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This paper extends the well-known most reliable source (1-MRS) problem in unreliable graphs to the 2-most reliable source (2-
MRS) problem. Two kinds of reachable probability models of node pair in unreliable graphs are considered, that is, the superior
probability and united probability. The 2-MRS problem aims to find a node pair in the graph from which the expected number of
reachable nodes or the minimum reachability is maximized. It has many important applications in large-scale unreliable computer
or communication networks. The #P-hardness of the 2-MRS problem in general graphs follows directly from that of the 1-MRS
problem.This paper deals with fourmodels of the 2-MRS problem in unreliable trees where every edge has an independent working
probability and devises a cubic-time and quadratic-space dynamic programming algorithm, respectively, for each model.

1. Introduction

A computer network or communication network is com-
monly denoted by an undirected graph 𝐺 = (𝑉, 𝐸), where
𝑉 is the node set, each of which represents a processing
or switching element, and 𝐸 is the edge set, each of which
represents a communication link [1, 2]. Given any two
different nodes 𝑢 and V, the communication between 𝑢

and V is achieved by a 𝑢-to-V path. Network failures may
frequently happen to links or nodes [3, 4]. Such a network
is called unreliable or probabilistic. In the past decade, a large
number of network reliability problems have been extensively
studied [5–20]. Many of them can be reduced to the problem
of finding an optimal location for placing a server in an
unreliable network [7–12, 14, 15, 17–20]. In addition, the
most reliable route problem has been studied in [9, 14, 19]
and its delay-constrained version has been studied in [21].
Recently, the problem of placing servers [22] and the problem
of assigning links [23] in probabilistic wireless networks
have been considered. Also, the continuous data collection
schemes have been proposed in probabilistic wireless sensor
networks (WSNs) [24, 25].

Given an unreliable graph 𝐺 with 𝑛 nodes and 𝑚 edges,
we call V a reachable node of 𝑢 (or call V reachable from 𝑢) if 𝑢

can reach V correctly.The probability of successful communi-
cation from 𝑢 to V is called the reachable probability of 𝑢 to V.
The sum reachability of a node refers to the expected number
of reachable nodes from it. The node with a maximum sum
reachability is called a sum-max most reliable source (Sum-
Max 1-MRS) of the graph. The Sum-Max 1-MRS problem has
caused a lot of researchers’ interests; see [7–12, 14, 15, 17, 20].
The minimum reachability of a node refers to its minimum
reachable probability to another node. The node maximizing
its minimum reachability is called a min-max most reliable
source (Min-Max 1-MRS) of the graph. The Min-Max 1-MRS
problemhas been studied in [9, 20].TheSum-Max 1-MRS and
Min-Max 1-MRS are collectively called a 1-MRS for short. In
addition, we refer readers to [18, 19] for the 1-center problem
in unreliable graphs and related algorithms. Obviously, both
1-MRS and 1-center problems are a good location for placing
a server in unreliable graphs.

It is well known that the 1-MRS problem and 1-center
problem are both #P-hard in general graphs [3, 4, 18]. How-
ever, they are tractable under the most reliable route policy.
Helander and Melachrinoudis presented a polynomial time
algorithm [14], and Ding gave an𝑂(𝑚𝑛+𝑛2 log 𝑛)-time algo-
rithm [9] for the 1-MRS problem. Santiváñez et al. designed
a polynomial time algorithm for the 1-center problem [19].
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Moreover, both the 1-MRS problem and 1-center problem are
also tractable in several types of sparse networks. For tree
graphs with unreliable edges, Melachrinoudis and Helander
designed a quadratic time algorithm [15], and Xue designed a
linear time algorithm for the 1-MRS problem [20]. Santivanez
and Melachrinoudis gave a linear time algorithm for the 1-
center problem [18]. Ding and Xue considered the 1-MRS
problem in the tree graphs with unreliable nodes and devised
a linear time algorithm using the complementary dynamic
programming method [10]. For ring graphs, Ding gave a
quadratic time algorithm [8]. For ring-tree graphs, Ding and
Xue considered an underlying topology of a strip, presented
a polynomial time divide-and-conquer algorithm [11], con-
sidered an underlying topology of a tree, and presented a
fast parallel algorithm based on the complementary dynamic
programming [12]. For series-parallel graphs, Colbourn and
Xue devised a linear time dynamic programming algorithm
[7].

As networks grow rapidly in size, they become increas-
ingly vulnerable to failures. Therefore, a single server can
no longer satisfy the requirement of service from the whole
network. In this scenario, we suggest to place at least two
servers on unreliable networks with a large size. The rest of
the paper focuses on the case of placing two servers and
extends the 1-MRS problem to the 2-MRS problem, including
sum-max 2-most reliable source (Sum-Max 2-MRS) andmin-
max 2-most reliable source (Min-Max 2-MRS). Given any a
node pair ⟨𝑢, V⟩, the probability of 𝑢 and V reaching another
node𝑤 successfully is called the reachable probability of ⟨𝑢, V⟩
to 𝑤. The paper considers two types of reachable probability
models of node pair, that is, the superior probability and
united probability, formally defined in Section 2.2. Under
both probability models, a cubic-time and quadratic-space
algorithm is presented, respectively, for finding a Sum-Max
2-MRS and aMin-Max 2-MRS on trees with unreliable edges.
Note that this paper is the first one to propose and study the
2-MRS problem.

The remainder of this paper is organized as follows.
In Section 2, we define notations and the 2-MRS problem
formally and show several fundamental lemmas. We present
a cubic-time algorithm, respectively, for the Sum-Max 2-
MRS problem in Section 3 and the Min-Max 2-MRS prob-
lem in Section 4 on tree graphs with unreliable edges. In
Section 5, we give an example for illustrating our algorithms.
In Section 6,we conclude the paperwith some future research
topics.

2. Preliminaries

2.1. Notations. LetG = (V,E, 𝑝) be an undirected connected
graph, where V is the node set, E is the edge set, and each
edge 𝑒 ∈ E has a weight 𝑝(𝑒) representing the working prob-
ability on 𝑒. Suppose that all edges have an independent
working probability and all nodes are immune to failures.
Let ⟨𝑢, V⟩ be a node pair of G. We use 𝜋(𝑢, V) to denote a
simple path in G connecting 𝑢 and V and also use 𝜋(𝑢, V) to
denote the event that 𝜋(𝑢, V) works correctly for simplicity of
presentation. Let Pr(𝜋(𝑢, V)) denote the probability of 𝜋(𝑢, V)
working correctly and Pr(𝑢, V) the probability of 𝑢 reaching

V among G. Specifically, Pr(𝜋(𝑢, V)) = 𝑝(𝑒) = 𝑝(𝑢, V) when
𝜋(𝑢, V) is just an edge 𝑒 = {𝑢, V} inG. Note that 𝜋(𝑢, V) works
correctly if and only if all edges of 𝜋(𝑢, V) work correctly
simultaneously. LetV(𝜋(𝑢, V)) and E(𝜋(𝑢, V)) denote the set
of nodes and edges on 𝜋(𝑢, V), respectively. So,

Pr(𝜋 (𝑢, V)) = ∏

𝑒∈E(𝜋(𝑢,V))

𝑝 (𝑒) . (1)

Let 𝑇 = (𝑉, 𝐸, 𝑝) be an undirected tree graph, where
𝑉 is the node set, 𝐸 is the edge set, and every edge 𝑒 ∈ 𝐸

has a probability weight 𝑝(𝑒) as defined above. For any ⟨𝑢, V⟩
of 𝑇, there exists a unique path 𝜋(𝑢, V) in 𝑇 connecting 𝑢
and V. Thus, it always holds that Pr(𝑢, V) = Pr(𝜋(𝑢, V)) in
𝑇. Let Pr(𝑢, 𝑢) = 1 when 𝑢 = V. An unrooted tree can be
transformed into a rooted tree by designating any node as
the root. Without any loss of generality, we pick out any node
𝑢 ∈ 𝑉 and transform 𝑇 into a tree rooted at 𝑢, denoted by
𝑇
𝑢
= (𝑉
𝑢
, 𝐸
𝑢
, 𝑝). Clearly, 𝑉

𝑢
= 𝑉 and 𝐸

𝑢
= 𝐸. For any V ∈ 𝑉

𝑢
,

we use 𝐶
𝑢
(V) to denote the set of the children of V in 𝑇

𝑢
and

𝑇
𝑢
(V) to denote the subtree of𝑇

𝑢
rooted at V. Let𝑉𝛼

𝑢
(V) denote

the set of nodes in 𝑇
𝑢
(V) and 𝑉𝛽

𝑢
(V) the set of nodes outside

𝑇
𝑢
(V). Specifically, 𝐶

𝑢
(V) = 0 and 𝑉𝛼

𝑢
(V) = {V} when V is a

leaf of 𝑇
𝑢
. For any V ∈ 𝑉

𝑢
, we use 𝑓

𝑢
(V) to denote the parent

of V in 𝑇
𝑢
and Q

𝑢
(V) to denote the set of ancestors of V in 𝑇

𝑢
.

Specifically, Q
𝑢
(V) = {𝑢} when V ∈ 𝐶

𝑢
(𝑢) and Q

𝑢
(𝑢) = 0.

For any 𝑤 ∈ Q
𝑢
(V), we use 𝑠V

𝑢
(𝑤) to denote the child of 𝑤

on 𝜋(𝑢, V) in 𝑇
𝑢
. Let 𝐶V

𝑢
(𝑤) denote the set of children of 𝑤

in 𝑇
𝑢
other than 𝑠

V
𝑢
(𝑤); that is, 𝐶V

𝑢
(𝑤) = 𝐶

𝑢
(𝑤) \ {𝑠

V
𝑢
(𝑤)}.

