a neutral slant distribution if and only if there
exists a constant 𝜆 ∈ [0, 1] such that

(𝑃
1
𝑓)
2

= 𝜆𝐼. (30)

Furthermore, in such case, if 𝜃 is the slant angle of 𝐷 then
𝜆 = cos2𝜃.

Proof. We suppose that 𝐷 is a neutral slant distribution on
𝑀. Then, from (29), we have

cos 𝜃 (𝑋) =
𝑔 (𝐽𝑋, 𝑃

1
𝑓𝑋)

‖𝐽𝑋‖
󵄩󵄩󵄩󵄩𝑃1𝑓𝑋

󵄩󵄩󵄩󵄩

= −

𝑔 (𝑋, (𝑃
1
𝑓)
2

𝑋)

‖𝐽𝑋‖
󵄩󵄩󵄩󵄩𝑃1𝑓𝑋

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩𝑃1𝑓𝑋
󵄩󵄩󵄩󵄩

‖𝐽𝑋‖
,

(31)

which implies that
󵄩󵄩󵄩󵄩𝑃1𝑓𝑋

󵄩󵄩󵄩󵄩 = cos 𝜃 (𝑋) ‖𝐽𝑋‖ , (32)

for any𝑋 ∈ Γ(𝐷). By using (29), (32), and (1), we have

𝑔 (𝑋, (𝑃
1
𝑓)
2

𝑋) = −𝑔 (𝑃
1
𝑓𝑋, 𝑃
1
𝑓𝑋)

= −cos2𝜃 (𝑋) 𝑔 (𝐽𝑋, 𝐽𝑋)

= cos2𝜃 (𝑋) 𝑔 (𝑋,𝑋) , ∀𝑋 ∈ Γ (𝐷) .

(33)

Since 𝑔 is a neutral metric, we obtain

(𝑃
1
𝑓)
2

𝑋 = cos2𝜃 (𝑋)𝑋, ∀𝑋 ∈ Γ (𝐷) . (34)

If we put 𝜆 = cos2𝜃, then we have (30).
Conversely, let 𝜆 ∈ [0, 1] be a constant such that (30) is

satisfied. Then, from (1) we have

cos 𝜃 (𝑋) =
𝑔 (𝐽𝑋, 𝑃

1
𝑓𝑋)

‖𝐽𝑋‖
󵄩󵄩󵄩󵄩𝑃1𝑓𝑋

󵄩󵄩󵄩󵄩

= −

𝑔 (𝑋, (𝑃
1
𝑓)
2

𝑋)

‖𝐽𝑋‖
󵄩󵄩󵄩󵄩𝑃1𝑓𝑋

󵄩󵄩󵄩󵄩

= −𝜆
𝑔 (𝑋,𝑋)

‖𝐽𝑋‖
󵄩󵄩󵄩󵄩𝑃1𝑓𝑋

󵄩󵄩󵄩󵄩

,

(35)

for any𝑋 ∈ Γ(𝐷). Thus we get

cos 𝜃 (𝑋) =
𝜆 ‖𝐽𝑋‖

󵄩󵄩󵄩󵄩𝑃1𝑓𝑋
󵄩󵄩󵄩󵄩

. (36)

On the other hand, since cos 𝜃(𝑋) = ‖𝑃
1
𝑓𝑋‖/‖𝐽𝑋‖, then

we obtain cos2𝜃 = 𝜆, which implies that 𝜃 is a constant and𝐷

is a neutral slant distribution. This completes the proof.

Definition 8. 𝑀 is called a bineutral slant submanifold of
an almost para-Hermitian manifold 𝑀 if there exist two
orthogonal distributions𝐷

1
and𝐷

2
on𝑀 such that

(i) 𝑇𝑀 admits the orthogonal direct decomposition
𝑇𝑀 = 𝐷

1
⊕ 𝐷
2
;

(ii) 𝐷
𝑖
is a neutral slant distribution with slant angle 𝜃

𝑖
for

𝑖 = 1, 2.

