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A coupled Kadomtsev-Petviashvili equation, which arises in various problems in many scientific applications, is studied. Exact
solutions are obtained using the simplest equation method. The solutions obtained are travelling wave solutions. In addition, we
also derive the conservation laws for the coupled Kadomtsev-Petviashvili equation.

1. Introduction

The well-known Korteweg-de Vries (KdV) equation [1]

𝑢
𝑡
+ 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0 (1)

governs the dynamics of solitary waves. Firstly, it was derived
to describe shallowwater waves of long wavelength and small
amplitude. It is a crucial equation in the theory of integrable
systems because it has infinite number of conservation laws,
gives multiple-soliton solutions, and has many other physical
properties. See, for example, [2] and references therein.

An essential extension of the KdV equation is the
Kadomtsev-Petviashvili (KP) equation given by [3]

(𝑢
𝑡
+ 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥
)
𝑥
+ 𝑢
𝑦𝑦
= 0. (2)

This equation models shallow long waves in the 𝑥-direction
with some mild dispersion in the 𝑦-direction. The inverse
scattering transform method can be used to prove the
complete integrability of this equation. This equation gives
multiple-soliton solutions.

Recently, the coupled Korteweg-de Vries equations and
the coupled Kadomtsev-Petviashvili equations, because of
their applications in many scientific fields, have been the
focus of attention for scientists and as a result many studies
have been conducted [4–9].

In this paper, we study a new coupled KP equation [10]:
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)

𝑥

+ 𝑢
𝑦𝑦
= 0, (3a)
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−

7

4

𝑣𝑣
𝑥
+ 2(𝑢𝑣)

𝑥
)

𝑥

+ 𝑣
𝑦𝑦
= 0, (3b)

and find exact solutions of this equation. The method that
is employed to obtain the exact solutions for the coupled
Kadomtsev-Petviashvili equation ((3a) and (3b)) is the sim-
plest equation method [11, 12]. Secondly, we derive conserva-
tion laws for the system ((3a) and (3b)) using the multiplier
approach [13, 14].

The simplest equation method was introduced by
Kudryashov [11] and later modified by Vitanov [12]. The
simplest equations that are used in this method are the
Bernoulli and Riccati equations. This method provides a
very effective and powerful mathematical tool for solving
nonlinear equations in mathematical physics.

Conservation laws play a vital role in the solution process
of differential equations (DEs). The existence of a large
number of conservation laws of a systemof partial differential
equations (PDEs) is a strong indication of its integrability
[15]. A conserved quantity was utilized to find the unknown
exponent in the similarity solutionwhich could not have been
obtained from the homogeneous boundary conditions [16].
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Also recently, conservation laws have been employed to find
solutions of the certain PDEs [17–19].

The outline of the paper is as follows. In Section 2, we
obtain exact solutions of the coupled KP system ((3a) and
(3b)) using the simplest equationmethod. Conservation laws
for ((3a) and (3b)) using the multiplier method are derived
in Section 3. Finally, in Section 4 concluding remarks are
presented.

2. Exact Solutions of ((3a) and (3b)) Using
Simplest Equation Method

We first transform the system of partial differential equations
((3a) and (3b)) into a systemof nonlinear ordinary differential
equations in order to derive its exact solutions.

The transformation

𝑢 = 𝐹 (𝑧) , 𝑣 = 𝐺 (𝑧) , 𝑧 = 𝑡 − 𝜌𝑥 + (𝜌 − 1) 𝑦, (4)

where 𝜌 is a real constant, transforms ((3a) and (3b)) to the
following nonlinear coupled ordinary differential equations
(ODEs):
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(5b)

We now use the simplest equationmethod [11, 12] to solve the
system ((5a) and (5b)) and as a result we will obtain the exact
solutions of our coupled KP system ((3a) and (3b)). We use
the Bernoulli and Riccati equations as the simplest equations.

We briefly recall the simplest equation method here. Let
us consider the solutions of ((5a) and (5b)) in the form

𝐹 (𝑧) =

𝑀

∑

𝑖=0

A
𝑖
(𝐻 (𝑧))

𝑖
,

𝐺 (𝑧) =

𝑀

∑

𝑖=0

B
𝑖
(𝐻 (𝑧))

𝑖
.