Let 𝐻
𝑢
= maxV∈𝑉

𝑢

|Q
𝑢
(V)|. Suppose that 𝑢 is located at the

0th level in 𝑇
𝑢
. So, 𝑇

𝑢
has 𝐻

𝑢
+ 1 levels in total. Let 𝑉

𝑢
(ℎ),

ℎ = 0, 1, 2, . . . , 𝐻
𝑢
, denote the set of nodes on the ℎ-level of

𝑇
𝑢
. Also, we use𝐷 (resp.,𝐷

𝑢
) to denote the set of leaves of 𝑇

(resp., 𝑇
𝑢
). Clearly, |𝐷

𝑢
| is equal to |𝐷| − 1 if 𝑢 is a leaf of 𝑇

and |𝐷| if 𝑢 is not a leaf.

2.2. Problem Statements. Given any ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ ofG and any V ∈

V, the maximum in the reachable probability of 𝑢
𝑖
to V and

that of 𝑢
𝑗
to V is called the superior probability of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩ to V,

denoted byF
1
(𝑢
𝑖
, 𝑢
𝑗
; V).The probability of 𝑢

𝑖
to V, 𝑢

𝑗
to V, or

both is called the united probability of ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ to V, denoted by

F
2
(𝑢
𝑖
, 𝑢
𝑗
; V). The superior probability and united probability

are collectively called the reachable probability of node pair.

Problem 1. Given an undirected connected network G =

(V,E, 𝑝), where every edge 𝑒 ∈ E has a weight representing
the working probability 𝑝(𝑒) on 𝑒, the objective is to find a
node pair inG such that the sum reachability (resp.,minimum
reachability) of the node pair is maximized.

The sum reachability of ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ is referred to as the

expected number of reachable nodes in G from ⟨𝑢
𝑖
, 𝑢
𝑗
⟩,

denoted byE
𝜆
[𝑢
𝑖
, 𝑢
𝑗
].The optimal solution of Problem 1 with

the objective of maximizing the sum reachability of node pair
is called Sum-Max 2-MRS ofG, denoted by ⟨𝑢∗

𝑖
, 𝑢
∗

𝑗
⟩. We have

E
𝜆
[𝑢
𝑖
, 𝑢
𝑗
] = ∑

V∈V

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) , 𝜆 = 1, 2, (2)

E
𝜆
[𝑢
∗

𝑖
, 𝑢
∗

𝑗
] = max
𝑢
𝑖
,𝑢
𝑗
∈V,𝑢

𝑖
̸= 𝑢
𝑗

E
𝜆
[𝑢
𝑖
, 𝑢
𝑗
] . (3)
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The minimum reachability of ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ is referred to as

the minimum reachable probability of ⟨𝑢
𝑖
, 𝑢
𝑗
⟩, denoted by

M
𝜆
[𝑢
𝑖
, 𝑢
𝑗
]. The optimal solution of Problem 1 with the aim of

maximizing the minimum reachability of node pair is called
Min-Max 2-MRS ofG, denoted by ⟨𝑢⋆

𝑖
, 𝑢
⋆

𝑗
⟩. We have

M
𝜆
[𝑢
𝑖
, 𝑢
𝑗
] = min

V∈V
F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) , 𝜆 = 1, 2, (4)

M
𝜆
[𝑢
⋆

𝑖
, 𝑢
⋆

𝑗
] = max
𝑢
𝑖
,𝑢
𝑗
∈V,𝑢

𝑖
̸= 𝑢
𝑗

M
𝜆
[𝑢
𝑖
, 𝑢
𝑗
] . (5)

The Sum-Max 2-MRS problem and Min-Max 2-MRS
problem are collectively called the 2-MRS problem. Based
on the #P-hardness of the 1-MRS problem in general graphs
[3, 4], we conclude that the 2-MRS problem in general graphs
is also #P-hard. However the 1-MRS problem in tree graphs is
tractable [10, 15, 20]. In the remainder of this paper, we will
deal with the 2-MRS problem in tree graphs. All the notations
and their explanations used in the paper are listed in Table 2.

2.3. Fundamental Lemmas. Let 𝐴 ⊕ 𝐵 denote the union of
two disjoint sets𝐴 and 𝐵. Lemma 2 shows the decomposition
scheme at 𝑢

𝑗
of𝑉
𝑢
𝑖

for any ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of𝑇, see Figure 1.The proof

is straightforward and omitted here.

Lemma 2. Given any ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of 𝑇, one has

𝑉
𝑢
𝑖

= 𝑉
𝛼

𝑢
𝑖

(𝑢
𝑗
) ⊕ 𝑉
𝛽

𝑢
𝑖

(𝑢
𝑗
) , (6)

in which

𝑉
𝛼

𝑢
𝑖

(𝑢
𝑗
) = ( ⨁

𝑠∈𝐶
𝑢
𝑖
(𝑢𝑗)

𝑉
𝛼

𝑢
𝑖

(𝑠)) ⊕ {𝑢
𝑗
} , (7)

𝑉
𝛽

𝑢
𝑖

(𝑢
𝑗
) = ( ⨁

𝑤∈Q
𝑢
𝑖
(𝑢𝑗)

⨁

𝑠∈𝐶
𝑢
𝑗

𝑢
𝑖
(𝑤)

𝑉
𝛼

𝑢
𝑖

(𝑠)) ⊕ Q
𝑢
𝑖

(𝑢
𝑗
) . (8)

Lemma 3. Given any tree 𝑇
𝑢
= (𝑉
𝑢
, 𝐸
𝑢
) rooted at 𝑢, one has,

∑

V∈𝑉
𝑢

󵄨󵄨󵄨󵄨Q𝑢 (V)
󵄨󵄨󵄨󵄨 ≤

1

2

󵄨󵄨󵄨󵄨𝑉𝑢
󵄨󵄨󵄨󵄨 (
󵄨󵄨󵄨󵄨𝑉𝑢

󵄨󵄨󵄨󵄨 − 1) . (9)

Proof. Let 𝑇
𝑢

= (𝑉
𝑢
, 𝐸
𝑢
) be a tree rooted at 𝑢 with an

arbitrary topology and 𝑇Δ
𝑢
= (𝑉
Δ

𝑢
, 𝐸
Δ

𝑢
) a line with the same

number of nodes as 𝑇
𝑢
. First, we prove that ∑V∈𝑉

𝑢

|Q
𝑢
(V)| ≤

∑V∈𝑉Δ
𝑢

|QΔ
𝑢
(V)|. In fact,𝑇

𝑢
can always be derived from𝑇

Δ

𝑢
in the

following way. Let 𝐿 denote the current line and set 𝐿 = 𝑇
Δ

𝑢

initially. We take away the lowest node of 𝐿 and attach it to
another node one by one. Every time we take away the lowest
node of 𝐿, we set the rest of 𝐿 to the current line. So, we
are sure to obtain a series of trees rooted at 𝑢. Suppose that
we get 𝑚 trees, 𝑇1

𝑢
, 𝑇
2

𝑢
, . . . , 𝑇

𝑚

𝑢
in order. Let 𝑇0

𝑢
= 𝑇
Δ

𝑢
and

𝑎
𝑘
= ∑V∈𝑉

𝑢

|Q𝑘
𝑢
(V)|, 𝑘 = 0, 1, . . . , 𝑚. Given any 0 ≤ 𝑘 ≤ 𝑚 − 1,

𝑇
𝑘+1

𝑢
is derived from 𝑇

𝑘

𝑢
by moving the lowest node V󸀠 of 𝐿

in 𝑇
𝑘

𝑢
. The new level in 𝑇

𝑘+1

𝑢
at which V󸀠 is located is lower

than the previous level in 𝑇𝑘
𝑢
. So, 𝑎

𝑘+1
≤ 𝑎
𝑘
. Therefore, 𝑎

0
≥

𝑎
1
≥ ⋅ ⋅ ⋅ ≥ 𝑎

𝑚
. Note that 𝐻Δ

𝑢
= |𝑉
Δ

𝑢
| − 1 and |𝑉Δ

𝑢
(ℎ)| = 1,

ℎ = 0, 1, . . . , 𝐻
Δ

𝑢
. We have

𝑎
0
= ∑

V∈𝑉Δ
𝑢

󵄨󵄨󵄨󵄨󵄨
Q
Δ

𝑢
(V)
󵄨󵄨󵄨󵄨󵄨
=

|𝑉
Δ

𝑢
|−1

∑

ℎ=1

ℎ =
1

2

󵄨󵄨󵄨󵄨󵄨
𝑉
Δ

𝑢

󵄨󵄨󵄨󵄨󵄨
(
󵄨󵄨󵄨󵄨󵄨
𝑉
Δ

𝑢

󵄨󵄨󵄨󵄨󵄨
− 1) . (10)

Therefore,∑V∈𝑉
𝑢

|Q
𝑢
(V)| ≤ (1/2)|𝑉

𝑢
|(|𝑉
𝑢
| − 1) for any 𝑇

𝑢
.

