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The aircraft landing problem (ALP) is an NP-hard problem; the aim of ALP is to minimize the total cost of landing deviation from
predefined target time under the condition of safe landing. In this paper, the multiple runways case of the static ALP is considered
and a hybrid metaheuristic based on bat algorithm is presented to solve it. Moreover, four types of landing time assignment
strategies are applied to allocate the scheduling time, and a constructed initialization is used to speed up the convergence rate.
The computational results show that the proposed algorithm can obtain the high-quality and comparable solutions for instances
up to 500 aircrafts, and also it is capable of finding the optimal solutions for many instances in a short time.

1. Introduction

Airport runway scheduling optimization is an ongoing
challenge for air traffic controllers. The increasing demand
is a challenge, which leads to many airports and routes
are congested. Although investment in infrastructure may
increase capacity at airports, it is an effective solution to
improve planning and scheduling on current infrastructure.
The aircraft landing Problem (ALP) is a kind of typical NP-
hard problem in airport runway scheduling optimization [1].
The ALP consists of determining an optimal schedule of
landing aircrafts on runways and assigning the landing time
of each arriving aircraft.The objective is tominimize the total
cost of landing deviation from predefined target time under
the condition of safe landing. A predefined time window and
separation time requirements with other aircraft must meet.

The first-come first-served (FCFS) is one of the most
common solving methods for ALP, especially, in the sin-
gle runway situation. A detailed review of published work
addressing the ALP can be found in [1–3]. Generally
speaking, for ALP, those methods can be broadly classified
into three categories: exact methods (e.g., dynamic pro-
gramming [4], branch-and-bound [1], and branch-and-price
[5]), queueing theory [6], and heuristic or metaheuristic.

Metaheuristic includes genetic algorithms [7], ant colony
optimization [8], simulated annealing [9], scatter search and
bionomic algorithms [2], cellular automata optimization [10],
and other hybrid metaheuristics [9, 11]. Briskorn and Stolletz
resent integer programmingmodels an aircraft landing prob-
lems with aircraft classes [12].

Recently, more and more metaheuristics inspired by
nature or social phenomenon are proposed and these algo-
rithms are increasingly applied to different fields. The bat
algorithm (BA) is one of the most popular algorithms, which
is inspired by the intelligent echolocation behavior of micro-
bats when they are foraging [13]. Many researchers applied
BA to solve various optimization problems. For example,
Gandomi et al. focus on solving constrained optimization
tasks [14]. Yang and Gandomi apply BA to solve many
global engineering optimizations [15]. Mishra at al. use BA
to update the weights of a functional link artificial neural
network classifier, a model proposed for classification [16].
Meanwhile, some researchers have improved BA and applied
it to various optimization problems. Xie et al. proposed a
bat algorithm based on differential operator and the Lévy
flights trajectory (DLBA) to solve function optimization and
nonlinear equations [17]. Wang et al. proposed a new bat
algorithm with mutation (BAM) to solve the uninhabited
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combat air vehicle (UCAV) path planning problem [18]. In
this paper, the multiple runways case of the static ALP is
considered; a hybrid metaheuristic based on bat algorithm
(HBA, for short) is presented to solve it.

The rest of this paper is organized as follows. Section 2
presents the mathematical model of ALP and original bat
algorithm. Hybrid metaheuristic based on bat algorithm is
proposed in detail to solve multiple runways aircraft landing
problem in Section 3. The experimental results of the HBA
and comparisons with other previous algorithms are shown
in Section 4. In the last section, we conclude this paper and
point out some future work.

2. Problem Definitions and Bat Algorithm

2.1. The Mathematical Formulation of ALP. The ALP aims
at finding the best arrangement of sequences, runway, and
corresponding landing time for a given set of landing aircraft
to minimize total cost by following separation requirements.
To illustrate the mathematical formulation, some notations
and decision variables are defined as follows.

Notations:

𝑛 = the number of planes;
𝑚 = the number of runways;
𝑆
𝑖𝑗
= the separation time (≥0) between plane 𝑖 landing

and plane 𝑗 landing, (where the planes 𝑖 and 𝑗 land on
the same runways), 𝑖 ̸= 𝑗 ∈ {1, 2, . . . , 𝑛};
𝑠
𝑖𝑗
= the separation time (0 ≤ 𝑠

𝑖𝑗
≤ 𝑆
𝑖𝑗
) between plane

𝑖 landing and plane 𝑗 landing, (where the planes 𝑖 and
𝑗 land on the different runways), 𝑖 ̸= 𝑗 ∈ {1, 2, . . . , 𝑛};
𝑇
𝑖
= the target landing time (target time) of plane 𝑖,

𝑖 ∈ {1, 2, . . . , 𝑛};
𝐸
𝑖
= the earliest landing time of plane 𝑖, 𝑖 ∈

{1, 2, . . . , 𝑛};
𝐿
𝑖
= the latest landing time of plane 𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛};

⃗𝑐
𝑖
= the cost of late landing of plane 𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛};

←󳨀
𝑐
𝑖
= the cost of early landing of plane 𝑖, 𝑖 ∈

{1, 2, . . . , 𝑛}.