(6)

Here 𝐻(𝑧) satisfies the Bernoulli and Riccati equations, 𝑀
is a positive integer that can be determined by balancing
procedure, and A

0
, . . . ,A

𝑀
, B
0
, . . . ,B

𝑀
are constants to

be determined. The solutions of the Bernoulli and Riccati
equations can be expressed in terms of elementary functions.

We first consider the Bernoulli equation:

𝐻

(𝑧) = 𝑎𝐻 (𝑧) + 𝑏𝐻

2
(𝑧) , (7)

where 𝑎 and 𝑏 are constants. Its solution can be written as

𝐻(𝑧) = 𝑎{

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]
1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

} .

(8)

Secondly, for the Riccati equation:

𝐻

(𝑧) = 𝑎𝐻

2
(𝑧) + 𝑏𝐻 (𝑧) + 𝑐 (9)

(𝑎, 𝑏, and 𝑐 are constants), we shall use the solutions

𝐻(𝑧) = −

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)] ,

𝐻 (𝑧) = −

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

,

(10)

where 𝜃2 = 𝑏2 − 4𝑎𝑐 > 0 and 𝐶 is a constant of integration.

2.1. Solutions of ((3a) and (3b)) Using the Bernoulli Equation
as the Simplest Equation. In this case the balancing procedure
yields𝑀 = 2 so the solutions of ((5a) and (5b)) are of the form

𝐹 (𝑧) = A
0
+A
1
𝐻 +A

2
𝐻
2
,

𝐺 (𝑧) =B
0
+B
1
𝐻 +B

2
𝐻
2
.

(11)

Substituting (11) into ((5a) and (5b)) and making use of the
Bernoulli equation (7) and then equating all coefficients of
the functions 𝐻𝑖 to zero, we obtain an algebraic system of
equations in terms ofA

0
,A
1
,A
2
,B
0
,B
1
, andB

2
.
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Solving the system of algebraic equations, with the aid of
Mathematica, we obtain

𝑎 = 1, 𝑏 = 3,
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9
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8
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7
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6
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5
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4
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3
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2
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𝜌
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3
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2
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𝜌
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𝜌
2
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0
A
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𝜌
2
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1
𝜌
2
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2

1
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0
A
1
𝜌
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1
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2

1
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0
A
1
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1
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B
2
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A
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𝜌
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𝜌
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𝜌
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𝜌
3
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𝜌
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0
A
1

− 240384A
1
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(12)

where 𝑘 is any root of 469𝑘3 − 416𝑘2 + 304𝑘 − 256 = 0.
Consequently, a solution of ((3a) and (3b)) is given by

𝑢 (𝑡, 𝑥, 𝑦)

= 𝐴
0
+ 𝐴
1
𝑎 {

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]
1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

}

+ 𝐴
2
𝑎
2
{

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]
1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

}

2

,

(13a)

𝑣 (𝑡, 𝑥, 𝑦)

= 𝐵
0
+ 𝐵
1
𝑎 {

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]
1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]
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2
𝑎
2
{

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]
1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

}

2

,

(13b)

where 𝑧 = 𝑡−𝜌𝑥+ (𝜌−1)𝑦 and𝐶 is a constant of integration.

2.2. Solutions of ((3a) and (3b)) Using Riccati Equation as the
Simplest Equation. The balancing procedure gives𝑀 = 2 so
the solutions of ((5a) and (5b)) are of the form

𝐹 (𝑧) = A
0
+A
1
𝐻 +A

2
𝐻
2
,

𝐺 (𝑧) =B
0
+B
1
𝐻 +B

2
𝐻
2
.