Lemma 4. Given any tree 𝑇
𝑢
= (𝑉
𝑢
, 𝐸
𝑢
) rooted at 𝑢, one has,

∑

V∈𝑉
𝑢

󵄨󵄨󵄨󵄨𝐶𝑢 (V)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑉𝑢
󵄨󵄨󵄨󵄨 − 1, (11)

(
󵄨󵄨󵄨󵄨𝑉𝑢

󵄨󵄨󵄨󵄨 − 1)
2

󵄨󵄨󵄨󵄨𝑉𝑢 \ 𝐷𝑢
󵄨󵄨󵄨󵄨

≤ ∑

V∈𝑉
𝑢

󵄨󵄨󵄨󵄨𝐶𝑢 (V)
󵄨󵄨󵄨󵄨

2

≤ (
󵄨󵄨󵄨󵄨𝑉𝑢

󵄨󵄨󵄨󵄨 − 1)
2

. (12)

Proof. It follows directly from 𝐶
𝑢
(V) = 0, for all V ∈ 𝐷

𝑢
and

|𝐸
𝑢
| = |𝑉
𝑢
| − 1, that∑V∈𝑉

𝑢

|𝐶
𝑢
(V)| = ∑V∈𝑉

𝑢
\𝐷
𝑢

|𝐶
𝑢
(V)| = |𝐸

𝑢
| =

|𝑉
𝑢
| − 1.
On one hand,

∑

V∈𝑉
𝑢

󵄨󵄨󵄨󵄨𝐶𝑢 (V)
󵄨󵄨󵄨󵄨

2

= ∑

V∈𝑉
𝑢
\𝐷
𝑢

󵄨󵄨󵄨󵄨𝐶𝑢 (V)
󵄨󵄨󵄨󵄨

2

≥

(∑V∈𝑉
𝑢
\𝐷
𝑢

󵄨󵄨󵄨󵄨𝐶𝑢 (V)
󵄨󵄨󵄨󵄨)
2

󵄨󵄨󵄨󵄨𝑉𝑢 \ 𝐷𝑢
󵄨󵄨󵄨󵄨

=
(
󵄨󵄨󵄨󵄨𝑉𝑢

󵄨󵄨󵄨󵄨 − 1)
2

󵄨󵄨󵄨󵄨𝑉𝑢 \ 𝐷𝑢
󵄨󵄨󵄨󵄨

,

(13)

where the equality holds if and only if all |𝐶
𝑢
(V)|, V ∈ 𝑉

𝑢
\𝐷
𝑢
,

are equal. Let 𝑇∘
𝑢
= (𝑉
∘

𝑢
, 𝐸
∘

𝑢
) be a star rooted at 𝑢, say, a special

case of 𝑇
𝑢
. On the other hand, we prove that∑V∈𝑉

𝑢

|𝐶
𝑢
(V)|2 ≤

∑V∈𝑉∘
𝑢

|𝐶
∘

𝑢
(V)|2 for any 𝑇

𝑢
. Let 𝑚 = |𝑉

𝑢
\ 𝐷
𝑢
| and 𝑛 = |𝑉

𝑢
| −

1. We label all the nodes in 𝑉
𝑢
\ {𝑢} by numbers 1, 2, . . . , 𝑛.

Let 𝑥
𝑘
= |𝐶
𝑢
(V
𝑘
)|, 𝑘 = 1, . . . , 𝑚. Then we build the following

restricted optimization problem:

max
𝑚

∑

𝑘=1

𝑥
2

𝑘
,

s.t.
𝑚

∑

𝑘=1

𝑥
𝑘
= 𝑛,

𝑥
𝑘
≥ 0, 𝑥

𝑘
∈ Z, 𝑘 = 1, . . . , 𝑚.

(14)

Without loss of generality, we suppose that max{𝑥
1
, 𝑥
2
, . . . ,

𝑥
𝑚
} = 𝑥

𝑚
. By taking 𝑥

𝑚
= 𝑛 − ∑

𝑚−1

𝑘=1
𝑥
𝑘
into the above ob-

jective function, we obtain a new unrestricted optimization
problem

max
𝑥
𝑘
≥0,𝑥
𝑘
∈Z

𝑓 (𝑥
1
, . . . , 𝑥

𝑚−1
) =

𝑚−1

∑

𝑘=1

𝑥
2

𝑘
+ (𝑛 −

𝑚−1

∑

𝑘=1

𝑥
𝑘
)

2

. (15)

We conclude that, for every 𝑘 = 1, . . . , 𝑚 − 1,

𝜕𝑓

𝜕𝑥
𝑘

= 2𝑥
𝑘
− 2(𝑛 −

𝑚−1

∑

𝑘=1

𝑥
𝑘
) = 2 (𝑥

𝑘
− 𝑥
𝑚
) ≤ 0. (16)
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uj

ui
Q u 𝑖

(u j
)

fu𝑖
(uj)

V
𝛼

u𝑖
(uj)

V
𝛽

u𝑖
(uj)

(a) Decomposition of 𝑇𝑢𝑖

uj

Cu𝑖
(uj)

(b) Decomposition of 𝑉𝛼
𝑢
𝑖

(𝑢𝑗)

uj

Q u 𝑖
(u j
)

fu𝑖
(uj)

ui

(c) Decomposition of 𝑉𝛽𝑢
𝑖

(𝑢𝑗)

Figure 1: Illustration of the decomposition of 𝑇
𝑢
𝑖

for any 𝑢
𝑖
∈ 𝑉.

Thus, 𝑓max(𝑥1, . . . , 𝑥𝑚−1) = 𝑓(0, . . . , 0) = 𝑛
2 and 𝑥

𝑚
= 𝑛. This

implies that ∑V∈𝑉
𝑢

|𝐶
𝑢
(V)|2 ≤ (|𝑉

𝑢
| − 1)
2 and the tree rooted

at 𝑢 satisfying the equality is just 𝑇∘
𝑢
.

Lemma 5. Given any ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of 𝑇, one has

Pr (𝑢
𝑖
, 𝑢
𝑗
) = Pr (𝑢

𝑖
, V)Pr (V, 𝑢

𝑗
) , ∀V ∈ 𝑉 (𝜋 (𝑢

𝑖
, 𝑢
𝑗
)) .

(17)
Proof. First of all, for any two edge-disjoint paths 𝜋

1
and 𝜋

2

on 𝑇, we prove that 𝜋
1
and 𝜋

2
are independent. Suppose

that 𝜋
1
contains edges 𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑘
1

and 𝜋
2
contains edges

𝑒
󸀠

1
, 𝑒
󸀠

2
, . . . , 𝑒

󸀠

𝑘
2

. It is obvious that {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑘
1

} ∩ {𝑒
󸀠

1
, 𝑒
󸀠

2
,

. . . , 𝑒
󸀠

𝑘
2

} = 0. Since all of edges 𝑒 ∈ 𝐸 are independent, we
conclude that

Pr (𝜋
1
𝜋
2
) =

𝑘
1

∏

𝑖
1
=1

Pr (𝑒
𝑖
1

)

𝑘
2

∏

𝑖
2
=1

Pr (𝑒󸀠
𝑖
2

) = Pr (𝜋
1
)Pr (𝜋

2
) .

(18)
For any V ∈ 𝑉(𝜋(𝑢

𝑖
, 𝑢
𝑗
)), 𝜋(𝑢

𝑖
, 𝑢
𝑗
) comprises two edge-

disjoint subpaths 𝜋(𝑢
𝑖
, V) and 𝜋(V, 𝑢

𝑗
). Therefore, Pr(𝑢

𝑖
, 𝑢
𝑗
) =

Pr(𝑢
𝑖
, V)Pr(V, 𝑢

𝑗
).

Lemma 6. Given any ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of 𝑇 and V ∈ 𝑉

𝑢
𝑖

,
(i) if V ∈ Q

𝑢
𝑖

(𝑢
𝑗
), then

F
1
(𝑢
𝑖
, 𝑢
𝑗
; V) = max {Pr (𝑢

𝑖
, V) ,Pr (𝑢

𝑗
, V)} , (19)

F
2
(𝑢
𝑖
, 𝑢
𝑗
; V) = Pr (𝑢

𝑖
, V) + Pr (𝑢

𝑗
, V) − Pr (𝑢

𝑖
, V)Pr (𝑢

𝑗
, V) ,

(20)

(ii) if V ∈ 𝑉𝛼
𝑢
𝑖

(𝑢
𝑗
), then

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) = Pr (𝑢

𝑗
, V) , 𝜆 = 1, 2, (21)

(iii) if V ∈ 𝑉𝛼
𝑢
𝑖

(𝑠), where 𝑠 ∈ 𝐶𝑢𝑗𝑢
𝑖

(𝑤) and 𝑤 ∈ Q
𝑢
𝑖

(𝑢
𝑗
), then

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) = F

𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤) 𝑝 (𝑤, 𝑠)Pr (𝑠, V) , 𝜆 = 1, 2.

(22)

Proof. (i) When V ∈ Q
𝑢
𝑖

(𝑢
𝑗
), it follows directly from the

definition of F
1
(𝑢
𝑖
, 𝑢
𝑗
; V) that F

1
(𝑢
𝑖
, 𝑢
𝑗
; V) = max{Pr(𝑢

𝑖
, V),

Pr(𝑢
𝑗
, V)}. We see that 𝜋(𝑢

𝑖
, 𝑢
𝑗
) can be partitioned at V into

two edge-disjoint subpaths 𝜋(𝑢
𝑖
, V) and 𝜋(𝑢

𝑗
, V). Lemma 5

implies that 𝜋(𝑢
𝑖
, V) and 𝜋(𝑢

𝑗
, V) are independent. The defi-

nition ofF
2
(𝑢
𝑖
, 𝑢
𝑗
; V)means that the value ofF

2
(𝑢
𝑖
, 𝑢
𝑗
; V) is

equal to the probability of 𝜋(𝑢
𝑖
, V) ∪ 𝜋(𝑢

𝑗
, V). So,

F
2
(𝑢
𝑖
, 𝑢
𝑗
; V)

= Pr (𝜋 (𝑢
𝑖
, V) ∪ 𝜋 (𝑢

𝑗
, V))

= Pr (𝜋 (𝑢
𝑖
, V)) + Pr (𝜋 (𝑢

𝑗
, V))

− Pr (𝜋 (𝑢
𝑖
, V) ∩ 𝜋 (𝑢

𝑗
, V))

= Pr (𝑢
𝑖
, V) + Pr (𝑢

𝑗
, V) − Pr (𝑢

𝑖
, V)Pr (𝑢

𝑗
, V) .