Decision variables:

𝑡
𝑖
= the scheduled landing time of plane 𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛} ;

𝑦
𝑖𝑗
=

{
{

{
{

{

1, if plane 𝑖 lands before
plane 𝑗

0, otherwise,
𝑖 ̸= 𝑗 ∈ {1, 2, . . . , 𝑛} ;

𝛾
𝑖𝑟
=

{
{

{
{

{

1, if plane 𝑖 lands
on runway 𝑟

0, otherwise,
𝑖 ∈ {1, . . . , 𝑛} , 𝑟 ∈ {1, . . . , 𝑚} ;

𝛿
𝑖𝑗
=

{
{

{
{

{

1, if planes 𝑖 and 𝑗

land on the same runway
0, otherwise,

𝑖 ̸= 𝑗 ∈ {1, 2, . . . , 𝑛} ;

⃗𝜏
𝑖
= the delay of landing plane 𝑖

(landing after the target time) ;
thus ⃗𝜏

𝑖
= max (0, 𝑡

𝑖
− 𝑇
𝑖
) ;

←󳨀
𝜏
𝑖
= the earliness of landing plane 𝑖

(landing before the target time) ;
thus ←󳨀

𝜏
𝑖
= max (0, 𝑇

𝑖
− 𝑡
𝑖
) .

(1)

The mathematical formulation of a mixed-integer pro-
gramming for this problem is as follows [1, 2, 9]:

min Z =

𝑛

∑

𝑖=1

( ⃗𝜏
𝑖
⃗𝑐
𝑖
+
←󳨀
𝜏
𝑖

←󳨀
𝑐
𝑖
) (2)

s.t. 𝐸
𝑖
≤ 𝑡
𝑖
≤ 𝑇
𝑖
, 𝑖 = 1, 2, . . . 𝑛; (3)

𝛾
𝑖𝑗
+ 𝛾
𝑗𝑖
= 1, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} , 𝑖 ̸= 𝑗; (4)

𝑡
𝑗
≥ 𝑡
𝑖
+ 𝑆
𝑖𝑗
𝛿
𝑖𝑗
+ 𝑠
𝑖𝑗
(1 − 𝛿

𝑖𝑗
) − 𝑀𝛿

𝑖𝑗
;

𝑀 = (𝐿
𝑖
+max (𝑆

𝑖𝑗
, 𝑠
𝑖𝑗
) − 𝐸
𝑗
) , ∀𝑖 ̸= 𝑗 ∈ {1, 2, . . . , 𝑛} ;

(5)
𝑚

∑

𝑟=1

𝛾
𝑖𝑟
= 1, ∀𝑖 ∈ {1, 2, . . . , 𝑛} ; (6)

𝛿
𝑖𝑗
≥ 𝛾
𝑖𝑟
+𝛾
𝑗𝑟
−1, 𝑖 ̸= 𝑗 ∈ {1, 2, . . . , 𝑛} , 𝑟 ∈ {1, 2, . . . , 𝑚} ;

(7)

𝑡
𝑖
− 𝑇
𝑖
= ⃗𝜏
𝑖
−
←󳨀
𝜏
𝑖
, 𝑖 = 1, 2, . . . , 𝑛;

0 ≤ ⃗𝜏
𝑖
≤ 𝑇
𝑖
− 𝐸
𝑖
, ⃗𝜏
𝑖
≥ 𝑇
𝑖
− 𝑡
𝑖
, 𝑖 = 1, 2, . . . , 𝑛;

0 ≤
←󳨀
𝜏
𝑖
≤ 𝐿
𝑖
− 𝑇
𝑖
,
←󳨀
𝜏
𝑖
≥ 𝑡
𝑖
− 𝑇, 𝑖 = 1, 2, . . . , 𝑛;

(8)

𝑦
𝑖𝑗
, 𝛾
𝑖𝑟
, 𝛿
𝑖𝑗
∈{0, 1} , 𝑖 ̸=𝑗 ∈ {1, 2, . . . , 𝑛} , 𝑟∈{1, 2, . . . , 𝑚} ;

𝑡
𝑖
, ⃗𝜏
𝑖
,
←󳨀
𝜏
𝑖
≥ 0, 𝑖 = 1, 2, . . . 𝑛.