Given a bineutral slant submanifold𝑀, we can write, for any
𝑋 ∈ Γ(𝑇𝑀),

𝑋 = 𝑃
1
𝑋 + 𝑃

2
𝑋, (37)

where 𝑃
𝑖
denotes the component of 𝑋 in 𝐷

𝑖
for any 𝑖 = 1, 2.

In particular, if 𝑋 ∈ Γ(𝐷
𝑖
), then we obtain 𝑋

𝑖
= 𝑃
𝑖
𝑋. If we

define 𝑓
𝑖
= 𝑃
𝑖
∘ 𝑓, then we have

𝐽𝑋 = 𝑓
1
𝑋 + 𝑓

2
𝑋 + 𝜔𝑋, (38)

for any𝑋 ∈ Γ(𝑇𝑀).
We note that semi-invariant submanifolds are particular

cases of bineutral slant submanifolds with slant angles 𝜃
1
= 0

and 𝜃
2
= 𝜋/2.

Theorem 9. Let 𝑀 be a bineutral slant submanifold with an-
gles 𝜃
1

= 𝜃
2

= 𝜃. If 𝑔(𝐽𝑋, 𝑌) = 0, for any 𝑋 ∈ Γ(𝐷
1
) and

𝑌 ∈ Γ(𝐷
2
), then 𝑀 is slant with angle 𝜃.

Proof. Since 𝑔(𝐽𝑋, 𝑌) = 0, for any𝑋 ∈ Γ(𝐷
1
) and𝑌 ∈ Γ(𝐷

2
),

we have 𝑔(𝑓𝑋, 𝑌) = 0; that is, 𝑓𝑋 ∈ Γ(𝐷
1
). Similarly, for

𝑌 ∈ Γ(𝐷
2
), we find. Then for any 𝑋 ∈ Γ(𝑇𝑀),𝑋 can be

written as follows: 𝑋 = 𝑋
1
+ 𝑋
2
such that 𝑋

1
∈ Γ(𝐷

1
)

and 𝑋
2

∈ Γ(𝐷
2
) and cos2𝜃

1
= ‖𝑓𝑋

1
‖
2
/‖𝐽𝑋
1
‖
2, cos2𝜃

2
=

‖𝑓𝑋
2
‖
2
/‖𝐽𝑋
2
‖
2. Since 𝜃

1
= 𝜃
2
= 𝜃, we get

𝑔 (𝑓𝑋, 𝑓𝑋)

𝑔 (𝐽𝑋, 𝐽𝑋)
=

𝑔 (𝑓𝑋
1
, 𝑓𝑋
1
) + 𝑔 (𝑓𝑋

2
, 𝑓𝑋
2
)

𝑔 (𝐽𝑋
1
, 𝐽𝑋
1
) + 𝑔 (𝐽𝑋

2
, 𝐽𝑋
2
)

= cos2𝜃,

(39)

which gives assertion of the theorem.
Now, as a generalization of semi-invariant submanifolds,

we can define semineutral slant submanifolds of an almost
para-Hermitian manifold.

Definition 10. 𝑀 is called a semineutral slant submanifold
of an almost para-Hermitian manifold 𝑀 if there exist two
orthogonal distributions𝐷

1
and𝐷

2
on𝑀 such that

(i) 𝑇𝑀 admits the orthogonal direct sum𝑇𝑀 = 𝐷
1
⊕𝐷
2
,

(ii) the distribution𝐷
1
is invariant; that is, 𝐽(𝐷

1
) = 𝐷

1
,

(iii) the distribution 𝐷
2
is neutral slant with slant angle

𝜃 ̸= 0.

In this case, we call 𝜃 the slant angle of submanifold𝑀.
It is obvious that the invariant and anti-invariant distri-

butions of a semineutral slant submanifold are neutral slant
distributions with the slant angles 𝜃 = 0 and 𝜃 = 𝜋/2,
respectively.

Now, let 𝑀 be a semineutral slant submanifold of an
almost para-Hermitian manifold 𝑀. Let 𝑀 be a semislant
submanifold with 𝑑

1
dim(𝐷

1
) and 𝑑

2
dim(𝐷

2
). Then we have

the following particular cases.