(23)

(ii) When V ∈ 𝑉
𝛼

𝑢
𝑖

(𝑢
𝑗
), 𝜋(𝑢

𝑖
, V) is composed of two edge-

disjoint subpaths 𝜋(𝑢
𝑖
, 𝑢
𝑗
) and 𝜋(𝑢

𝑗
, V). It follows from

Lemma 5 that Pr(𝑢
𝑖
, V) = Pr(𝑢

𝑖
, 𝑢
𝑗
)Pr(𝑢
𝑗
, V). So,

F
1
(𝑢
𝑖
, 𝑢
𝑗
; V) = max {Pr (𝑢

𝑖
, 𝑢
𝑗
) , 1}Pr (𝑢

𝑗
, V) = Pr (𝑢

𝑗
, V) .

(24)

We see that 𝜋(𝑢
𝑖
, V) works correctly if and only if 𝜋(𝑢

𝑖
, 𝑢
𝑗
)

and 𝜋(𝑢
𝑗
, V) work correctly simultaneously. So, 𝜋(𝑢

𝑖
, V) =

𝜋(𝑢
𝑖
, 𝑢
𝑗
) ∩ 𝜋(𝑢

𝑗
, V). Thus,

F
2
(𝑢
𝑖
, 𝑢
𝑗
; V) = Pr ((𝜋 (𝑢

𝑖
, 𝑢
𝑗
) ∩ 𝜋 (𝑢

𝑗
, V)) ∪ 𝜋 (𝑢

𝑗
, V))

= Pr (𝑢
𝑗
, V) .

(25)

(iii) When V ∈ 𝑉𝛼
𝑢
𝑖

(𝑠), where 𝑠 ∈ 𝐶𝑢𝑗𝑢
𝑖

(𝑤) and 𝑤 ∈ Q
𝑢
𝑖

(𝑢
𝑗
),

we observe that 𝜋(𝑢
𝑘
, V), 𝑘 = 𝑖, 𝑗, consists of two edge-disjoint

subpaths 𝜋(𝑢
𝑘
, 𝑤) and 𝜋(𝑤, V). Also, 𝜋(𝑤, V) comprises two
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edge-disjoint subpaths 𝜋(𝑤, 𝑠) and 𝜋(𝑠, V) as well. We derive
that Pr(𝑢

𝑘
, V) = Pr(𝑢

𝑘
, 𝑤)𝑝(𝑤, 𝑠)Pr(𝑠, V) from Lemma 5. So,

F
1
(𝑢
𝑖
, 𝑢
𝑗
; V) = max {Pr (𝑢

𝑖
, V) ,Pr (𝑢

𝑗
, V)}

= max {Pr (𝑢
𝑖
, 𝑤) ,Pr (𝑢

𝑗
, 𝑤)} 𝑝 (𝑤, 𝑠)Pr (𝑠, V)

= F
1
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤) 𝑝 (𝑤, 𝑠)Pr (𝑠, V) .

(26)

We see that 𝜋(𝑢
𝑘
, V), 𝑘 = 𝑖, 𝑗, works correctly if and only

if 𝜋(𝑢
𝑘
, 𝑤) and 𝜋(𝑤, V) work correctly simultaneously. So,

𝜋(𝑢
𝑘
, V) = 𝜋(𝑢

𝑘
, 𝑤) ∩ 𝜋(𝑤, V). Thus,

F
2
(𝑢
𝑖
, 𝑢
𝑗
; V)

= Pr ((𝜋 (𝑢
𝑖
, 𝑤) ∩ 𝜋 (𝑤, V)) ∪ (𝜋 (𝑢

𝑗
, 𝑤) ∩ 𝜋 (𝑤, V)))

= Pr (𝜋 (𝑢
𝑖
, 𝑤) ∩ 𝜋 (𝑤, V)) + Pr (𝜋 (𝑢

𝑗
, 𝑤) ∩ 𝜋 (𝑤, V))

− Pr ((𝜋 (𝑢
𝑖
, 𝑤) ∩ 𝜋 (𝑤, V)) ∩ (𝜋 (𝑢

𝑗
, 𝑤) ∩ 𝜋 (𝑤, V)))

= Pr (𝑢
𝑖
, 𝑤)Pr (𝑤, V) + Pr (𝑢

𝑗
, 𝑤)Pr (𝑤, V)

− Pr (𝑢
𝑖
, 𝑤)Pr (𝑢

𝑗
, 𝑤)Pr (𝑤, V)

= F
2
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤) 𝑝 (𝑤, 𝑢)Pr (𝑢, V) .

(27)

3. Algorithm for Finding a Sum-Max 2-MRS

Definition 7. Given 𝑇 = (𝑉, 𝐸, 𝑝) and ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of 𝑇, one lets

E𝜆
𝑢
𝑖

[𝑢
𝑗
], 𝜆 = 1, 2, denote the sum reachability in𝑇

𝑢
𝑖

of ⟨𝑢
𝑖
, 𝑢
𝑗
⟩.

In addition, one letsX𝜆
𝑢
𝑖

(𝑢
𝑗
) (resp.,Y𝜆

𝑢
𝑖

(𝑢
𝑗
)) denote the sum

reachability in 𝑉𝛼
𝑢
𝑖

(𝑢
𝑗
) (resp., 𝑉𝛽

𝑢
𝑖

(𝑢
𝑗
)) of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩.

Theorem 8. Given any ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of 𝑇, if 𝑢

𝑗
∈ 𝑉
𝑢
𝑖

, then one gets

E
𝜆

𝑢
𝑖

[𝑢
𝑗
] = X

𝜆

𝑢
𝑖

(𝑢
𝑗
) +Y

𝜆

𝑢
𝑖

(𝑢
𝑗
) , 𝜆 = 1, 2. (28)

Proof. It follows directly from the definition of E𝜆
𝑢
𝑖

[𝑢
𝑗
] given

in Definition 7 that E
𝜆
[𝑢
𝑖
, 𝑢
𝑗
] = E𝜆

𝑢
𝑖

[𝑢
𝑗
] = E𝜆

𝑢
𝑗

[𝑢
𝑖
]. We

further derive from (2) that E𝜆
𝑢
𝑖

[𝑢
𝑗
] = ∑V∈𝑉

𝑢
𝑖

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V). By

(6) in Lemma 2 together with the definitions of X𝜆
𝑢
𝑖

(𝑢
𝑗
) and

Y𝜆
𝑢
𝑖

(𝑢
𝑗
), we conclude that

E
𝜆

𝑢
𝑖

[𝑢
𝑗
] = ∑

V∈𝑉𝛼
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) + ∑

V∈𝑉𝛽
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V)

= X
𝜆

𝑢
𝑖

(𝑢
𝑗
) +Y

𝜆

𝑢
𝑖

(𝑢
𝑗
) .

(29)

Theorem 9. Given any ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of 𝑇, if 𝑢

𝑗
∈ 𝑉
𝑢
𝑖

, then one gets

X
𝜆

𝑢
𝑖

(𝑢
𝑗
) = 1 + ∑

𝑠∈𝐶
𝑢
𝑖
(𝑢𝑗)

𝑝 (𝑢
𝑗
, 𝑠)X

𝜆

𝑢
𝑖

(𝑠) , (30)

Y
𝜆

𝑢
𝑖

(𝑢
𝑗
) = ∑

𝑤∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤)

× (X
𝜆

𝑢
𝑖

(𝑤) − 𝑝 (𝑤, 𝑠
𝑢
𝑗

𝑢
𝑖

(𝑤))X
𝜆

𝑢
𝑖

(𝑠
𝑢
𝑗

𝑢
𝑖

(𝑤))) .

(31)

Proof. The combination of the definition ofX𝜆
𝑢
𝑖

(𝑢
𝑗
) and (21)

in Lemma 6 yields thatX𝜆
𝑢
𝑖

(𝑢
𝑗
) = ∑V∈𝑉𝛼

𝑢
𝑖

(𝑢
𝑗
)
Pr(𝑢
𝑗
, V). Accord-

ing to (7) in Lemma 2, for any V ∈ 𝑉
𝛼

𝑢
𝑖

(𝑢
𝑗
), it is obvious

that Pr(𝑢
𝑗
, 𝑢
𝑗
) = 1 if V = 𝑢

𝑗
and otherwise there must be

a child 𝑠 of 𝑢
𝑗
if 𝐶
𝑢
𝑖

(𝑢
𝑗
) ̸= 0 such that V belongs to 𝑉𝛼

𝑢
𝑖

(𝑠). By
Lemma 5,we obtain Pr(𝑢

𝑗
, V) = 𝑝(𝑢

𝑗
, 𝑠)Pr(𝑠, V).Therefore, for

all 𝑢
𝑗
∈ 𝑉
𝑢
𝑖

\ {𝑢
𝑖
}, we have

X
𝜆

𝑢
𝑖

(𝑢
𝑗
) = 1 + ∑

𝑠∈𝐶
𝑢
𝑖
(𝑢𝑗)

𝑝 (𝑢
𝑗
, 𝑠) ∑

V∈𝑉𝛼
𝑢
𝑖

(𝑠)

Pr (𝑠, V)

= 1 + ∑

𝑠∈𝐶
𝑢
𝑖
(𝑢𝑗)

𝑝 (𝑢
𝑗
, 𝑠)X

𝜆

𝑢
𝑖

(𝑠) .