(14)

Substituting (14) into ((5a) and (5b)) and making use of the
Riccati equation (9), we obtain algebraic system of equations
in terms of A

0
,A
1
,A
2
,B
0
,B
1
, and B

2
by equating all

coefficients of the functions𝐻𝑖 to zero.
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Solving the algebraic equations one obtains

𝜌 = −1,

A
0
= 𝑘 (8𝑎𝑐 + 𝑏

2
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A
1
=
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0
𝑏

8𝑎𝑐 + 𝑏
2
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,

A
2
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1

𝑏

,

B
0
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2
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3
+ 208𝑎A

0
𝑏
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0
A
1
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1
)
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,

B
1
=

A
1
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1
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1

,

B
2
=

1
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A
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𝑏
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A
1
𝑏 + 5784000𝑎A

1
𝑏

− 751200𝑎A
0
A
1
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1
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0
A
2
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A
2
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A
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1
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0
A
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0
A
2
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0
A
2

1
𝑏
4
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3

1
𝑏
3
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0
A
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1
𝑏
2
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1
𝑏
2
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3

2
𝑐
4
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2

2
𝑐
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0
A
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2
𝑐
2
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1
A
2
𝑐
2
} ,

(15)

where 𝑘 is any root of 469𝑘3 − 416𝑘2 + 304𝑘 − 256 and hence
solutions of ((3a) and (3b)) are

𝑢 (𝑡, 𝑥, 𝑦) =𝐴
0
+ 𝐴
1
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

+ 𝐴
2
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

2

,

(16a)

𝑣 (𝑡, 𝑥, 𝑦) = 𝐵
0
+ 𝐵
1
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

+ 𝐵
2
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

2

,

(16b)

𝑢 (𝑡, 𝑥) =𝐴
0
+ 𝐴
1
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

}

+ 𝐴
2
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2)−(2𝑎/𝜃) sinh (𝜃𝑧/2)

}

2

,

(17a)

𝑣 (𝑡, 𝑥) =𝐵
0
+ 𝐵
1
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2)−(2𝑎/𝜃) sinh (𝜃𝑧/2)

}

+ 𝐵
2
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

}

2

,

(17b)

where 𝑧 = 𝑡−𝑝𝑥+(𝑝−1)𝑦 and𝐶 is a constant of integration.
A profile of the solution ((13a) and (13b)) is given in

Figure 1. The flat peaks appearing in the figure are an artifact
of Mathematica and they describe the singularities of the
solution.

3. Conservation Laws of ((3a) and (3b))
In this section we present conservation laws for the coupled
KP system ((3a) and (3b)) using the multiplier method [13,
14]. First we present some preliminaries which we will need
later in this section.

3.1. Preliminaries. We briefly present the notation and perti-
nent results which we utilize below. For details the reader is
referred to [20].

Consider a 𝑘th-order system of PDEs of 𝑛-independent
variables 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and𝑚-dependent variables 𝑢 =
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
):

𝐸
𝛼
(𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑘)
) = 0, 𝛼 = 1, . . . , 𝑚, (18)

where 𝑢
(1)
, 𝑢
(2)
, . . . , 𝑢

(𝑘)
denote the collections of all first,

second,. . ., 𝑘th-order partial derivatives, that is, 𝑢𝛼
𝑖

=

𝐷
𝑖
(𝑢
𝛼
), 𝑢
𝛼

𝑖𝑗
= 𝐷

𝑗
𝐷
𝑖
(𝑢
𝛼
), . . ., respectively, with the total

derivative operator with respect to 𝑥𝑖 given by

𝐷
𝑖
=

𝜕

𝜕𝑥
𝑖
+ 𝑢
𝛼

𝑖

𝜕

𝜕𝑢
𝛼
+ 𝑢
𝛼

𝑖𝑗

𝜕

𝜕𝑢
𝛼

𝑗

+ ⋅ ⋅ ⋅ , 𝑖 = 1, . . . , 𝑛, (19)

where the summation convention is usedwhenever appropri-
ate.
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−2
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𝑥

𝑦

𝑢

25
20
15
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2
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−2

𝑥

𝑦

2
2

0
0

6

4

2

𝑣

(b)

Figure 1: Profile of the travelling wave solution ((13a) and (13b)).