(i) If 𝑑
2
= 0, then𝑀 is an invariant submanifold.

(ii) If 𝑑
1

= 0 and 𝜃 = 𝜋/2, then 𝑀 is an anti-invariant
submanifold.

(iii) If 𝑑
1
= 0 and 𝜃 ̸= 𝜋/2, then𝑀 is a proper neutral slant

submanifold with slant angle 𝜃.
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(iv) If 𝑑
1

⋅ 𝑑
2

̸= 0 and 𝜃 ̸= 𝜋/2, then 𝑀 is a proper
semineutral slant submanifold.

We now give an example of bineutral slant submanifolds.

Example 11. Let 𝑥(𝑢, V, 𝑡, 𝑠) = (𝑢 sin𝛼, V, 𝑢 cos𝛼, 0, 𝑠, 𝑡 sin𝛽,
0, 𝑡 cos𝛽), where 𝛼 and 𝛽 are constant. Then, 𝑀 is a 4-
dimensional submanifold of 𝑀 = 𝑅

8

4
.

By defining

𝐷
1
= ⟨sin𝛼

𝜕

𝜕𝑥
1

+ cos𝛼 𝜕

𝜕𝑥
3

,
𝜕

𝜕𝑥
2

⟩ ,

𝐷
2
= ⟨

𝜕

𝜕𝑥
5

, sin𝛽
𝜕

𝜕𝑥
6

+ cos𝛽 𝜕

𝜕𝑥
8

⟩ ,

(40)

we have that 𝑇𝑀 = 𝐷
1
⊕𝐷
2
and𝐷

1
, 𝐷
2
are neutral slant with

slant angles cos−1(| sin𝛼|) and cos−1(| sin𝛽|), respectively.
Thus𝑀 is a bineutral slant submanifold of 𝑀.

Now, let 𝑀 be a semineutral slant submanifold of an
almost para-Hermitian manifold 𝑀 and 𝑃

𝑖
, (𝑖 = 1, 2),

denoting the orthogonal projections on 𝐷
𝑖
, (𝑖 = 1, 2). Then,

for any𝑋 ∈ Γ(𝑇𝑀), applying 𝐽 to (37), we have

𝐽𝑋 = 𝑓𝑃
1
𝑋 + 𝑓𝑃

2
𝑋 + 𝜔𝑃

2
𝑋, (41)

where

𝐽𝑃
1
𝑋 = 𝑓𝑃

1
𝑋, 𝜔𝑃

1
𝑋 = 0. (42)

From (41) and (42), we have

𝑓𝑋 = 𝐽𝑃
1
𝑋 + 𝑓𝑃

2
𝑋. (43)

By putting 𝑌 = 𝑃
1
𝑌 in (20) and 𝑌 = 𝑃

2
𝑌 in (21), we get

𝑔 (𝑓𝑋, 𝑓𝑃
1
𝑌) = −cos2𝜃𝑔 (𝑋, 𝑃

1
𝑌) , 𝑋, 𝑌 ∈ Γ (𝑇𝑀) ,

𝑔 (𝜔𝑋, 𝜔𝑃
2
𝑌) = −sin2𝜃𝑔 (𝑋, 𝑃

2
𝑌) , 𝑋, 𝑌 ∈ Γ (𝑇𝑀) ,

(44)

respectively.
We give a characterization for the semineutral slant

submanifolds of an almost para-Hermitian manifold.

Theorem 12. Let𝑀 be an immersed submanifold of an almost
para-Hermitian manifold 𝑀. Then 𝑀 is a semineutral slant
submanifold if and only if there exists a constant 𝜆 ∈ [0, 1)

such that 𝐷 = {𝑋 ∈ 𝑇𝑀 | 𝑓
2
𝑋 = 𝜆𝑋} is a distribution.

Furthermore, in this case, 𝜆 = cos2𝜃, where 𝜃 denotes slant
angle of 𝑀.