(32)

The definition of Y𝜆
𝑢
𝑖

(𝑢
𝑗
) means Y𝜆

𝑢
𝑖

(𝑢
𝑗
) =

∑
V∈𝑉𝛽
𝑢
𝑖
(𝑢
𝑗
)
F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V). According to (8) in Lemma 2,

for any V ∈ 𝑉𝛽
𝑢
𝑖

(𝑢
𝑗
), we are sure that V is either inQ

𝑢
𝑖

(𝑢
𝑗
) or in

𝑉
𝛼

𝑢
𝑖

(𝑠), where 𝑠 is a child other than 𝑠𝑢𝑗𝑢
𝑖

(𝑤) of some node 𝑤 in
Q
𝑢
𝑖

(𝑢
𝑗
). We can use (19) when 𝜆 = 1 and (20) when 𝜆 = 2 to

compute F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) if V ∈ Q

𝑢
𝑖

(𝑢
𝑗
) and use (22) otherwise.

Thus, for all 𝑢
𝑗
∈ 𝑉
𝑢
𝑖

\ {𝑢
𝑖
}, we have

Y
𝜆

𝑢
𝑖

(𝑢
𝑗
)

= ∑

V∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) + ∑

𝑤∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤)

× ∑

𝑠∈𝐶
𝑢
𝑗

𝑢
𝑖
(𝑤)

𝑝 (𝑤, 𝑠) ∑

V∈𝑉𝛼
𝑢
𝑖

(𝑠)

Pr (𝑠, V)

= ∑

𝑤∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤)(1 + ∑

𝑠∈𝐶
𝑢
𝑗

𝑢
𝑖
(𝑤)

𝑝 (𝑤, 𝑠)X
𝜆

𝑢
𝑖

(𝑠))

= ∑

𝑤∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤) (X

𝜆

𝑢
𝑖

(𝑤) − 𝑝 (𝑤, 𝑠
𝑢
𝑗

𝑢
𝑖

(𝑤))

×X
𝜆

𝑢
𝑖

(𝑠
𝑢
𝑗

𝑢
𝑖

(𝑤))) .

(33)

From (3), we conclude that

E
𝜆
[𝑢
∗

𝑖
, 𝑢
∗

𝑗
] = max
𝑢
𝑖
∈𝑉

max
𝑢
𝑗
∈𝑉
𝑢
𝑖

\{𝑢
𝑖
}

E
𝜆

𝑢
𝑖

[𝑢
𝑗
] . (34)
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Input: an undirected tree 𝑇 = (𝑉, 𝐸, 𝑝) with each edge 𝑒 ∈ 𝐸 having
a probability weight 𝑝(𝑒) ∈ (0, 1);
Output: a Sum-Max 2-MRS ⟨𝑢∗, V∗⟩ of 𝑇.
Step 0 𝑖 ← 1;
Step 1 Use DFS to traverse 𝑇 with 𝑢

𝑖
as the origin, store the

resultant rooted tree 𝑇
𝑢
𝑖

, record 𝑓
𝑢
𝑖

(𝑢
𝑗
) and compute

Pr(𝑢
𝑖
, 𝑢
𝑗
) for all 𝑢

𝑗
∈ 𝑉, and store𝐷

𝑢
𝑖

;
if 𝑖 ≤ |𝑉| then 𝑖 ← 𝑖 + 1; goto Step 1;
else 𝑖 ← 1; goto Step 2; endif

Step 2 for ℎ = 𝐻
𝑢
𝑖

, 𝐻
𝑢
𝑖

− 1, . . . , 1, 0 do

for all nodes 𝑢
𝑗
on the ℎ-level of 𝑇

𝑢
𝑖

do

X𝜆
𝑢
𝑖

(𝑢
𝑗
) ← 1;

if 𝑢
𝑗
∉ 𝐷
𝑢
𝑖

then

ComputeX𝜆
𝑢
𝑖

(𝑢
𝑗
) by (30);

else break; endif
endfor

endfor

Step 3 for ℎ = 𝐻
𝑢
𝑖

, 𝐻
𝑢
𝑖

− 1, . . . , 1, 0 do

for all nodes 𝑢
𝑗
on the ℎ-level of 𝑇

𝑢
𝑖

do

Y𝜆
𝑢
𝑖

(𝑢
𝑗
) ← 0;

if 𝑢
𝑗
̸= 𝑢
𝑖
then

𝑤 ← 𝑢
𝑗
; 𝑘 ← ℎ;

while 𝑘 ≥ 1 do

𝑤
󸀠
← 𝑤; 𝑤 ← 𝑓

𝑢
𝑖

(𝑤); 𝑠𝑢𝑗𝑢
𝑖
(𝑤) ← 𝑤

󸀠; 𝑘 ← 𝑘 − 1;
ComputeF

𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤) by (19) or (20);

Y𝜆
𝑢
𝑖

(𝑢
𝑗
) ← Y𝜆

𝑢
𝑖

(𝑢
𝑗
) +F

𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤) ×

(X𝜆
𝑢
𝑖

(𝑤) − 𝑝(𝑤, 𝑠
𝑢
𝑗

𝑢
𝑖
(𝑤))X𝜆

𝑢
𝑖

(𝑠
𝑢
𝑗

𝑢
𝑖
(𝑤)));

endwhile

else goto Step 4; endif
endfor

endfor

Step 4 for 𝑗 = 1, 2, . . . , |𝑉| do

if 𝑗 ̸= 𝑖 then

Compute E𝜆
𝑢
𝑖

[𝑢
𝑗
] by (28);

else break; endif
endfor

if 𝑖 < |𝑉| then

𝑖 ← 𝑖 + 1; goto Step 2;
else

Find the maximum of all the values of E𝜆
𝑢
𝑖

[𝑢
𝑗
] and

then determine 𝑢∗
𝑖
and 𝑢∗

𝑗
by (34);

endif

Algorithm 1: Algorithm SUM-MAX.

We can compute E
𝜆
[𝑢
∗

𝑖
, 𝑢
∗

𝑗
] in the following way: for any

𝑢
𝑖
∈ 𝑉, we first computeE𝜆

𝑢
𝑖

[𝑢
𝑗
] for all𝑢

𝑗
∈ 𝑉
𝑢
𝑖

\{𝑢
𝑖
}using (28)

and then find the maximum among |𝑉| − 1 values of E𝜆
𝑢
𝑖

[𝑢
𝑗
].

We finally getE
𝜆
[𝑢
∗

𝑖
, 𝑢
∗

𝑗
] by determining themaximumof the

above |𝑉|maximums.This is essentially the main framework
of our dynamic programming algorithm called SUM-MAX,
shown in Algorithm 1. The key task is to compute all the
values of E𝜆

𝑢
𝑖

[𝑢
𝑗
]. We see from Theorem 10 that the essence

of computing E𝜆
𝑢
𝑖

[𝑢
𝑗
] is to computeX𝜆

𝑢
𝑖

(𝑢
𝑗
) andY𝜆

𝑢
𝑖

(𝑢
𝑗
), and

further fromTheorem 9 that we can computeX𝜆
𝑢
𝑖

(𝑢
𝑗
) by (30)

andY𝜆
𝑢
𝑖

(𝑢
𝑗
) by (31). Specifically, we deriveX𝜆

𝑢
𝑖

(𝑢
𝑗
) = 1 from

𝐶
𝑢
𝑖

(𝑢
𝑗
) = 0 when 𝑢

𝑗
is a leaf of 𝑇

𝑢
𝑖

and Y𝜆
𝑢
𝑖

(𝑢
𝑖
) = 0 from

Q
𝑢
𝑖

(𝑢
𝑖
) = 0 when 𝑢

𝑗
= 𝑢
𝑖
. Therefore, for any 𝑢

𝑖
∈ 𝑉, we can

first compute all the values ofX𝜆
𝑢
𝑖

(𝑢
𝑗
), 𝑢
𝑗
∈ 𝑉
𝑢
𝑖

, level by level
from the bottom of 𝑇

𝑢
𝑖

to the top and afterward compute all
the values of Y𝜆

𝑢
𝑖

(𝑢
𝑗
), 𝑢
𝑗
∈ 𝑉
𝑢
𝑖

, level by level likewise. Based
on (31), we can accumulate the value ofY𝜆

𝑢
𝑖

(𝑢
𝑗
) from 𝑢

𝑗
to 𝑢
𝑖

generation by generation for reducing the space.
In order to facilitate algorithm SUM-MAX working level

by level, we need to transform 𝑇 into a rooted tree at every
𝑢
𝑖
∈ 𝑉 beforehand. For this purpose, we devise a prepro-

cessing procedure called PREP. The major idea of procedure
PREP is described roughly as follows: we use the depth-first
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search (DFS) method to traverse 𝑇. DFS starts from 𝑢
𝑖
. Let

Q
𝑢
𝑖

(𝑢
𝑖
) = 0 initially. When DFS reaches a new node V via

the edge {𝑢, V}, we set Q
𝑢
𝑖

(V) = Q
𝑢
𝑖

(𝑢) ∪ {𝑢} and compute
Pr(𝑢
𝑖
, V) = Pr(𝑢

𝑖
, 𝑢)𝑝(𝑢, V).This process is repeated untilDFS

ends. DFS with 𝑢
𝑖
as the origin produces a tree rooted at the

origin, say, 𝑇
𝑢
𝑖

. All the |𝑉| times DFSs obtain all the values of
Pr(𝑢, V), for all 𝑢, V ∈ 𝑉, 𝑢 ̸= V, which makes preparations for
computing F

𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤), 𝑤 ∈ Q

𝑢
𝑖

(𝑢
𝑗
), and further Y𝜆

𝑢
𝑖

(𝑢
𝑗
)

for any 𝑢
𝑖
∈ 𝑉 and 𝑢

𝑗
∈ 𝑉
𝑢
𝑖

. In addition, DFS also finds the
set of all the leaves of 𝑇

𝑢
𝑖

, say,𝐷
𝑢
𝑖

.