The Euler-Lagrange operator, for each 𝛼, is given by

𝛿

𝛿𝑢
𝛼
=

𝜕

𝜕𝑢
𝛼
+∑

𝑠≥1

(−1)
𝑠
𝐷
𝑖
1

, . . . , 𝐷
𝑖
𝑠

𝜕

𝜕𝑢
𝛼

𝑖
1
𝑖
2
,...,𝑖
𝑠

,

𝛼 = 1, . . . , 𝑚.

(20)

The 𝑛-tuple vector 𝑇 = (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
), 𝑇
𝑗
∈ A, 𝑗 =

1, . . . , 𝑛, where A is the space of differential functions, is a
conserved vector of (18) if 𝑇𝑖 satisfies

𝐷
𝑖
𝑇
𝑖


(18)

= 0. (21)

Equation (21) defines a local conservation law of system (18).
A multiplier Λ

𝛼
(𝑥, 𝑢, 𝑢

(1)
, . . .) has the property that

Λ
𝛼
𝐸
𝛼
= 𝐷
𝑖
𝑇
𝑖 (22)

holds identically. In this paper, we will consider multipliers
of the zeroth order, that is, Λ

𝛼
= Λ

𝛼
(𝑡, 𝑥, 𝑦, 𝑢, 𝑣). The

determining equations for the multiplier Λ
𝛼
are

𝛿 (Λ
𝛼
𝐸
𝛼
)

𝛿𝑢
𝛼

= 0. (23)

Once the multipliers are obtained the conserved vectors
are calculated via a homotopy formula [13, 14].

3.2. Construction of Conservation Laws for ((3a) and (3b)).
We now construct conservation laws for the coupled KP
system ((3a) and (3b)) using the multiplier method. For the

coupled KP system ((3a) and (3b)), we obtain the zeroth-
order multipliers (with the aid of GeM [21]), Λ

1
(𝑡, 𝑥, 𝑦, 𝑢, 𝑣),

Λ
2
(𝑡, 𝑥, 𝑦, 𝑢, 𝑣) that are given by

Λ
1
= 𝑓
3
(𝑡) + 𝑦𝑓

4
(𝑡) − 𝑦

2
𝑓


7
(𝑡) + 2𝑥𝑓

7
(𝑡)

+ 𝑦
3
(−𝑓


8
(𝑡)) + 6𝑥𝑦𝑓

8
(𝑡) ,

Λ
2
= − 𝑦

2
𝑓


1
(𝑡) + 2𝑥𝑓

1
(𝑡) + 𝑦

3
(−𝑓


2
(𝑡))

+ 6𝑥𝑦𝑓
2
(𝑡) + 𝑓

5
(𝑡) + 𝑦𝑓

6
(𝑡) ,

(24)

where 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 8 are arbitrary functions of 𝑡.

Corresponding to the above multipliers we have the
following eight local conserved vectors of ((3a) and (3b)):