Proof. Let 𝑀 be a semineutral slant submanifold and 𝑇𝑀 =

𝐷
1
⊕ 𝐷
2
, where 𝐷

1
is invariant and 𝐷

2
is neutral slant. We

put 𝜆 = cos2𝜃, where 𝜃 denotes slant angle of 𝑀. For any
𝑋 ∈ Γ(𝐷), if𝑋 ∈ Γ(𝐷

1
), then we have

𝑋 = 𝐽
2
𝑋 = 𝑓

2
𝑋 = 𝜆𝑋, (45)

which implies that 𝜆 = 1. But this is a contradiction that 𝜆 ∈

[0, 1). Therefore we obtain𝐷 ⊆ 𝐷
2
. On the other hand, since

𝐷
2
is a neutral slant distribution, it follows from Theorem 7

that 𝑓2𝑋 = (𝑓𝑃
2
)
2
𝑋 = 𝜆𝑋, which means that 𝐷

2
⊆ 𝐷. Thus

𝐷 = 𝐷
2
is a distribution.

Conversely, we can consider the orthogonal direct
decomposition 𝑇𝑀 = 𝐷 ⊕ 𝐷

⊥. It is obvious that 𝑓𝐷 ⊆ 𝐷,
from which we have 𝑔(𝐽𝑋, 𝑌) = −𝑔(𝑋, 𝐽𝑌) = −𝑔(𝑋, 𝑓𝑌) = 0

for any 𝑋 ∈ Γ(𝐷
⊥
) and 𝑌 ∈ Γ(𝐷). Hence 𝐷

⊥ is an invariant
distribution. Finally,Theorem 7 imply that𝐷 is a neutral slant
distribution, with slant angle 𝜃 satisfying 𝜆 = cos2𝜃.

We can easily present some examples of the above situ-
ation.

Example 13. 𝑥(𝑢, V, 𝑡, 𝑟) = (𝑢, 0, 𝑢, V sin 𝜃, 0, V cos 𝜃, 𝑡, 𝑠),
𝜃 ̸= 𝜋/2 defines a four-dimensional proper semineutral slant
submanifold𝑀, with slant angle cos−1(| sin 𝜃/√2|), in 𝑅

8

4
.

Moreover, it is easy to see that

𝑋
1
=

𝜕

𝜕𝑥
7

, 𝑋
3
=

𝜕

𝜕𝑥
1

+
𝜕

𝜕𝑥
3

,

𝑋
2
=

𝜕

𝜕𝑥
8

, 𝑋
4
= sin 𝜃

𝜕

𝜕𝑥
4

+ cos 𝜃 𝜕

𝜕𝑥
6

(46)

from a local orthogonal frame of 𝑇𝑀. Then, we can define
𝐷
1
= Span{𝑋

1
, 𝑋
2
} and𝐷

2
= Span{𝑋

3
, 𝑋
4
}.

Example 14. 𝑥(𝑢, V, 𝑡, 𝑠) = (𝑢, V, 𝑡 sin𝛼, 𝑠 cos𝛽, 𝑡 cos𝛼,
𝑠 sin𝛽, 0, 0) defines a four-dimensional proper semineutral
slant submanifold 𝑀, with slant angle cos 𝜃 = | sin(𝛼 + 𝛽)|,
in 𝑅
8

4
, where 𝛼 and 𝛽 are constant.

Moreover it is easy to see that

𝑋
1
=

𝜕

𝜕𝑥
1

, 𝑋
3
= sin𝛼

𝜕

𝜕𝑥
3

+ cos𝛼 𝜕

𝜕𝑥
5

𝑋
2
=

𝜕

𝜕𝑥
2

, 𝑋
4
= cos𝛽 𝜕

𝜕𝑥
4

+ sin𝛽
𝜕

𝜕𝑥
6

(47)

from a local orthogonal frame of 𝑇𝑀. Then we can define
𝐷
1
= Span{𝑋

1
, 𝑋
2
} and𝐷

2
= Span{𝑋

3
, 𝑋
4
}.

Then, it is easy to show that all conditions of Theorem 12
are satisfied.

Next, we will give useful characterizations for integrable
conditions of distributions.