Theorem 10. Given an undirected tree 𝑇 = (𝑉, 𝐸, 𝑝), where
each edge 𝑒 ∈ 𝐸 has an independent working probability 0 <

𝑝(𝑒) < 1, algorithm SUM-MAX can find a Sum-Max 2-MRS of
𝑇 correctly with a time complexity of 𝑂((1/2)|𝑉|3) and a space
complexity of 𝑂(|𝑉|2).

Proof. First, we analyze the time complexity of SUM-MAX.
Step 0 takes 𝑂(1) time. Step 1 runs |𝑉| times DFS in total. In
every running (i.e., for every 𝑖 = 1, 2, . . . , |𝑉|), Step 1 spends
𝑂(|𝑉|) time to traverse 𝑇 and store 𝑇

𝑢
𝑖

, 𝑂(1) time to record
𝑓
𝑢
𝑖

(𝑢
𝑗
), 𝑂(1) time to compute Pr(𝑢

𝑖
, 𝑢
𝑗
) for each 𝑢

𝑗
∈ 𝑉, and

at most𝑂(|𝑉|) time to determine𝐷
𝑢
𝑖

. So, Step 1 takes𝑂(|𝑉|2)
time in all. Next, SUM-MAX runs Step 2, Step 3, and Step
4 in order for every 𝑖 = 1, 2, . . . , |𝑉|. Step 2 and Step 3 are
both based on the bottom-up dynamic programming. Step
2 computes all the values of X𝜆

𝑢
𝑖

(𝑢
𝑗
), 𝑢
𝑗
∈ 𝑉, which takes

𝑂(|𝑉|) time by (11). Step 3 computes all the values ofY𝜆
𝑢
𝑖

(𝑢
𝑗
),

𝑢
𝑗
∈ 𝑉, the time complexity of which is 𝑂(∑

𝑢
𝑗
∈𝑉
|Q
𝑢
𝑖

(𝑢
𝑗
)|) ≤

𝑂((1/2)|𝑉|
2
) by (9). Step 4 spends 𝑂(|𝑉|) time to compute

all the values of E
𝑢
𝑖

(𝑢
𝑗
), 𝑢
𝑗
∈ 𝑉 \ {𝑢

𝑖
}. Therefore, the time

complexity of SUM-MAX is at most 𝑂((1/2)|𝑉|3).
Next, we discuss the space complexity of SUM-MAX. Step

0 occupies 𝑂(1) space. For every 𝑖 = 1, 2, . . . , |𝑉|, Step 1
requires 𝑂(|𝑉|) space to store 𝑇

𝑢
𝑖

, 𝑂(|𝑉|) space to store all
𝑓
𝑢
𝑖

(𝑢
𝑗
), 𝑢
𝑗
∈ 𝑉, and Pr(𝑢

𝑖
, 𝑢
𝑗
), respectively, and at most

𝑂(|𝑉|) space to store𝐷
𝑢
𝑖

. Thus, Step 1 occupies𝑂(|𝑉|2) space
in total. For every 𝑖 = 1, 2, . . . , |𝑉|, Step 2 requires 𝑂(|𝑉|)
space to store all the values ofX𝜆

𝑢
𝑖

(𝑢
𝑗
), 𝑢
𝑗
∈ 𝑉; Step 3 requires

𝑂(|𝑉|) space to store Y𝜆
𝑢
𝑖

(𝑢
𝑗
), 𝑢
𝑗
∈ 𝑉, which dominates the

space complexity of Step 3, and Step 4 requires 𝑂(|𝑉|) space
to store E𝜆

𝑢
𝑖

(𝑢
𝑗
), 𝑢
𝑗
∈ 𝑉. Therefore, the space complexity of

SUM-MAX is 𝑂(|𝑉|2).

4. Algorithm for Finding a Min-Max 2-MRS

Definition 11. Given 𝑇 = (𝑉, 𝐸, 𝑝) and ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of 𝑇, one lets

M𝜆
𝑢
𝑖

[𝑢
𝑗
], 𝜆 = 1, 2, denote the minimum reachability in 𝑇

𝑢
𝑖

of
⟨𝑢
𝑖
, 𝑢
𝑗
⟩. Also, one uses,I𝜆

𝑢
𝑖

(𝑢
𝑗
) (resp.,J𝜆

𝑢
𝑖

(𝑢
𝑗
)) to denote the

minimum reachability in 𝑉𝛼
𝑢
𝑖

(𝑢
𝑗
) (resp., 𝑉𝛽

𝑢
𝑖

(𝑢
𝑗
)) of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩.

Theorem 12. Given any ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of 𝑇, if 𝑢

𝑗
∈ 𝑉
𝑢
𝑖

, then one gets

M
𝜆

𝑢
𝑖

[𝑢
𝑗
] = min {I𝜆

𝑢
𝑖

(𝑢
𝑗
) ,J
𝜆

𝑢
𝑖

(𝑢
𝑗
)} , 𝜆 = 1, 2. (35)

Proof. We first derive from the definition of M𝜆
𝑢
𝑖

[𝑢
𝑗
] in

Definition 11 thatM
𝜆
[𝑢
𝑖
, 𝑢
𝑗
] = M𝜆

𝑢
𝑖

[𝑢
𝑗
] = M𝜆

𝑢
𝑗

[𝑢
𝑖
] and further

from (4) thatM𝜆
𝑢
𝑖

[𝑢
𝑗
] = minV∈𝑉

𝑢
𝑖

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V). Combining (6)

in Lemma 2 and the definitions of I𝜆
𝑢
𝑖

(𝑢
𝑗
) and J𝜆

𝑢
𝑖

(𝑢
𝑗
), we

conclude that

M
𝜆

𝑢
𝑖

[𝑢
𝑗
]

= min{ min
V∈𝑉𝛼
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) , min

V∈𝑉𝛽
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V)}

= min {I𝜆
𝑢
𝑖

(𝑢
𝑗
) ,J
𝜆

𝑢
𝑖

(𝑢
𝑗
)} .

(36)

Theorem 13. Given any ⟨𝑢
𝑖
, 𝑢
𝑗
⟩ of 𝑇, if 𝑢

𝑗
∈ 𝑉
𝑢
𝑖

, then one gets

I
𝜆

𝑢
𝑖

(𝑢
𝑗
) = min
𝑠∈𝐶
𝑢
𝑖

(𝑢
𝑗
)

𝑝 (𝑢
𝑗
, 𝑠)I

𝜆

𝑢
𝑖

(𝑠) , (37)

J
𝜆

𝑢
𝑖

(𝑢
𝑗
) = min
𝑤∈Q
𝑢
𝑖

(𝑢
𝑗
)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤) min
𝑠∈𝐶
𝑢
𝑗

𝑢
𝑖
(𝑤)

𝑝 (𝑤, 𝑠)I
𝜆

𝑢
𝑖

(𝑠) .

(38)

Proof. From the definition of I𝜆
𝑢
𝑖

(𝑢
𝑗
) and (21) in Lemma 6,

we get thatI𝜆
𝑢
𝑖

(𝑢
𝑗
) = minV∈𝑉𝛼

𝑢
𝑖

(𝑢
𝑗
)
Pr(𝑢
𝑗
, V). Combining (7) in

Lemmas 2 and 5, we conclude that

I
𝜆

𝑢
𝑖

(𝑢
𝑗
)

= min{Pr (𝑢
𝑗
, 𝑢
𝑗
) , min
𝑠∈𝐶
𝑢
𝑖
(𝑢𝑗)

min
V∈𝑉𝛼
𝑢
𝑖

(𝑠)

Pr (𝑢
𝑗
, V)}

= min{1, min
𝑠∈𝐶
𝑢
𝑖
(𝑢𝑗)

𝑝 (𝑢
𝑗
, 𝑠) min

V∈𝑉𝛼
𝑢
𝑖

(𝑠)

Pr (𝑠, V)}

= min
𝑠∈𝐶
𝑢
𝑖
(𝑢𝑗)

𝑝 (𝑢
𝑗
, 𝑠)I

𝜆

𝑢
𝑖

(𝑠) .

(39)

We derive J𝜆
𝑢
𝑖

(𝑢
𝑗
) = min

V∈𝑉𝛽
𝑢
𝑖
(𝑢
𝑗
)
F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) from the

definition ofJ𝜆
𝑢
𝑖

(𝑢
𝑗
). Combining (8) in Lemma 2 and (22) in

Lemma 6, we conclude that

J
𝜆

𝑢
𝑖

(𝑢
𝑗
)

= min{ min
V∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; V) , min
𝑤∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤)

× min
𝑠∈𝐶
𝑢
𝑗

𝑢
𝑖
(𝑤)

𝑝 (𝑤, 𝑠) min
V∈𝑉𝛼
𝑢
𝑖

(𝑠)

Pr (𝑠, V)}

= min
𝑤∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤)min{1, min

𝑠∈𝐶
𝑢
𝑗

𝑢
𝑖
(𝑤)

𝑝 (𝑤, 𝑠)I
𝜆

𝑢
𝑖

(𝑠)}

= min
𝑤∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤) min
𝑠∈𝐶
𝑢
𝑗

𝑢
𝑖
(𝑤)

𝑝 (𝑤, 𝑠)I
𝜆

𝑢
𝑖

(𝑠) .