(9)

Objective function (2) minimizes the total cost of landing
deviation from target time. The constraints (3) ensure that
the scheduled landing time of each aircraft lies within its
time window; constraints (4) consider the landing order;
either aircraft 𝑖 or 𝑗 must land first; separation constraints
must be ensured by constraints (5), where the role of 𝑀 is
to ensure that the equation is redundant if 𝑗 lands before
𝑖; the constraints (6) ensure that each aircraft should land
on only one runway; when aircrafts 𝑖 and 𝑗 are assigned to
land on the same runway, constraints (7) ensure that the
runways assigned to aircrafts 𝑖 and 𝑗 are identical; additional
constraints (8) are introduced in order to link ⃗𝜏

𝑖
and←󳨀

𝜏
𝑖
to the

decision variable 𝑡
𝑖
; constraints (9) ensure that the decision

variables 𝑦
𝑖𝑗
, 𝛾
𝑖𝑟
, and 𝛿

𝑖𝑗
are binary and the decision variables

𝑡
𝑖
, ⃗𝜏
𝑖
, and←󳨀

𝜏
𝑖
are nonnegative, respectively.



Journal of Applied Mathematics 3

2.2. Bat Algorithm. The basic bat algorithm (BA) is a meta-
heuristic proposed by Yang in 2010 [13]. Under several ideal
rules, the BA has the following steps.

Step 1. Initialize the bat population andother parameters, and
these initial individuals are evaluated.

Step 2. Each bat individual randomly selects a certain fre-
quency 𝑓

𝑖
of sonic pulse, and the position of bat individual is

updated according to their selected frequency. The formulas
are as follows:

𝑓
𝑖
= 𝑓min + (𝑓max − 𝑓min) 𝛽,

V𝑡
𝑖
= V𝑡−1
𝑖

+ (𝑥
𝑡

𝑖
− 𝑥
∗
) 𝑓
𝑖
,

𝑥
𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ V𝑡
𝑖
,

(10)

where 𝑥
𝑡

𝑖
and V𝑡

𝑖
represent the positions and velocities of

individual 𝑖 in a D-dimensional search space at generation
𝑡, 𝛽 ∈ [0, 1] is a random vector drawn from a uniform
distribution, and 𝑥

∗
is the current global best location

(solution) which is located after comparing all the solutions
among all the 𝑛 bats. Meanwhile, these new individuals are
evaluated.

Step 3. If a random number is greater than its pulse emission
rate 𝑅, then a new position is generated around the current
global best position for each individual, which is the equal
to local search. The updating formula of local search adopts
𝑥 = 𝑥

∗
+ 𝜀 × 𝐿

𝑡
, where 𝜀 ∈ [−1, 1] is a random number and

𝐿
𝑡
= ⟨𝐿
𝑡

𝑖
⟩ is the average loudness of all the bats at current

generation 𝑡.

Step 4. If the local search is effective and its loudness 𝐿 is
greater than a random number, then the new position is
accepted and its pulse emission rate 𝑅 and loudness 𝐿 are
updated, where pulse emission rate is increased and loudness
is decreased. 𝐿

𝑖
and 𝑅

𝑖
are updated by 𝐿

𝑡+1

𝑖
= 𝛼 × 𝐿

𝑡

𝑖
, 𝑅
𝑡+1

𝑖
=

𝑅
0

𝑖
× [1 − exp(−𝛾 × 𝑡)], where 𝛼, 𝛾 are constants.

Step 5. If the termination criterion is met, then the algorithm
stops; otherwise repeat algorithm (go to Step 2).

In general, the bat algorithm has three procedures, posi-
tion updating, local search, and decreasing the probability of
local search. For the details of BA refer to [13].

3. Hybrid Metaheuristic Based on Bat
Algorithm for ALP

Basic bat algorithm is a continuous optimization algorithm,
which is successfully applied to solve real optimization
problem [15, 17]. However, the standard continuous encoding
scheme of BA cannot be used to solveALP directly.Therefore,
in order to solve aircraft landing problem effectively, HBA is
proposed.

3.1. Solution Representation in HBA. In order to apply BA
to ALP, the first step is to devise a suitable representation

1 2 3 4 5 6 7 8 9 10

1 3 2 2 3 2 1 2 31

Aircraft:

Runway:

Figure 1: The representation of the candidate solutions.

of the candidate solutions for this particular problem. Each
individual is a sequence 𝑆 (𝑆 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
)) with integer

number 𝑠
𝑖
(𝑠
𝑖

∈ {1, . . . , 𝑚}), where the integer number
represents the runway and the length of this sequence 𝑆 is the
number of aircrafts. For example, if we have three runways
and ten aircrafts, the coded individual with integer is 1→
3→ 2→ 2→ 3→ 2→ 1→ 2→ 1→ 3 Figure 1 shows that the
aircrafts 1, 7, and 9 land on runway number 1, the aircrafts
3, 4, 6 and 8 land on runway number 2, the aircrafts 2, 5, and
10 land on runway number 3.