Theorem 15. Let 𝑀 be a semineutral slant submanifold of a
para-Kähler manifold 𝑀. Then we have the following:

(a) the distribution 𝐷
1
is integrable if and only if

ℎ (𝑋, 𝑓𝑌) = ℎ (𝑓𝑋, 𝑌) , (48)

for any 𝑋,𝑌 ∈ Γ(𝐷
1
),

(b) the distribution 𝐷
2
is integrable if and only if

𝑃
1
(∇
𝑋
𝑓𝑃
2
𝑌 − ∇

𝑌
𝑓𝑃
2
𝑋) = 𝑃

1
(𝐴
𝜔𝑃
2
𝑌
𝑋 − 𝐴

𝜔𝑃
2
𝑋
𝑌) , (49)

for any 𝑋,𝑌 ∈ Γ(𝐷
2
).
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Proof. From (2), we get

∇
𝑋
𝐽𝑌 = 𝐽∇

𝑋
𝑌, (50)

for all𝑋,𝑌 ∈ Γ(𝑇𝑀).

(a) By using Gauss-Weingarten formulas, (5), and (6) in
(50), we have

∇
𝑋
𝑓𝑌 + ℎ (𝑋, 𝑓𝑌)

= 𝑓∇
𝑋
𝑌 + 𝜔∇

𝑋
𝑌 + 𝐵ℎ (𝑋, 𝑌) + 𝐶ℎ (𝑋, 𝑌) ,

(51)

for any𝑋,𝑌 ∈ Γ(𝐷
1
). From (41) and (51), we obtain

∇
𝑋
𝑓𝑌 + ℎ (𝑋, 𝑓𝑌) = 𝑓𝑃

1
∇
𝑋
𝑌 + 𝑓𝑃

2
∇
𝑋
𝑌 + 𝜔𝑃

2
∇
𝑋
𝑌

+ 𝐵ℎ (𝑋, 𝑌) + 𝐶ℎ (𝑋, 𝑌) .

(52)

By equating the normal part of the last equation, we have

ℎ (𝑋, 𝑓𝑌) = 𝜔𝑃
2
∇
𝑋
𝑌 + 𝐶ℎ (𝑋, 𝑌) . (53)

If we change the role of𝑋 and 𝑌 in (53), we write

ℎ (𝑓𝑋, 𝑌) = 𝜔𝑃
2
∇
𝑌
𝑋 + 𝐶ℎ (𝑌,𝑋) . (54)

Since ℎ is symmetric, from (53) and (54), we get

ℎ (𝑋, 𝑓𝑌) − ℎ (𝑓𝑋, 𝑌) = 𝜔𝑃
2 [𝑋, 𝑌] , ∀𝑋, 𝑌 ∈ Γ (𝐷

1
) .

(55)

Assume that the distribution 𝐷
1
is integrable. Then, for

any𝑋,𝑌 ∈ Γ(𝐷
1
), we have [𝑋, 𝑌] ∈ Γ(𝐷

1
) which implies that

𝜔𝑃
2
[𝑋, 𝑌] = 0. Thus from (55) we obtain (48).
Conversely, if (48) is satisfied, then from (55), we have

𝜔𝑃
2
[𝑋, 𝑌] = 0, for any 𝑋,𝑌 ∈ Γ(𝐷

1
), which implies that

𝑃
2
[𝑋, 𝑌] = 0. Then we conclude that [𝑋, 𝑌] ∈ Γ(𝐷

1
).