𝑇
𝑡

1
=

1

2

{−2𝑓
1
(𝑡) 𝑣 + 2𝑥𝑓

1
(𝑡) 𝑣
𝑥
− 𝑦
2
𝑓


1
(𝑡) 𝑣
𝑥
} ,

𝑇
𝑥

1
=

1

4

{−8𝑦
2
𝑓


1
(𝑡) 𝑢
𝑥
𝑣 − 8𝑦

2
𝑓


1
(𝑡) 𝑣
𝑥
𝑢

+ 16𝑥𝑓
1
(𝑡) 𝑢
𝑥
𝑣 + 16𝑥𝑓

1
(𝑡) 𝑣
𝑥
𝑢

+ 5𝑦
2
𝑓


1
(𝑡) 𝑢
𝑥
𝑢 − 10𝑥𝑓

1
(𝑡) 𝑢
𝑥
𝑢

+ 7𝑦
2
𝑓


1
(𝑡) 𝑣
𝑥
𝑣 − 14𝑥𝑓

1
(𝑡) 𝑣
𝑥
𝑣

− 16𝑓
1
(𝑡) 𝑢𝑣 + 5𝑓

1
(𝑡) 𝑢
2
+ 2𝑦
2
𝑓


1
(𝑡) 𝑣

− 4𝑥𝑓


1
(𝑡) 𝑣 + 7𝑓

1
(𝑡) 𝑣
2
− 8𝑓
1
(𝑡) 𝑣
𝑥𝑥

+ 8𝑥𝑓
1
(𝑡) 𝑣
𝑥𝑥𝑥

+ 4𝑥𝑓
1
(𝑡) 𝑣
𝑡

− 2𝑦
2
𝑓


1
(𝑡) 𝑣
𝑡
− 4𝑦
2
𝑓


1
(𝑡) 𝑣
𝑥𝑥𝑥
} ,
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𝑇
𝑦

1
= 2𝑦𝑓



1
(𝑡) 𝑣 + 2𝑥𝑓

1
(𝑡) 𝑣
𝑦
− 𝑦
2
𝑓


1
(𝑡) 𝑣
𝑦
,

𝑇
𝑡

2
=

1

2

{−6𝑦𝑓
2
(𝑡) 𝑣 + 6𝑥𝑦𝑓

2
(𝑡) 𝑣
𝑥
+ 𝑦
3
(−𝑓


2
(𝑡)) 𝑣
𝑥
} ,

𝑇
𝑥

2
=

1

4

{−8𝑦
3
𝑓


2
(𝑡) 𝑢
𝑥
𝑣 − 8𝑦

3
𝑓


2
(𝑡) 𝑣
𝑥
𝑢

+ 48𝑥𝑦𝑓
2
(𝑡) 𝑢
𝑥
𝑣 + 48𝑥𝑦𝑓

2
(𝑡) 𝑣
𝑥
𝑢

+ 5𝑦
3
𝑓


2
(𝑡) 𝑢
𝑥
𝑢 − 30𝑥𝑦𝑓

2
(𝑡) 𝑢
𝑥
𝑢

+ 7𝑦
3
𝑓


2
(𝑡) 𝑣
𝑥
𝑣 − 42𝑥𝑦𝑓

2
(𝑡) 𝑣
𝑥
𝑣

− 48𝑦𝑓
2
(𝑡) 𝑢𝑣 + 15𝑦𝑓

2
(𝑡) 𝑢
2

+ 2𝑦
3
𝑓


2
(𝑡) 𝑣 − 12𝑥𝑦𝑓



2
(𝑡) 𝑣

+ 21𝑦𝑓
2
(𝑡) 𝑣
2
− 24𝑦𝑓

2
(𝑡) 𝑣
𝑥𝑥

+ 24𝑥𝑦𝑓
2
(𝑡) 𝑣
𝑥𝑥𝑥

+ 12𝑥𝑦𝑓
2
(𝑡) 𝑣
𝑡

− 2𝑦
3
𝑓


2
(𝑡) 𝑣
𝑡
− 4𝑦
3
𝑓


2
(𝑡) 𝑣
𝑥𝑥𝑥
} ,

𝑇
𝑦

2
= 3𝑦
2
𝑓


2
(𝑡) 𝑣 − 6𝑥𝑓

2
(𝑡) 𝑣

+ 6𝑥𝑦𝑓
2
(𝑡) 𝑣
𝑦
− 𝑦
3
𝑓


2
(𝑡) 𝑣
𝑦
,

𝑇
𝑡

3
=

1

2

𝑓
3
(𝑡) 𝑢
𝑥
,

𝑇
𝑥

3
=

1

4

{5𝑓
3
(𝑡) 𝑢
𝑥
𝑣 + 5𝑓

3
(𝑡) 𝑣
𝑥
𝑢

− 7𝑓
3
(𝑡) 𝑢
𝑥
𝑢 − 4𝑓

3
(𝑡) 𝑣
𝑥
𝑣

− 2𝑓


3
(𝑡) 𝑢 + 4𝑓

3
(𝑡) 𝑢
𝑥𝑥𝑥

+ 2𝑓
3
(𝑡) 𝑢
𝑡
} ,

𝑇
𝑦

3
= 𝑓
3
(𝑡) 𝑢
𝑦
,

𝑇
𝑡

4
=

1

2

𝑦𝑓
4
(𝑡) 𝑢
𝑥
,

𝑇
𝑥

4
=

1

4

{5𝑦𝑓
4
(𝑡) 𝑢
𝑥
𝑣 + 5𝑦𝑓