3.2. Landing Time Assignment. The assigned landing time
(ALT) of each aircraft is the very important step in the
ALP; the purpose is to reduce the total cost of penalty
caused by all aircrafts. In this paper, the landing time is
assigned based on the target landing time 𝑇

𝑖
assigned to

each aircraft. There are four types of assignment strategies
carried out in the proposed algorithm: forward assignment
strategy (FAS), backward assignment strategy (BAS), random
forward assignment strategy (RFAS), and random backward
assignment strategy (RBAS). For each kind of assignment
strategy, firstly, all aircrafts are found out on each runway,
and the target landing time 𝑇 of these aircrafts is sorted in
ascending order, namely, 𝑇

𝑖
1

≤ 𝑇
𝑖
2

≤ ⋅ ⋅ ⋅ ≤ 𝑇
𝑖
𝑝−1

≤ 𝑇
𝑖
𝑝

, where
𝑝 is the number of aircrafts on this runway.

(i) FAS: for each two sorted aircrafts 𝑖
𝑘
and 𝑖
𝑘+1

on a
runway, the ALT is ⃗𝑡

𝑖
𝑘

and ⃗𝑡
𝑖
𝑘+1

, separately. If 𝑇
𝑖
𝑘+1

<

⃗𝑡
𝑖
𝑘

+ 𝑆
𝑖
𝑘
𝑖
𝑘+1

; then ⃗𝑡
𝑖
𝑘+1

= ⃗𝑡
𝑖
𝑘

+ 𝑆
𝑖
𝑘
𝑖
𝑘+1

, otherwise ⃗𝑡
𝑖
𝑘+1

=

𝑇
𝑖
𝑘+1

.

(ii) BAS: for each two sorted aircrafts 𝑖
𝑘
and 𝑖
𝑘+1

on a
runway, the ALT is←󳨀𝑡

𝑖
𝑘

and ←󳨀

𝑡
𝑖
𝑘+1

, separately. If 𝑇
𝑖
𝑘

>

←󳨀

𝑡
𝑖
𝑘+1

− 𝑆
𝑖
𝑘
𝑖
𝑘+1

; then ←󳨀

𝑡
𝑖
𝑘

=

←󳨀

𝑡
𝑖
𝑘+1

− 𝑆
𝑖
𝑘
𝑖
𝑘+1

, otherwise
←󳨀

𝑡
𝑖
𝑘

= 𝑇
𝑖
𝑘

.

(iii) RFAS: for each two sorted aircrafts 𝑖
𝑘
and 𝑖
𝑘+1

on
a runway, the ALT is

⌣

𝑡 𝑖
𝑘

and
⌣

𝑡 𝑖
𝑘+1

, separately.
⌣

𝑡 𝑖
𝑘

is
rounded down to the nearest integer between←󳨀

𝑡
𝑖
𝑘

and
⃗𝑡
𝑖
𝑘

. If
⌣

𝑡 𝑖
𝑘+1

<

⌣

𝑡 𝑖
𝑘

+ 𝑆
𝑖
𝑘
𝑖
𝑘+1

, then
⌣

𝑡 𝑖
𝑘+1

=

⌣

𝑡 𝑖
𝑘

+ 𝑆
𝑖
𝑘
𝑖
𝑘+1

.

(iv) BFAS: for each two sorted aircrafts 𝑖
𝑘
and 𝑖
𝑘+1

on
a runway, the ALT is ̆𝑡

𝑖
𝑘

and ̆𝑡
𝑖
𝑘+1

, separately. ̆𝑡
𝑖
𝑘

is
rounded down to the nearest integer between←󳨀

𝑡
𝑖
𝑘

and
⃗𝑡
𝑖
𝑘

. If ̆𝑡
𝑖
𝑘

< ̆𝑡
𝑖
𝑘+1

− 𝑆
𝑖
𝑘
𝑖
𝑘+1

, then ̆𝑡
𝑖
𝑘

= ̆𝑡
𝑖
𝑘+1

− 𝑆
𝑖
𝑘
𝑖
𝑘+1

.

The assigned landing time is effective just while the all
constraints (3)–(9) are satisfied, and the four kinds of total
cost are compared; the best total cost is used as the objective
function value.
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3.3. Initialization Construction. The initialization of a popu-
lation is usually performed by randomly selecting a runway
from the available runways for each aircraft. However, the
target landing time of aircraft is ordered, and the timewindow
must ensure considering the safety. So, a preprocessing is
performed to improve the performance of HBA in the
initialization construction.