(b) From (41) and Gauss-Weingarten formulae, we have

∇
𝑋
𝐽𝑌 = ∇

𝑋
𝐽𝑃
1
𝑌 + ℎ (𝑋, 𝐽𝑃

1
𝑌) + ∇

𝑋
𝑓𝑃
2
𝑌 + ℎ (𝑋, 𝑓𝑃

2
𝑌)

− 𝐴
𝜔𝑃
2
𝑌
𝑋 + ∇

⊥

𝑋
𝜔𝑃
2
𝑌,

(56)

for all𝑋,𝑌 ∈ Γ(𝑇𝑀). On the other hand, by using (5) and (6),
we write

𝐽∇
𝑋
𝑌 = 𝑓∇

𝑋
𝑌 + 𝜔∇

𝑋
𝑌 + 𝐵ℎ (𝑋, 𝑌) + 𝐶ℎ (𝑋, 𝑌) . (57)

By using (56) and (57) in (50), we get

∇
𝑋
𝑓𝑃
2
𝑌 + ℎ (𝑋, 𝑓𝑃

2
𝑌) − 𝐴

𝜔𝑃
2
𝑌
𝑋 + ∇

⊥

𝑋
𝜔𝑃
2
𝑌

= 𝑓∇
𝑋
𝑌 + 𝜔∇

𝑋
𝑌 + 𝐵ℎ (𝑋, 𝑌) + 𝐶ℎ (𝑋, 𝑌) ,

(58)

for any𝑋,𝑌 ∈ Γ(𝐷
2
). Since ℎ is symmetric we obtain

𝑓 [𝑋, 𝑌] = ∇
𝑋
𝑓𝑃
2
𝑌 − ∇

𝑌
𝑓𝑃
2
𝑋 + 𝐴

𝜔𝑃
2
𝑋
𝑌 − 𝐴

𝜔𝑃
2
𝑌
𝑋 (59)

which gives

𝑃
1
𝑓 [𝑋, 𝑌] = 𝑃

1
{∇
𝑋
𝑓𝑃
2
𝑌 − ∇

𝑌
𝑓𝑃
2
𝑋}

− 𝑃
1
{𝐴
𝜔𝑃
2
𝑌
𝑋 − 𝐴

𝜔𝑃
2
𝑋
𝑌} .

(60)

Let the distribution𝐷
2
be integrable.Then𝑃

1
𝑓[𝑋, 𝑌] = 0,

for all 𝑋,𝑌 ∈ Γ(𝐷
2
), and hence from (60), the equation (49)

is obvious.
Conversely, if (49) is satisfied then 𝑃

1
𝑓[𝑋, 𝑌] = 0; that

is, [𝑋, 𝑌] ∈ Γ(𝐷
2
) for any 𝑋,𝑌 ∈ Γ(𝐷

2
). This completes the

proof.

Definition 16. Let 𝑀 be a semi-invariant submanifold of an
almost para-Hermitian manifold𝑀. Then we say that

(i) 𝑀 is𝐷
1
-geodesic if

ℎ (𝑋, 𝑌) = 0, ∀𝑋, 𝑌 ∈ Γ (𝐷
1
) , (61)

(ii) 𝑀 is𝐷
2
-geodesic if

ℎ (𝑋, 𝑌) = 0, ∀𝑋, 𝑌 ∈ Γ (𝐷
2
) , (62)

(iii) 𝑀 is mixed geodesic if

ℎ (𝑋, 𝑌) = 0, ∀𝑋 ∈ Γ (𝐷
1
) , 𝑌 ∈ Γ (𝐷

2
) . (63)

Lemma 17. Let𝑀 be a mixed-geodesic semineutral slant sub-
manifold of a para-Kähler manifold 𝑀. Then the distribution
𝐷
1
is integrable if and only if

𝐽𝐴
𝑁
𝑋 = −𝐴

𝑁
𝐽𝑋, (64)

for any 𝑋 ∈ Γ(𝐷
1
) and 𝑁 ∈ Γ(𝑇

⊥
𝑀).

Proof. Since 𝑀 is a mixed-geodesic submanifold, from (4)
we find that𝐴

𝑁
𝑋 has no component on𝐷

2
. By using (4) and

(1), we obtain

𝑔 (𝐽𝐴
𝑁
𝑋,𝑌) = −𝑔 (𝐴

𝑁
𝑋, 𝐽𝑌) = −𝑔 (ℎ (𝑋, 𝐽𝑌) ,𝑁) ,

𝑔 (𝐴
𝑁
𝐽𝑋, 𝑌) = 𝑔 (ℎ (𝐽𝑋, 𝑌) ,𝑁) .