4
(𝑡) 𝑣
𝑥
𝑢

− 7𝑦𝑓
4
(𝑡) 𝑢
𝑥
𝑢 − 4𝑦𝑓

4
(𝑡) 𝑣
𝑥
𝑣 − 2𝑦𝑓



4
𝑢

+ 4𝑦𝑓
4
(𝑡) 𝑢
𝑥𝑥𝑥

+ 2𝑦𝑓
4
(𝑡) 𝑢
𝑡
} ,

𝑇
𝑦

4
= 𝑦𝑓
4
(𝑡) 𝑢
𝑦
− 𝑓
4
(𝑡) 𝑢,

𝑇
𝑡

5
=

1

2

𝑓
5
(𝑡) 𝑣
𝑥
,

𝑇
𝑥

5
=

1

4

{8𝑓
5
(𝑡) 𝑢
𝑥
𝑣 + 8𝑓

5
(𝑡) 𝑣
𝑥
𝑢

− 5𝑓
5
(𝑡) 𝑢
𝑥
𝑢 − 7𝑓

5
(𝑡) 𝑣
𝑥
𝑣 − 2𝑓



5
(𝑡) 𝑣

+ 4𝑓
5
(𝑡) 𝑣
𝑥𝑥𝑥

+ 2𝑓
5
(𝑡) 𝑣
𝑡
} ,

𝑇
𝑦

5
= 𝑓
5
(𝑡) 𝑣
𝑦
,

𝑇
𝑡

6
=

1

2

𝑦𝑓
6
(𝑡) 𝑣
𝑥
,

𝑇
𝑥

6
=

1

4

{8𝑦𝑓
6
(𝑡) 𝑢
𝑥
𝑣 + 8𝑦𝑓

6
(𝑡) 𝑣
𝑥
𝑢

− 5𝑦𝑓
6
(𝑡) 𝑢
𝑥
𝑢 − 7𝑦𝑓

6
(𝑡) 𝑣
𝑥
𝑣

− 2𝑦𝑓


6
(𝑡) 𝑣 + 4𝑦𝑓

6
(𝑡) 𝑣
𝑥𝑥𝑥

+ 2𝑦𝑓
6
(𝑡) 𝑣
𝑡
} ,

𝑇
𝑦

6
= 𝑦𝑓
6
(𝑡) 𝑣
𝑦
− 𝑓
6
(𝑡) 𝑣,

𝑇
𝑡

7
=

1

2

{−2𝑓
7
(𝑡) 𝑢 + 2𝑥𝑓

7
(𝑡) 𝑢
𝑥
− 𝑦
2
𝑓


7
(𝑡) 𝑢
𝑥
} ,

𝑇
𝑥

7
=

1

4

{−5𝑦
2
𝑓


7
(𝑡) 𝑢
𝑥
𝑣 − 5𝑦

2
𝑓


7
(𝑡) 𝑣
𝑥
𝑢

+ 10𝑥𝑓
7
(𝑡) 𝑢
𝑥
𝑣 + 10𝑥𝑓

7
(𝑡) 𝑣
𝑥
𝑢

+ 7𝑦
2
𝑓


7
(𝑡) 𝑢
𝑥
𝑢 − 14𝑥𝑓

7
(𝑡) 𝑢
𝑥
𝑢

+ 4𝑦
2
𝑓


7
(𝑡) 𝑣
𝑥
𝑣 − 8𝑥𝑓

7
(𝑡) 𝑣
𝑥
𝑣

− 10𝑓
7
(𝑡) 𝑢𝑣 + 2𝑦

2
𝑓


7
(𝑡) 𝑢

− 4𝑥𝑓


7
(𝑡) 𝑢 + 7𝑓

7
(𝑡) 𝑢
2

+ 4𝑓
7
(𝑡) 𝑣
2
− 8𝑓
7
(𝑡) 𝑢
𝑥𝑥

+ 8𝑥𝑓
7
(𝑡) 𝑢
𝑥𝑥𝑥

+ 4𝑥𝑓
7
(𝑡) 𝑢
𝑡

− 2𝑦
2
𝑓


7
(𝑡) 𝑢
𝑡
− 4𝑦
2
𝑓


7
(𝑡) 𝑢
𝑥𝑥𝑥
} ,

𝑇
𝑦

7
= 2𝑦𝑓



7
(𝑡) 𝑢 + 2𝑥𝑓

7
(𝑡) 𝑢
𝑦
− 𝑦
2
𝑓


7
(𝑡) 𝑢
𝑦
,

𝑇
𝑡

8
=

1

2

{−6𝑦𝑓
8
(𝑡) 𝑢 + 6𝑥𝑦𝑓

8
(𝑡) 𝑢
𝑥
− 𝑦
3
𝑓


8
(𝑡) 𝑢
𝑥
} ,

𝑇
𝑥

8
=

1

4

{−5𝑦
3
𝑓


8
(𝑡) 𝑢
𝑥
𝑣 − 5𝑦

3
𝑓


8
(𝑡) 𝑣
𝑥
𝑢

+ 30𝑥𝑦𝑓
8
(𝑡) 𝑢
𝑥
𝑣 + 30𝑥𝑦𝑓

8
(𝑡) 𝑣
𝑥
𝑢

+ 7𝑦
3
𝑓


8
(𝑡) 𝑢
𝑥
𝑢 − 42𝑥𝑦𝑓

8
(𝑡) 𝑢
𝑥
𝑢

+ 4𝑦
3
𝑓


8
(𝑡) 𝑣
𝑥
𝑣 − 24𝑥𝑦𝑓

8
(𝑡) 𝑣
𝑥
𝑣

− 30𝑦𝑓
8
(𝑡) 𝑢𝑣 + 2𝑦

3
𝑓


8
𝑢

− 12𝑥𝑦𝑓


8
