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We suggest and analyze an iterative scheme for finding the approximate element of the common set of solutions of a system
of variational inequalities, a mixed equilibrium problem, and a hierarchical fixed point problem in a real Hilbert space. Strong
convergence of the proposed method is proved under some conditions. The results presented in this paper extend and improve

some well-known results in the literature.

1. Introduction

Let H be a real Hilbert space, whose inner product and norm
are denoted by (:,-) and || - ||. Let C be a nonempty closed
convex subset of H. We consider the system of variational
inequalities of finding (x*, y*) € C x C such that
By +x" =y, x—-x")>0; VxeC, y >0,
@
(Byx™ +y" = x",x=y") >0; VxeC, y, >0,
where B, : C — C is a nonlinear mapping for each i = 1, 2.
The solution set of (1) is denoted by S*.
If B = B, = B, then the problem (1) reduces finding
(x*,y") € C x C such that
(mBy" +x" —y",x-x")>0; VxeC, y >0,
)
(uBx" +y" —x",x—y") >0, VxeC, y >0,

which has been introduced and studied by Verma [1, 2].

If x* = y* and p; = p,, then the problem (2) collapses to

the classical variational inequality finding x* € C, such that
(Bx",x-x") >0, VxeC (3)

is called the classical variational inequality problem, which
was introduced by Stampacchia [3] in 1964. For the recent
applications, numerical techniques, and physical formula-
tion, see [1-33]. We now have a variety of techniques to
suggest and analyze various iterative algorithms for solving
the system of variational inequalities (1); see [1, 2, 7, 8, 12, 14,
24, 28, 30].

We introduce the following definitions which are useful
in the following analysis.

Definition 1. The mapping T : C — H is said to be
(a) monotone, if

(Tx-Ty,x—y)20, Vx,ye€GC; (4)



(b) strongly monotone, if there exists an « > 0 such that
(Tx-Ty,x-y) 2ax -y, V¥x,yeC; (5

(c) a-inverse strongly monotone, if there exists an o > 0
such that

(Tx =Ty, x - y) 2 a|Tx-Ty|’, Vx,yeC; (6)
(d) nonexpansive, if

ITx - Ty| <x-y]. Vx.yeC 7)

(e) k-Lipschitz continuous, if there exists a constantk > 0
such that

ITx - Ty| <kfx-y], Vx,yeG (8)

(f) contraction on C, if there exists a constant 0 < k < 1
such that

ITx - Ty| <kfx-y], VvxyecC. 9)

It is easy to observe that every a-inverse strongly monotone

T is monotone and Lipschitz continuous. A mapping T :

C — H is called k-strict pseudocontraction, if there exists
a constant 0 < k < 1 such that

I = Ty < = 51+ K0 =T = (= Ty 10)
Vx,y € C.

The fixed-point problem for the mapping T is to find x € C
such that

Tx = x. 11)

We denote by F(T) the set of solutions of (11). It is well-known
that the class of strict pseudocontractions strictly includes
the class of nonexpansive mappings; then F(T) is closed and
convex and Pr ) is well defined (see [33]).

The mixed equilibrium problem, denoted by MEP, is to
find x € C such that

F(x,y)+(Dx,y—x) 20, VyeC, (12)

where F : C x C — R is bifunctionand D : C — H
is a nonlinear mapping. This problem was introduced and
studied by Moudafi and Théra [21] and Moudafi [22]. The set
of solutions of (12) is denoted by

MEP (F) :={x € C:F(x,y)+(Dx,y - x) 20, Vy € C}.
(13)

If D = 0, then it is reduced to the equilibrium problem is to
find x € C such that
F(x,y)>0, VyeC. (14)

The solution set of (14) is denoted by EP(F). Numerous
problems in physics, optimization, and economics reduce
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to find a solution of (14); see [9, 13, 25, 26]. In 1997,
Flam and Antipin [10] introduced an iterative scheme of
finding the best approximation to the initial data when
EP(F) is nonempty. Recently, Plubtieng and Punpaeng [25]
introduced an iterative method for finding the common
element of the set F(T') N Q" N EP(F).

Let S C — H be a nonexpansive mapping.
The following problem is called a hierarchical fixed point
problem: Find x € F(T) such that

(x=Sx,y—x)>0, VyeF(T). (15)
It is known that the hierarchical fixed-point problem (15)
links with some monotone variational inequalities and con-
vex programming problems; see [11, 31]. Various methods
have been proposed to solve the hierarchical fixed point
problem; see Moudafi [23], Maingé and Moudafi in [17],
Marino and Xu in [19], and Cianciaruso et al. [6]. Very
recently, Yao et al. [31] introduced the following strong
convergence iterative algorithm to solve the problem (15):

Vn = ﬁnsxn + (1 - ﬁn) Xn
Xne1 = PC [(an (xn) + (1 - “n) Tyn] >

where f : C — H is a contraction mapping and {«,,}
and {f,} are two sequences in (0,1). Under some certain
restrictions on parameters, Yao et al. proved that the sequence
{x,} generated by (16) converges strongly to z € F(T), which
is the unique solution of the following variational inequality:

(I-f)zy-2) =0,

By changing the restrictions on parameters, the authors
obtained another result on the iterative scheme (16); the
sequence {x, } generated by (16) converges strongly to a point
z € F(T), which is the unique solution of the following
variational inequality:

(16)
Vn=>0,

Vy e F(T). (17)

1
<;(I—f)z+(1—$)z,y—z> >0, VyeF(T). (18)

Let S : C — H be a nonexpansive mapping and {T;};°, :
C — C a countable family of nonexpansive mappings.
Very recently, Gu et al. [11] introduced the following iterative
algorithm:

Yn = PC [ﬁnsxn + (1 - ﬁn) xn]
Xne1 = PC ‘xnf (xn) + Z (oci—l - (xi) Tiyn s Vnzl,
i=1

(19)

where o, = 1, {a,} is a strictly decreasing sequence in
(0,1), and {B,} is a sequence in (0,1). Under some certain
conditions on parameters, Gu et al. proved that the sequence
{x,} generated by (19) converges strongly to z € (i) F(T;),
which is unique solution of one of the variational inequalities
(17) and (18).

In this paper, motivated by the work of Yao et al. [31] and
Gu etal. [11] and by the recent work going in this direction, we
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give an iterative method for finding the approximate element
of the common set of solutions of (1), (12), and (15) for
a strictly pseudocontraction mapping in real Hilbert space.
We establish a strong convergence theorem based on this
method. The presented method improves and generalizes
many known results for solving system of variational inequal-
ity problems, mixed equilibrium problems, and hierarchical
fixed point problems; see, for example [6, 11, 17, 31] and
relevant references cited therein.

2. Preliminaries

In this section, we list some fundamental lemmas that are
useful in the consequent analysis. The first lemma provides
some basic properties of projection onto C.

Lemma 2. Let P denote the projection of H onto C. Then, one
has the following inequalities:

(z-P;[2],P[z] -v) 20, VzeH, veC (20)

(u=v,Pc [u] = Pg [v]) > ||Pclul - Po[v] |2>

(1)
Yu,v € H;
|Pc[u] = P V]| < lu—vl, Vu,veH;
|- Pol2]|” < llz =l - |z - Pcl=]’, (22)
Vz € H, u€C.

Lemma 3 (see [7]). For any (x*,y") € CxC,(x*,y") isa
solution of (1) if and only if x™ is a fixed point of the mapping
Q: C — Cde fined by
Q(x) = Pc [Pc [x = pyByx] = iy By Pe [x — 1, B,x]]
Vx € C,

where y* = Po[x" — u,B,x* ], p; € (0,26,), and B, : C — C
is 0;-inverse strongly monotone mappings for each i = 1, 2.

Lemma 4 (see [5]). Let F : Cx C — R be a bifunction
satisfying the following assumptions.

(i) F(x,x) =0,Vx € C.
(ii) F is monotone; that is, F(x, y)+F(y, x) < 0,Vx, y € C.
(iii) For each x,y,z € C,lim,_ (F(tz + (1 — t)x,y) <
F(x, y).
(iv) For each x € C,y — F(x,y) is convex and lower
semicontinuous.

Letr > 0 and x € H. Then, there exists z € C such that
1
F(z,y)+=-(y-z,z-x) 20, VyeC. (24)
r

Lemma 5 (see [10]). Assume that F : C x C — R satisfies
assumptions (i)-(iv) of Lemma 4. Forr > 0 and forall x € H,
define a mapping T, : H — C as follows:
1
T, (x) = {zeC:F(z,y)+—(y—z,z—x) >0, VyeC}.
r
(25)

Then, the following hold.
(i) T, is single valued.

(ii) T, is firmly nonexpansive; that is,
IT,x =Ty < (Tx-T,7.x-y), VxyeH (26)

(iii) F(T.) = EP(F).

(iv) EP(F) is closed and convex.

Lemma 6 (see [32]). Let C be a nonempty closed convex subset
of a real Hilbert space H. If T : C — C is a k-strict
pseudocontraction, then

(i) the mapping I — T is demiclosed at O; that is, if {x, } is a
sequence in C weakly converging to x and if {(I -T)x,}
converges strongly to 0, then (I — T)x = 0;

(ii) the set F(T) of T is closed and convex so that the
projection Prry is well defined.

Lemma 7 (see [29]). Assume that {a,} is a sequence of
nonnegative real numbers such that

Apyp < (1 - yn) a, + 8n’ (27)
where {y,} is a sequence in (0, 1) and §,, is a sequence such that

(1) ZZZI Yn = 005
(2) lim sup,, _, ,8,/y, <0or Y2, 18, < co.

Then, lim,, _, a, = 0.