(65)

Thus, we can write

𝑔 (𝐽𝐴
𝑁
𝑋 + 𝐴

𝑁
𝐽𝑋, 𝑌) = 𝑔 (ℎ (𝐽𝑋, 𝑌) − ℎ (𝑋, 𝐽𝑌) ,𝑁) ,

(66)

for all 𝑋,𝑌 ∈ Γ(𝐷
1
). Taking into account Theorem 15(a) and

the last equation, the proof is completed.

Theorem 18. Let 𝑀 be a semineutral slant submanifold of a
para-Kähler manifold 𝑀. If ∇𝜔 = 0, then 𝑀 is a mixed-
geodesic submanifold. Furthermore,

(a) if 𝑋,𝑌 ∈ Γ(𝐷
1
), then either 𝑀 is a 𝐷

1
-geodesic

submanifold or ℎ(𝑋, 𝑌) is an eigenvector of𝐶2 with the
eigenvalue 1,

(b) if 𝑋,𝑌 ∈ Γ(𝐷
2
), then either 𝑀 is a 𝐷

2
-geodesic

submanifold or ℎ(𝑋, 𝑌) is an eigenvector of𝐶2 with the
eigenvalue cos2𝜃.



Abstract and Applied Analysis 7

Proof. If∇𝜔 = 0, then from (13) we get𝐶ℎ(𝑋, 𝑌) = ℎ(𝑋, 𝑓𝑌),
for all 𝑋,𝑌 ∈ Γ(𝑇𝑀). Since 𝐷

1
is an invariant and 𝐷

2
is a

neutral slant distribution with the slant angle 𝜃, we obtain

𝐶
2
ℎ (𝑋, 𝑌) = 𝐶ℎ (𝑋, 𝑓𝑌) = ℎ (𝑋, 𝑓

2
𝑌)

= ℎ (𝑋, cos2𝜃𝑌) = cos2𝜃ℎ (𝑋, 𝑌) ,

𝐶
2
ℎ (𝑋, 𝑌) = 𝐶

2
ℎ (𝑌,𝑋) = 𝐶ℎ (𝑌, 𝑓𝑋)

= ℎ (𝑌, 𝑓
2
𝑋) = ℎ (𝑌,𝑋) = ℎ (𝑋, 𝑌) ,

(67)

for any𝑋 ∈ Γ(𝐷
1
), 𝑌 ∈ Γ(𝐷

2
). By using (67) we get

sin2𝜃ℎ (𝑋, 𝑌) = 0, (68)

which implies that ℎ(𝑋, 𝑌) = 0, for any 𝑋 ∈ Γ(𝐷
1
), 𝑌 ∈

Γ(𝐷
2
), that is,𝑀 is mixed-geodesic. Similarly, we obtain

𝐶
2
ℎ (𝑋, 𝑌) = ℎ (𝑋, 𝑌) , (69)

for all𝑋,𝑌 ∈ Γ(𝐷
1
), and

𝐶
2
ℎ (𝑋, 𝑌) = cos2𝜃ℎ (𝑋, 𝑌) , (70)

for all𝑋,𝑌 ∈ Γ(𝐷
2
). This completes the proof.

Proposition 19. Let 𝑀 be a semineutral slant submanifold of
a para-Kähler manifold 𝑀. Then ∇𝜔 = 0 if and only if

𝐴
𝐶𝑁

𝑍 = −𝐴
𝑁
𝑓𝑍, (71)

for all 𝑍 ∈ Γ(𝑇𝑀),𝑁 ∈ Γ(𝑇
⊥
𝑀).

Proof. From (13) and (1),we get

𝑔 ((∇
𝑋
𝜔)𝑍,𝑁) = 𝑔 (𝐶ℎ (𝑋, 𝑍) − ℎ (𝑋, 𝑓𝑍) ,𝑁)

= −𝑔 (ℎ (𝑋, 𝑍) , 𝐶𝑁) − 𝑔 (ℎ (𝑋, 𝑓𝑍) ,𝑁) ,

(72)

for any𝑋,𝑍 ∈ Γ(𝑇𝑀),𝑁 ∈ Γ(𝑇
⊥
𝑀). Taking into account (4),

we get

𝑔 ((∇
𝑋
𝜔)𝑍,𝑁) = −𝑔 (𝐴

𝐶𝑁
𝑍 + 𝐴

𝑁
𝑓𝑍,𝑋) , (73)

which completes the proof.