In initialization, 𝑝𝑠 individuals are generated, where 𝑝𝑠 is
population size. For each individual, all target landing time
𝑇
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is sorted in an ascending order; namely,

𝑇
𝑖
1

≤ 𝑇
𝑖
2

≤ ⋅ ⋅ ⋅ ≤ 𝑇
𝑖
𝑛−1

≤ 𝑇
𝑖
𝑛

. The first aircraft 𝑖
1
lands on a

runway randomly, for each two sorted aircrafts 𝑖
𝑘
and 𝑖
𝑘+1

, if
𝑇
𝑖
𝑘+1

< 𝑇
𝑖
1

+ 𝑆
𝑖
𝑘
𝑖
𝑘+1

, and then aircraft 𝑖
𝑘+1

is allocated to other
runway, namely, aircrafts 𝑖

𝑘
and 𝑖
𝑘+1

on different runways.
Otherwise, the aircraft 𝑖

𝑘+1
is allocated to the runway that

aircraft 𝑖
𝑘
lands on. The initialization repeats until the 𝑝𝑠

individuals are generated.
According to the experiments performed, this initializa-

tion construction can develop an initial schedule of land-
ing aircrafts which has a very good quality. However, to
derive near-optimal solutions, this initial schedule should be
improved using the bat algorithm provided in Section 3.4.

3.4. Hybrid Bat Algorithm. In original bat algorithm frame-
work, the idea is that, firstly, the bat individual randomly
selects a certain frequency of sonic pulse, and the position of
bat individual is updated according to its selected frequency;
secondly, if a random number is greater than its pulse
emission rate 𝑅, then a new position is generated around
the current global best position for each individual, which
is equal to local search; at last, if the local search is effective
and its loudness 𝐿 is greater than a random number, then
the new position is accepted, and its pulse emission rate
𝑅 and loudness 𝐿 are updated, where pulse emission rate
is increased and loudness is decreased. In general, the bat
algorithm has three procedures: position updating, local
search, and decreasing the probability of local search.

In this paper, the frequency 𝑓 is a runway, 𝑓 ∈ {1, . . . , 𝑚}.
The position updating is different from continuous bat
algorithm.Theposition updating is used to assign the landing
sequence, which is performed as follows:

(i) select a frequency 𝑓 randomly, namely; select a
runway randomly;

(ii) select an aircraft randomly on selected runway; then
assign this aircraft to other runway.

There is an example used to illustrate the procedure in
Figure 2. If the frequency 𝑓 = 2 and the second aircraft is
selected, then, this aircraft is assigned to runway number 3.

For the local search part, this procedure is controlled by
pulse emission rate 𝑅. The 𝑅 is equivalent to the probability
of performing local search, and the 𝑅 is updated by

𝑅 (𝑡) = (1 + exp(−

5

𝑡max
× (𝑡 −

𝑡max
2

)))

−1

, (11)

where 𝑡 denotes the 𝑡th generation 𝑡max is the maximal
generation. The rate 𝑅 is similar to sigmoid function. The

1 3 2 3 2 1 2 31

1 3 2 3 2 1 2 31

Before:

After:

2

3

Figure 2: An individual with ten aircrafts before and after position
updating.

1 3 2 3 2 1 2 1

1 3 2 3 2 1 2 1

Before:

After:

2 3

3 2

Figure 3: An individual with ten aircrafts before and after swap local
search.

purpose of the local search is to enhance the solution
generated, and the operation is performed on the current
global best individual in bat algorithm. In this paper, two
types of local search are presented: the swap and loop sub-
sequence inserting (LSI).

The purpose of swap is mildly mutating the current
global best individual, so that an improved solution can be
found out around the current optimal solution. The swap is
illustrated in Figure 3, where the third and tenth components
are randomly chosen to be exchanged; note that the two
selected aircrafts land on different runways.Thus, the value of
the third component is changed from 2 to 3, while the value
of the tenth component is switched from 3 to 2.

The LSI is a variant of inserting operation; the purpose is
to mutate the current global best individual in a large extent,
so that the diversity of population can be ensured. It can
effectively avoid prematurity and greatly improve efficiency
of global search. The LSI is illustrated in Figure 4; a start
point is randomly chosen (ninth component) and a random
length of subsequence is determined (5), so the sub-sequence
can be determined (1→ 3→ 1→ 3). A random insert point is
chosen in remainder sub-sequence (third, fifth components);
then the selected sub-sequence is inserted into remainder
sub-sequence before insert point.

The local search systematically explores different neigh-
borhood structures.The swap and LSI are preformed accord-
ing to the pulse emission rate 𝑅. In other words, if a
random number is greater than the 𝑅, the swap is performed;
otherwise, the LSI is performed.

The loudness 𝐿
𝑖
of bat individual 𝑖 determines the

accepted probability a solution generated by local search
in original bat algorithm. Meanwhile, it also dominates
the updating of pulse emission rate 𝑅 and loudness 𝐿 in
continuous bat algorithm. However, in this paper, a runway
balance (RB) operation is performed according to the value
of loudness 𝐿 for each individual.