(𝑡) 𝑢 + 21𝑦𝑓

8
(𝑡) 𝑢
2

+ 12𝑦𝑓
8
(𝑡) 𝑣
2
− 24𝑦𝑓

8
(𝑡) 𝑢
𝑥𝑥

+ 24𝑥𝑦𝑓
8
(𝑡) 𝑢
𝑥𝑥𝑥

+ 12𝑥𝑦𝑓
8
(𝑡) 𝑢
𝑡

− 2𝑦
3
𝑓


8
(𝑡) 𝑢
𝑡
− 4𝑦
3
𝑓


8
(𝑡) 𝑢
𝑥𝑥𝑥
} ,

𝑇
𝑦

8
= 3𝑦
2
𝑓


8
(𝑡) 𝑢 − 6𝑥𝑓

8
(𝑡) 𝑢

+ 6𝑥𝑦𝑓
8
(𝑡) 𝑢
𝑦
− 𝑦
3
𝑓


8
(𝑡) 𝑢
𝑦
.

(25)



Journal of Applied Mathematics 7

We note that because of the arbitrary functions 𝑓
𝑖
, 𝑖 =

1, 2, . . . , 8 in the multipliers, we obtain an infinitely many
conservation laws for the coupled KP system ((3a) and (3b)).

4. Concluding Remarks

The coupled Kadomtsev-Petviashvili system ((3a) and (3b))
was studied in this paper. The simplest equation method
was used to obtain travelling wave solutions of the coupled
KP system ((3a) and (3b)). The simplest equations that were
used in the solution process were the Bernoulli and Riccati
equations. However, it should be noted that the solutions
((13a) and (13b)), ((16a) and (16b)), and ((17a) and (17b))
obtained by using these simplest equations are not connected
to each other. We have checked the correctness of the
solutions obtained here by substituting them back into the
coupled KP system ((3a) and (3b)). Furthermore, infinitely
many conservation laws for the coupled KP system ((3a)
and (3b)) were derived by employing the multiplier method.
The importance of constructing the conservation laws was
discussed in the introduction.
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