(40)
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From (5), we conclude that

M
𝜆
[𝑢
⋆

𝑖
, 𝑢
⋆

𝑗
] = max
𝑢
𝑖
∈𝑉

max
𝑢
𝑗
∈𝑉
𝑢
𝑖

\{𝑢𝑖}

M
𝜆

𝑢
𝑖

[𝑢
𝑗
] . (41)

Observe that we can computeM
𝜆
[𝑢
⋆

𝑖
, 𝑢
⋆

𝑗
] in the same way as

computing E
𝜆
[𝑢
∗

𝑖
, 𝑢
∗

𝑗
]. Therefore, we can devise a dynamic

programming algorithm called MIN-MAX to find a min-
max 2-MRS of 𝑇 based on the framework of SUM-MAX. The
detailed presentation of MIN-MAX is omitted here and its
major procedure is described as follows. Step 0 and Step 1 of
MIN-MAX are same as those of SUM-MAX, which spends
𝑂(|𝑉|

2
) time and requires 𝑂(|𝑉|2) space in total. Let

K
𝑢
𝑗
,𝜆

𝑢
𝑖

(𝑠) = min
𝑠
󸀠
∈𝐶
𝑢
𝑖
(𝑢𝑗)\{𝑠}

𝑝 (𝑢
𝑗
, 𝑠
󸀠
)I
𝜆

𝑢
𝑖

(𝑠
󸀠
) , ∀𝑠 ∈ 𝐶

𝑢
𝑖

(𝑢
𝑗
) .

(42)

For every 𝑖 = 1, . . . , |𝑉|, Step 2 of MIN-MAX computes all
I𝜆
𝑢
𝑖

(𝑢
𝑗
), 𝑢
𝑗
∈ 𝑉, by (37) bottom-up on𝑇

𝑢
𝑖

which takes𝑂(|𝑉|)
time and requires 𝑂(|𝑉|) space. Also, Step 2 computes all
K
𝑢
𝑗
,𝜆

𝑢
𝑖

(𝑠), 𝑠 ∈ 𝐶
𝑢
𝑖

(𝑢
𝑗
), by (42) which takes𝑂(∑

𝑢
𝑗
∈𝑉
|𝐶
𝑢
𝑖

(𝑢
𝑗
)|
2
)

time and requires 𝑂(∑
𝑢
𝑗
∈𝑉
|𝐶
𝑢
𝑖

(𝑢
𝑗
)|) space. By (12), we

conclude that

|𝑉|
2
≥ ∑

𝑢
𝑗
∈𝑉

|𝐶
𝑢
𝑖

(𝑢
𝑗
)|
2
≥

|𝑉|
2

󵄨󵄨󵄨󵄨󵄨
𝑉 \ 𝐷

𝑢
𝑖

󵄨󵄨󵄨󵄨󵄨

≥
|𝑉|
2

|𝑉 \ 𝐷| + 1
. (43)

Hence, the time complexity of Step 2 is Ω(|𝑉|2). Also, we
conclude by (11) that the space complexity of Step 2 is𝑂(|𝑉|)+
𝑂(∑
𝑢
𝑗
∈𝑉
|𝐶
𝑢
𝑖

(𝑢
𝑗
)|) = 𝑂(|𝑉|). By (38), we conclude that

J
𝜆

𝑢
𝑖

(𝑢
𝑗
) = min
𝑤∈Q
𝑢
𝑖
(𝑢𝑗)

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤)K

𝑤,𝜆

𝑢
𝑖

(𝑠
𝑢
𝑗

𝑢
𝑖

(𝑤)) . (44)

For every 𝑢
𝑗
∈ 𝑉, Step 3 of MIN-MAX computes J𝜆

𝑢
𝑖

(𝑢
𝑗
)

using the method of comparing generation by generation
amongst Q

𝑢
𝑖

(𝑢
𝑗
). In every comparison, Step 3 first computes

F
𝜆
(𝑢
𝑖
, 𝑢
𝑗
; 𝑤) and then J𝜆

𝑢
𝑖

(𝑢
𝑗
) by (44). So, Step 3 spends

𝑂(|Q
𝑢
𝑖

(𝑢
𝑗
)|) time and requires 𝑂(1) space for every 𝑢

𝑗
∈ 𝑉.

Hence, Step 3 spends 𝑂(∑
𝑢
𝑗
∈𝑉
𝑢
𝑖

|Q
𝑢
𝑖

(𝑢
𝑗
)|) ≤ 𝑂((1/2)|𝑉|

2
)

time by Lemma 3 and requires 𝑂(|𝑉|) space. Step 4 of MIN-
MAX is same as that of SUM-MAX. Therefore, we obtain
Theorem 14.

Theorem 14. Given an undirected tree 𝑇 = (𝑉, 𝐸, 𝑝), where
each edge 𝑒 ∈ 𝐸 has an independent working probability 0 <

𝑝(𝑒) < 1, algorithm MIN-MAX can find a Min-Max 2-MRS
of 𝑇 correctly with a time complexity of Ω(|𝑉|3) and a space
complexity of 𝑂(|𝑉|2).

5. Numerical Results

In this section, we give an example tree with 35 nodes
shown in Figure 2 for illustrating algorithms SUM-MAX and
MIN-MAX. The decimal associated with every edge of the
tree represents its operational probability. All the nodes are
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Figure 2: An example tree with a probability weight on every edge.

labeled by numbers 00, 01, 02, . . . , 34 in order. For ease of
view and comparison, the data output by algorithms are
corrected to four decimal places and listed in Table 1. We first
introduce the notations shown in the first line of Table 1. Let

E
𝜆

𝑢
𝑖

[𝑢
Δ
𝜆

𝑗
] = max
𝑢
𝑗
∈𝑉
𝑢
𝑖

\{𝑢𝑖}

E
𝜆

𝑢
𝑖

[𝑢
𝑗
] , 𝜆 = 1, 2, ∀𝑢

𝑖
∈ 𝑉. (45)

And then by (34)

E
𝜆
[𝑢
∗

𝑖
, 𝑢
∗

𝑗
] = max
𝑢
𝑖
∈𝑉

E
𝜆

𝑢
𝑖

[𝑢
Δ
𝜆

𝑗
] . (46)

Similarly, let

M
𝜆

𝑢
𝑖

[𝑢
∇
𝜆

𝑗
] = max
𝑢
𝑗
∈𝑉
𝑢
𝑖

\{𝑢𝑖}

M
𝜆

𝑢
𝑖

[𝑢
𝑗
] , 𝜆 = 1, 2, ∀𝑢

𝑖
∈ 𝑉. (47)

And then by (41)

M
𝜆
[𝑢
⋆

𝑖
, 𝑢
⋆

𝑗
] = max
𝑢
𝑖
∈𝑉

M
𝜆

𝑢
𝑖

[𝑢
∇
𝜆

𝑗
] . (48)

From Table 1, it is easy to see that the maximum in the
third column isE1

08
[26] = E1

26
[08] = 34.1822 and thus ⟨8, 26⟩

is the unique Sum-Max 2-MRS of the tree under the superior
probability. The maximum in the fifth column is E2

10
[33] =

E2
33
[10] = 34.5723 and thus ⟨10, 33⟩ is the unique Sum-Max

2-MRS of the tree under the united probability. Likewise, we
can see easily that the maximum in the seventh column is

M
1

𝑘
[13] = 0.9505, 𝑘 = 28, 29, 32, (49)

and thus there are three pairs of Min-Max 2-MRS of the tree
under the superior probability, that is,

⟨13, 28⟩ , ⟨13, 29⟩ , ⟨13, 32⟩ . (50)
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Table 1: All the major data produced by SUM-MAX andMIN-MAX.

𝑢
𝑖

𝑢
Δ
1

𝑗
E1
𝑢
𝑖

[𝑢
Δ
1

𝑗
] 𝑢

Δ
2

𝑗
E2
𝑢
𝑖

[𝑢
Δ
2

𝑗
] 𝑢

∇
1

𝑗
M1
𝑢
𝑖

[𝑢
∇
1

𝑗
] 𝑢

∇
2

𝑗
M2
𝑢
𝑖

[𝑢
∇
2

𝑗
]

00 23 33.9225 33 34.5400 26 0.9337 32 0.9573
01 23 34.0221 33 34.5495 27 0.9402 32 0.9578
02 23 33.8806 33 34.5358 23 0.9307 32 0.9571
03 23 34.1265 33 34.5441 28 0.9486 32 0.9586
04 23 34.0053 33 34.5387 27 0.9405 32 0.9579
05 23 33.8363 33 34.5223 23 0.9290 32 0.9569
06 23 33.9210 33 34.4942 27 0.9402 32 0.9578
07 23 34.0722 33 34.5079 28 0.9486 32 0.9587
08 26 34.1822 34 34.5031 28 0.9486 32 0.9594
09 23 34.1098 33 34.5543 28 0.9454 32 0.9673
10 23 34.0282 33 34.5723 27 0.9434 32 0.9665
11 19 33.8772 33 34.5555 26 0.9346 32 0.9656
12 23 33.9239 33 34.4945 27 0.9404 32 0.9579
13 26 34.0825 34 34.3685 28 0.9505 28 0.9505
14 23 33.8749 33 34.5319 27 0.9395 32 0.9660
15 23 33.9196 33 34.5699 27 0.9375 32 0.9658
16 08 34.0480 21 34.3445 18 0.9232 23 0.9274
17 08 34.0804 21 34.3436 18 0.9232 23 0.9274
18 08 34.1591 21 34.3338 23 0.9275 23 0.9275
19 08 34.0540 21 34.1940 27 0.9377 27 0.9377
20 08 33.9853 21 34.1965 26 0.9329 27 0.9375
21 19 33.8721 33 34.5577 23 0.9290 32 0.9651
22 08 33.9138 15 34.3392 18 0.9232 23 0.9273
23 08 34.1759 21 34.4128 00 0.9317 00 0.9317
24 08 33.8656 21 34.1872 23 0.9262 27 0.9373
25 08 33.7640 15 34.1887 18 0.9232 27 0.9371
26 08 34.1822 21 34.4471 01 0.9359 00 0.9359
27 08 34.1818 15 34.4928 03 0.9434 00 0.9434
28 08 34.1386 15 34.5332 13 0.9505 00 0.9539
29 08 34.1374 15 34.5331 13 0.9505 08 0.9539
30 08 34.0665 15 34.4416 00 0.9266 19 0.9357
31 08 34.0649 15 34.4872 01 0.9340 13 0.9430
32 08 34.0582 15 34.5631 13 0.9505 09 0.9673
33 08 34.0013 10 34.5723 13 0.9471 09 0.9671
34 08 33.9397 10 34.5677 13 0.9453 09 0.9669

The maximum in the ninth column is M2
09
[32] = M2

32
[09] =

0.9673 and thus ⟨9, 32⟩ is the unique Min-Max 2-MRS of the
tree under the united probability.