The intention of RB operation is to balance the load of
each runway. Firstly, the aircrafts are counted on each run-
way; an aircraft selected randomly on runwaywithmaximum
aircrafts is assigned to a runway with minimum aircrafts.
If the amount of aircrafts on runway (maximum aircrafts
or minimum aircrafts) is equal, then a runway is selected
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Figure 4: An individual with ten aircrafts before and after LSI local
search.

randomly. This process is stopped until the difference of
aircrafts amount on each runway is not more than one.

The loudness 𝐿
𝑖
is updated by (12)

𝐿
𝑡+1

𝑖
= 𝛼 × 𝐿

𝑡

𝑖
, (12)

where 𝛼 is a constant and initial value of 𝐿1
𝑖

∈ (1, 2). If a
random number is less than its loudness 𝐿

𝑡

𝑖
, then the RB

operation is performed; otherwise, each aircraft is assigned
to a random runway.

The iterative process is repeated until the termination
criterion is met; Algorithm 1 shows the pseudo-code of HBA
based on the framework of bat algorithm for ALP. The lines
1–3, the bat population and other parameters are initialized
(the initialization of population uses a method described
in Section 3.3), and these initial individuals are evaluated
(Section 3.2 detailedly described this procedure). In lines 5–
9, the individuals are updated by selecting frequency (this
part corresponds to the position updating of BA; this method
is described in Section 3.4), and these new individuals
are evaluated. Lines 10–15 show the local search and these
solutions generated by local search are evaluated. In lines 16–
24, the runway balance operation is carried out. Lines 25-26
are the judgment of termination criterion and the output of
results.

4. Simulation Results and Comparisons

Thesimulation experiment is extensively investigated by a lar-
ge number of benchmark instances; these well-studied pro-
blems are taken from the web OR-Library (last update: June
2012, http://people.brunel.ac.uk/∼mastjjb/jeb/info.html), a
reference site which contains detailed information regarding
a large number of benchmark instances. In this paper, the
whole 13 instances from OR-Library are selected; these
instances have been widely used as benchmarks to certify the
performance of algorithms by many researchers [2, 9].

All computational experiments are conductedwithMAT-
LAB 2012a on a 3.0GHz Athlon PC with 2.0GB memory.
There are two kinds of termination criterion for different
instances. For instances where the value of optimal (exact)
solution (𝑉opt) is known, the algorithm is repeated until
the objective function value is equal to the 𝑉opt; if the
objective function value is greater than the 𝑉opt when the
maximum generation 𝑡max(= 200) is met, then the algorithm
also is terminated. For instances where the value of 𝑉opt is
not known, the termination criterion is set as maximum
generation 𝑡max = 1000.

4.1. Sensitivity Analysis. Since performance is affected by
the settings of the parameter values used in metaheuristics,
a sensitivity analysis is conducted to examine the effect
of different parameter values on the proposed HBA. Two
parameters, that is, population size 𝑝𝑠 and parameter 𝛼, are
used to investigate the performance with respect to different
values, which are based on the average results obtained from
instances involving from 10 to 50 aircrafts, and each instance
run ten times. The principal figures of merit for comparison
of different parameter values are the average percentage
gap 𝐺avg (%) associated with the best solution found and
the average computational time CTavg in seconds for exact
solution is reached.The percentage gap𝐺(%) is measurement
criteria referenced [2]. Figures 5 and 6 show the statistical
result, where 𝐺avg is shown on the left 𝑦-axis and CTavg is
shown on the right 𝑦-axis and different parameter values (𝑝𝑠
and 𝛼) are listed in on the horizontal 𝑥-axis.

The performance of the HBA in terms of different
population numbers is shown in Figure 5. It shows that better
results can be obtained with a larger population. However, it
does not improve significantly when the value of 𝑝𝑠 is equal
to or greater than 10. On the other hand, the computational
time increases steadily when the population rises.

Figure 6 illustrates the performance effect of the HBA
with a decreasing 𝛼 value. It indicates that the average
solution quality deteriorates when the value of 𝛼 decreases
gradually. In some cases, increasing the value above 0.9 may
actually worsen the average objective value. This is probably
because the search is extremely random and RB operation is
carried out rarely.