Proposition 20. Let𝑀 be a semineutral slant submanifold of
a para-Kähler manifold 𝑀. Then ∇𝑓 = 0 if and only if

𝐴
𝜔𝑃
2
𝑌
𝑍 = 𝐴

𝜔𝑃
2
𝑍
𝑌, (74)

for all 𝑌,𝑍 ∈ Γ(𝑇𝑀).

Proof. From (12) and (1) we have

𝑔 ((∇
𝑋
𝑓)𝑌, 𝑍) = 𝑔 (𝐴

𝜔𝑌
𝑋 + 𝐵ℎ (𝑋, 𝑌) , 𝑍)

= 𝑔 (𝐴
𝜔𝑃
2
𝑌
𝑋,𝑍) − 𝑔 (ℎ (𝑋, 𝑌) , 𝜔𝑃

2
𝑍)

= 𝑔 (𝐴
𝜔𝑃
2
𝑌
𝑋,𝑍) − 𝑔 (𝐴

𝜔𝑃
2
𝑍
𝑋,𝑌) ,

(75)

for any 𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀). Since the 𝐴 is symmetric then we
obtain from the last equation

𝑔 ((∇
𝑋
𝑓)𝑌, 𝑍) = 𝑔 (𝐴

𝜔𝑃
2
𝑌
𝑍 − 𝐴

𝜔𝑃
2
𝑍
𝑌,𝑋) . (76)

This completes the proof.

Proposition 21. Let 𝑀 be a semineutral slant submanifold of
a para-Kähler manifold 𝑀. If ∇𝑓 = 0 then the distributions
are integrable and their leaves are totally geodesic in 𝑀.

Proof. Since ∇𝑓 = 0, then from (12) we obtain 𝐵ℎ(𝑋, 𝑌) = 0

for any 𝑋 ∈ Γ(𝑇𝑀) and 𝑌 ∈ Γ(𝐷
1
). By using (1) and (5), we

have

0 = (𝐵ℎ (𝑋, 𝑌) , 𝑍) = 𝑔 (𝐽ℎ (𝑋, 𝑌) , 𝑍) = −𝑔 (ℎ (𝑋, 𝑌) , 𝐽𝑍) ,

(77)

where 𝑋,𝑍 ∈ Γ(𝑇𝑀) and 𝑌 ∈ Γ(𝐷
1
). Thus one can easily see

that

𝑔 (ℎ (𝑋, 𝑌) , 𝜔𝑃
2
𝑍) = 0, (78)

𝑔 (𝐽ℎ (𝑋, 𝑌) , 𝜔𝑃
2
𝑍) = 0. (79)

Since 𝑀 is a para-Kähler manifold, taking into account
(78), we get

0 = 𝑔 (𝐽ℎ (𝑋, 𝑌) , 𝜔𝑃
2
∇
𝑋
𝑌)

0 = −𝑔 (𝜔𝑃
2
∇
𝑋
𝑌, 𝜔𝑃
2
∇
𝑋
𝑌)

0 = sin2𝜃𝑔 (𝑃
2
∇
𝑋
𝑌, 𝑃
2
∇
𝑋
𝑌) ,

(80)

which gives 𝑃
2
∇
𝑋
𝑌 = 0; that is, ∇

𝑋
𝑌 ∈ Γ(𝐷

1
). Now, let

𝑌 ∈ Γ(𝐷
1
) and 𝑉 ∈ Γ(𝐷

2
). Since 𝐷

1
is orthogonal to 𝐷

2
,

the induced metric on 𝑀 is the neutral metric, and it is easy
to see that ∇

𝑍
𝑉 ∈ Γ(𝐷

2
). Hence the proof is complete.
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