6. Discussions and Future Works

This paper suggested the models of superior probability
and united probability of node pair and studied two kinds
of 2-MRS problem (i.e., Sum-Max 2-MRS and Min-Max
2-MRS) in a tree with each edge having an independent
working probability and all the nodes being immune to
failures. The paper presents 𝑂((1/2)|𝑉|3)-time and 𝑂(|𝑉|2)-
space algorithm for finding a Sum-Max 2-MRS of the tree

and Ω(|𝑉|
3
)-time and 𝑂(|𝑉|

2
)-space algorithm for finding

a Min-Max 2-MRS. It is also interesting to study the 2-
MRS problem in a series-parallel graph; see [7]. Two servers
involved in the paper work synchronously. In a number of
practical scenarios, however, one of two serversworks and the
other gets ready. In the case, we can first find the two most
reachable nodes using the algorithms in [10, 20] and then
placing two servers optimally by placing the working server
at the most reachable node and the backup one at the second
most reachable node.

When we are given a large-scale graph, we need to place
more than two servers to supply synchronous service for the
whole network. It is of interest to study the 𝑘-MRS problem
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Table 2: Notations table.

Notation Explanation
G = (V,E, 𝑝) An undirected connected graph
𝑇 = (𝑉, 𝐸, 𝑝) An undirected tree graph
𝑇
𝑢
= (𝑉
𝑢
, 𝐸
𝑢
, 𝑝) A rooted version of 𝑇 with 𝑢 as the root

{𝑢, V} An edge of graph
⟨𝑢, V⟩ A node pair

𝜋(𝑢, V)
A simple path connecting nodes 𝑢 and V
(also, the event that 𝜋(𝑢, V) works correctly)

Pr(𝜋(𝑢, V)) The probability of 𝜋(𝑢, V) working correctly
Pr(𝑢, V) The probability of 𝑢 reaching V
V(𝜋(𝑢, V)) The set of nodes on 𝜋(𝑢, V)
E(𝜋(𝑢, V)) The set of edges on 𝜋(𝑢, V)
𝐶
𝑢
(V) The set of the children of V in 𝑇

𝑢

𝑇
𝑢
(V) The subtree of 𝑇

𝑢
rooted at V

𝑉
𝛼

𝑢
(V) The set of nodes in 𝑇

𝑢
(V)

𝑉
𝛽

𝑢
(V) The set of nodes outside 𝑇

𝑢
(V)

𝑓
𝑢
(V) The parent of V in 𝑇

𝑢

Q
𝑢
(V) The set of ancestors of V in 𝑇

𝑢

𝑠
V
𝑢
(𝑤) The child of 𝑤 on 𝜋(𝑢, V) in 𝑇

𝑢

𝐶
V
𝑢
(𝑤) The set of children of 𝑤 in 𝑇

𝑢
other than 𝑠V

𝑢
(𝑤)

𝐻
𝑢

The number of the most ancestors of node in 𝑇
𝑢

ℎ The current level of 𝑇
𝑢
(ℎ = 1, 2, . . . , 𝐻

𝑢
+ 1)

𝑉
𝑢
(ℎ) The set of nodes on the ℎ-level of 𝑇

𝑢

𝐷 The set of leaves of 𝑇
𝐷
𝑢

The set of leaves of 𝑇
𝑢

𝐴 ⊕ 𝐵 The union of two disjoint sets 𝐴 and 𝐵
𝜆 = 1 The superior probability
𝜆 = 2 The united probability
F
1
(𝑢
𝑖
, 𝑢
𝑗
; V) The superior probability of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩ to V

F
2
(𝑢
𝑖
, 𝑢
𝑗
; V) The united probability of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩ to V

E
𝜆
[𝑢
𝑖
, 𝑢
𝑗
] The sum reachability of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩

E𝜆
𝑢
𝑖

[𝑢
𝑗
] The sum reachability in 𝑇

𝑢
𝑖

of ⟨𝑢
𝑖
, 𝑢
𝑗
⟩

X𝜆
𝑢
𝑖

(𝑢
𝑗
) The sum reachability in 𝑉𝛼

𝑢
𝑖

(𝑢
𝑗
) of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩

Y𝜆
𝑢
𝑖

(𝑢
𝑗
) The sum reachability in 𝑉𝛽

𝑢
𝑖

(𝑢
𝑗
) of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩

M
𝜆
[𝑢
𝑖
, 𝑢
𝑗
] Theminimum reachability of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩

M𝜆
𝑢
𝑖

[𝑢
𝑗
] Theminimum reachability in 𝑇

𝑢
𝑖

of ⟨𝑢
𝑖
, 𝑢
𝑗
⟩

I𝜆
𝑢
𝑖

(𝑢
𝑗
) Theminimum reachability in 𝑉𝛼

𝑢
𝑖

(𝑢
𝑗
) of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩

J𝜆
𝑢
𝑖

(𝑢
𝑗
) Theminimum reachability in 𝑉𝛽

𝑢
𝑖

(𝑢
𝑗
) of ⟨𝑢

𝑖
, 𝑢
𝑗
⟩

with 𝑘 ≥ 3. It seems that our method proposed in the paper
cannot be directly generalized to the 𝑘-MRS problem. Thus
new ideas are required.

References

[1] J. A. Bondy and U. S. R. Murty, GraphTheory with Applications,
Macmillan, London, UK, 1976.

[2] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper
Saddle River, NJ, USA, 1996.

[3] C. J. Colbourn,The Combinatorics of Network Reliability, Inter-
national Series of Monographs on Computer Science, Oxford
University Press, New York, NY, USA, 1987.

[4] D. R. Shier,Network Reliability and Algebraic Structures, Oxford
Science Publications, Oxford University Press, New York, NY,
USA, 1991.

[5] M.O. Ball and F. L. Lin, “Reliabilitymodel applied to emergency
service vehicle location,” Operations Research, vol. 41, no. 1, pp.
18–36, 1993.

[6] M. O. Ball, J. S. Provan, and D. R. Shier, “Reliability covering
problems,” Networks, vol. 21, no. 3, pp. 345–357, 1991.

[7] C. J. Colbourn and G. Xue, “A linear time algorithm for com-
puting the most reliable source on a series-parallel graph with
unreliable edges,”Theoretical Computer Science, vol. 209, no. 1-2,
pp. 331–345, 1998.

[8] W. Ding, “Computing the most reliable source on stochastic
ring networks,” in Proceedings of the WRI World Congress on
Software Engineering (WCSE ’09), vol. 1, pp. 345–347, Xiamen,
China, May 2009.

[9] W. Ding, “Extended most reliable source on an unreliable gen-
eral network,” in Proceedings of the International Conference on
Internet Computing and Information Services (ICICIS ’11), pp.
529–533, Hong Kong, China, September 2011.

[10] W. Ding and G. Xue, “A linear time algorithm for computing
a most reliable source on a tree network with faulty nodes,”
Theoretical Computer Science, vol. 412, no. 3, pp. 225–232, 2011.

[11] W. Ding and G. Xue, “A divide-and-conquer algorithm for
finding amost reliable source on a ring-embedded tree network
with unreliable edges,” Discrete Mathematics, Algorithms and
Applications, vol. 3, no. 4, pp. 503–516, 2011.

[12] W. Ding and G. Xue, “A fast parallel algorithm for finding a
most reliable source on a general ring-tree graphwith unreliable
edges,” in Combinatorial Optimization and Applications, vol.
6831 of Lecture Notes in Computer Science, pp. 98–112, Springer,
Heidelberg, Germany, 2011.

[13] H.A. Eiselt,M.Gendreau, andG. Laporte, “Location of facilities
on a network subject to a single-edge failure,”Networks, vol. 22,
no. 3, pp. 231–246, 1992.

[14] M. E. Helander and E. Melachrinoudis, “Facility location and
reliable route planning in hazardous material transportation,”
Transportation Science, vol. 31, no. 3, pp. 216–226, 1997.

[15] E.Melachrinoudis andM.E.Helander, “A single facility location
problem on a tree with unreliable edges,” Networks, vol. 27, no.
3, pp. 219–237, 1996.

[16] P. B. Mirchandani and A. R. Odoni, “Locations of medians on
stochastic networks,” Transportation Science, vol. 13, no. 2, pp.
85–97, 1979.

[17] L. D. Nel and C. J. Colbourn, Locating a Broadcast Facility in an
Unreliable Network, vol. 28, INFOR, 1990.

[18] J. Santivanez and E. Melachrinoudis, “Location of a reliable
center on a tree network,”Operational Research, vol. 7, no. 3, pp.
419–445, 2007.
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