4.2. Comparisons of Results. Based on the results of the
sensitivity analysis, the parameter values are set in the
proposed HBA (i.e., 𝑝𝑠= 10, 𝛼= 0.9) for comparison with
other algorithms for solving the ALP with multiple runways
that were proposed and tested to be valid in previous studies.
The computational results obtained are shown in Tables 1 and
2. In Tables 1 and 2, for each problem, the instance (Ins);
the number of aircrafts (𝑛); the number of runways (𝑚);
the value of optimal solution (𝑉opt); the value of the best-
known solution (𝑉best) if the optimal solution is not known;
the objective function value (𝑂) obtained and the percentage
gap (𝐺%) associated with the best solution found over the 15
replications and the average execution time (𝑇) in seconds for
15 replications. Note that in order to compare the results, the
𝑠
𝑖𝑗
is set zero in accordance with the previous literature, where

𝐺 is calculated on the basis of 𝑉opt or 𝑉best; 𝐺 = 100 ∗ (𝑂 −

𝑉opt)/𝑉opt. One complication is that for some problem where
𝑉opt or𝑉best is zero, the percentage gap is defined as zero if and
only if the best solution found as zero is also zero, otherwise
it is undefined (nd).

Table 1 presents results for a set of instances involving
from 10 to 50 aircrafts. SS is scatter search, the bionomic
algorithm is marked as BA1 [2], and IACA is improved
ant colony algorithm [8]; heuristic is an effective heuristic
algorithm in [1], FCFS is first-comefirst-served, and the result
is reference [2]. According to Table 1, the percentage gap
𝐺 of SS and BA1 is better than HBA; however, the average
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(1) Initialize the ps, 𝑡 = 1, bat population and other parameters;
(2) Construct initial bat population; // (3.3 Initialization construction)
(3) Assign landing time and evaluate each individual; // (3.2 Landing time assignment)
(4) repeat
(5) for 𝑖 = 1:ps do
(6) Determine frequency 𝑓;
(7) Update each bat individual;
(8) end
(9) Assign landing time and evaluate each individual; // (3.2 Landing time assignment)
(10) if rand > 𝑅(𝑡) then
(11) Carry out swap local search operation;
(12) else
(13) Carry out LSI local search operation;
(14) end
(15) Assign landing time and evaluate each individual; // (3.2 Landing time assignment)
(16) Compute loudness of each individual by (12);
(17) for 𝑖 = 1:ps do
(18) if rand < 𝐿

𝑖
then

(19) Carry out RB operation; // Runway balance operation
(20) else
(21) Assign each aircraft to a random runway;
(22) end
(23) end
(24) Assign landing time and evaluate each individual; // (3.2 Landing time assignment)
(25) until 𝑡 = 𝑡max
(26) Output result and plot

Algorithm 1: The pseudo-code of HBA for ALP.
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Figure 5: The effect of the value of population size 𝑝𝑠 with respect
to relative computational time and average percentage gap.

execution time 𝑇 of SS and BA1 is longer than the 𝑇 of
HBA and the average execution time of HBA only expends
0.43 seconds; by contrast, the SS and BA1 expend 6.4 and
7.7 seconds, respectively. The comparison of results between
HBA and heuristic shows the solutions obtained by HBA are
superior to the solutions obtained by heuristic. Meanwhile,
the average execution time is approximate between HBA and
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Figure 6: The effect of the value of 𝛼 with respect to relative
computational time and average percentage gap.

heuristic. Comparing with IACA and FCFS, it is evidently
shown that the HBA is effective.

Table 2 presents results for a set of instances involving
from 100 to 500 aircrafts. The termination criterion is set as
maximum generation 𝑡max = 1000. The IACA and heuristic
did not select these instances for testing. From Table 2, even
for the larger instances, theHBA found that optimal solutions



Journal of Applied Mathematics 7

Table 1: The comparisons of computational results for first group instances.

Ins 𝑛 𝑚 𝑉opt
HBA SS BA1 IACA Heuristic FCFS

𝑂 𝐺 𝑇 𝐺 𝑇 𝐺 𝑇 𝐺 𝑇 𝐺 𝑇 𝐺

Airland1 10 2 90 90 0 0.08 0 2.4 0 4.5 0 0.1 0 0.1 0
3 0 0 0 0.11 0 3.9 0 3.4 0 0.0 0 0.1 0

Airland2 15 2 210 210 0 0.09 0 4.5 0 4.9 0 0.6 0 0.1 9.52
3 0 0 0 0.10 0 4.6 0 4.3 0 0.4 0 0.1 0

Airland3 20 2 60 60 0 0.09 0 4.8 0 5.8 0 11.3 0 0.1 116.67
3 0 0 0 0.10 0 6.2 0 6.3 0 9.3 0 0.2 nd

Airland4 20
2 640 640 0 0.55 0 5.2 0 5.5 0 7.9 0 0.1 0
3 130 130 0 0.14 0 4.6 0 5.7 0 6.4 0 0.1 0
4 0 0 0 0.14 0 5.6 0 5.2 0 5.8 0 0.2 0

Airland5 20
2 650 890 36.92 1.44 0 5.0 3.08 6.1 12.31 2.4 64.62 0.1 16.92
3 170 170 0 0.16 0 5.4 0 4.3 0 7.0 41.18 0.1 5.88
4 0 0 0 0.21 0 5.6 0 6.8 0 3.2 0 0.2 nd

Airland6 30 2 554 636 14.80 1.61 0 7.0 3.61 10.1 51.08 3.8 59.21 0.1 59.21
3 0 0 0 0.30 0 5.4 0 8.7 0 12.2 0 0.2 0

Airland7 44 2 0 0 0 0.09 0 11.8 0 12.4 0 55.2 0 0.2 0

Airland8 50 2 135 180 33.33 2.01 0 12.1 0 19.6 22.22 168.1 88.89 0.2 425.93
3 0 0 0 0.16 0 13.9 0 18.1 nd 108.2 0 0.6 nd

Average 5.00 0.43 0 6.4 0.39 7.7 5.35 23.6 14.93 0.2 45.30

Table 2: The comparisons of computational results for second group instances.

Ins 𝑛 𝑚 𝑉best
HBA SS BA1 FCFS

𝑂 𝐺 𝑇 𝐺 𝑇 𝐺 𝑇 𝐺

Airland9 100
2 452.92 499.49 10.28 16.0 5.67 24.3 54.73 48.7 172.60
3 75.75 77.03 1.69 16.5 0 39.0 87.46 46.6 342.81
4 0 0 0 16.6 0 33.6 nd 43.9 nd

Airland10 150

2 1288.73 1407.45 9.21 18.6 7.87 60.8 25.95 84.5 103.47
3 220.79 224.13 1.51 21.0 8.88 66.8 195.88 80.3 552.16
4 34.22 34.22 0 20.6 16.74 64.7 292.40 78.8 3473.49
5 0 0 0 23.1 0 60.7 nd 76.2 nd

Airland11 200

2 1540.84 1673.95 8.64 23.2 9.19 95.9 38.54 128.7 129.80
3 280.82 280.64 −0.06 26.1 21.59 102.1 290.09 120.3 764.25
4 54.53 54.53 0 27.4 2.77 99.3 474.47 116.8 3947.88
5 0 0 0 27.2 0 95.6 nd 115.8 nd

Airland12 250

2 1961.39 2482.26 26.56 28.3 18.80 126.6 50.18 183.5 137.42
3 290.04 243.79 −15.95 31.5 17.48 145.4 198.01 171.0 903.97
4 3.49 2.44 −30.09 33.3 271.63 144.5 13216.91 168.8 70752.44
5 0 0 0 34.6 0 138.6 nd 166.2 nd

Airland13 500

2 5501.96 5184.06 −5.78 58.0 3.72 383.6 37.47 537.9 56.91
3 1108.51 755.15 −31.88 60.7 1.98 456.0 182.69 515.8 462.60
4 188.46 90.03 −52.23 63.7 22.98 441.3 1186.81 497.7 2027.94
5 7.35 0 −100 65.9 0 442.1 22308.44 488.7 52628.71

Average −9.37 34.0 21.54 159.0 2576.00 193.2 9097.10

in several cases are prominent. We can clearly find that the
percentage deviation 𝐺 from the best-known solutions is
negative, which indicates the solutions found by HBA are
better than the best-known solutions.The average percentage
gap 𝐺 of HBA is −9.37% for this group of instances; however,
the average percentage gap𝐺 of SS, BA1, and FCFS is positive

and is much greater than the 𝐺 of HBA. On the other hand,
the average execution time𝑇 expended byHBA ismuch lesser
than the average execution time 𝑇 of SS and BA1 expended.

Figure 7 illustrates the performance of the HBA, the
SS, the BA1, the IACA, and the heuristic with respect to
the computational time. HBA and heuristic perform almost
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Figure 7: The computational time of each test case.

the same on instances up to 50 aircrafts. For the larger
instances up to 500 aircrafts, the computational time of HBA
is shortened observably, which also demonstrates that the
HBA has a faster convergence rate.

5. Conclusions

In this paper, we considered the multiple runways aircraft
landing problem with the objective of minimizing the total
deviation of landing time from the target time. In order
to solve the larger instances involving up to 500 aircraft
and multiple runways, a hybrid metaheuristic based on bat
algorithm (HBA, for short) has been implemented.The HBA
includes a problem-dependent initialization construction,
and several local search operations are integrated into the
framework of bat algorithm.The computational results of the
HBA show that the proposed algorithm is very effective and
competitive and can obtain solutions with high quality for
instances up to 500 aircrafts in a short time. Moreover, the
landing time assignment of each aircraft is a key for solving
ALP; several excellent assignment strategies need to be
presented in our further work; meanwhile, the aircraft take-
off problem (ATP) in airport runway scheduling problem also
is our future work.
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