Lemma 8 (see [4]). Let C be a closed convex subset of H. Let
{x,,} be a bounded sequence in H. Assume that

(i) the weak w-limit set w,(x,) C C where w,(x,) = {x :
x, — x},

i

(ii) for each z € C,lim x, — z|| exists.

n—>oo||

Then, {x,,} is weakly convergent to a point in C.

Lemma 9 (see [33]). Let H be a Hilbert space, C a closed
and convex subset of H, and T C — C a k-strict
pseudocontraction mapping. Define a mappingV : C — H
by Vx = Ax + (1 = M)Tx, for all x € C. Then,ask <A <1,V
is a nonexpansive mapping such that F(V) = F(T).

Lemma 10 (see [11]). Let H be a Hilbert space, C a closed and
convex subset of H, and T : C — C a nonexpansive mapping
such that F(T) # 0. Then,

||Tx—x||2 < 2<x—Tx,x—x'>, vx' € F(T), Vx € C.
(28)

3. The Proposed Method and Some Properties

In this section, we suggest and analyze our method for finding
the common solutions of the system of variational inequality
problem (1), the mixed equilibrium problem (12), and the
hierarchical fixed point problem (15).



Let C be a nonempty closed convex subset of a real Hilbert
space H. Let D,B; : C — H be 5,0;-inverse strongly
monotone mappings for each i = 1, 2, respectively. Let F : C x
C — Rbeabifunction satisfying the assumptions (i)-(iv) of
Lemma 4,S: C — H anonexpansive mapping, and {T}};7 :
C — C a countable family of k;-strict pseudocontraction
mappings such that S* N MEP(F) n F(T) # 0, where F(T) :=
N2, E(T;) = N2, E(V;). Let f be a p-contraction mapping.

Algorithm 11. For a given x,, € C arbitrarily, let the iterative
sequences {u,}, {x,}, {y,}, and {z,} be generated by

1
F(un’y) + <Dxn’y_un> + 1’_ <y_un’un _xn> =0,
Vy e G
Zy = PC [PC' [un - .l’lZBZun] - ‘ulBlPC [un - M2B2un]] ;

Yn = PC [ﬁnsxn + (1 - ﬁn) Zn] >

) Z(az 17

Xp1 = Po [, f (x «)Viy,|, V¥n=0,

(29)
where V; = k;I + (1 — k)T, 0<k; <1, y; €(0,20;) for each
i =121r,} c (0,29),ay = 1,{a,} is a strictly decreasing

sequence in (0,1), and {,} is a sequence in (0, 1) satistying
the following conditions:

n—oo%n = 0 and 2221
(b) lim,, _, o, (B,/,) = 0,
(C) 2221 |(Xn71

(d) lim 1nfn_>oon <
Yol =1, < 0.

Lemma 12. Let x* € S* N MEP(F) N F(T). Then, {x,}, {u,},
{z,}, and {y,} are bounded.

(a) lim o, = 00,

_“nl < coand Z;C:)I |ﬁn71 _:8n| < 00,

2n and

lim sup, , 1, <

Proof. First, we show that the mapping (I -7, D) is nonexpan-
sive. For any x, y € C,

|1 = D) x = (1=, D) y|* = |(x = y) = r,, (Dx - Dy)[f

==yl
-2r,{(x-y,Dx - Dy)

+ryDx = Dy < -y
1y (2= 1,) [Dx - Dy

<[ =l 0
30

Similarly, we can show that the mapping (I — w;B;) is
nonexpansive for each i = 1, 2. It follows from Lemma 5 that

Abstract and Applied Analysis

=T, (x,-1,Dx,). Let x* € S* N MEP(F) N F(T); we have
( - r,Dx"), and it follows that

* * * 2
[, — x ||2 =T, (x,-r.Dx,)-T, (x" —r,Dx )"
* %112
X, =1, Dx x —r,Dx
S R
%112 * 112
< |x, - x*||" =, (2n-r1,)||Dx, - Dx"||
< %, - x*"z.
Let x* € S* N MEP(F) n F(T); we have
x" =Py —mByy'], (32)
where
¥ =Po[x" —mByx7]. (33)

Setting v,, = Polu,, — 4, B,u,]. Since B, is 0,-inverse strongly
monotone mapping, it follows that

"Vn - )’*”2 = "PC [”n - #szun] - P [x* - #232X*]||2

< "”n —u" — p, (Byu, — Bzx*)"2
< "xn - x" "2 — (20 - [42) "Bzun - Bzx* "2
Sk

(34)

Since B, is 0;-inverse strongly monotone mappings for each
i=1,2, weget

2w - %I
= || Pc[Pc[u, - u2Byu, ]

- Po[Pc [x”
—u B, P [x*

< "PC [un - ‘MZBZMn]

— th B, Pc [u, — By, ||
~ B, x"]

- //‘szx*]]Hz

- th B Pc [u, — 4, By, |

— B, Pelx” — B, x )|
= "PC [, — o Byu, ] = Pc [

= wy (B Pclu,

- (Po[x™ = upyByx"]
- .“2323‘*]

* 2
— W Byx ])"

- thByu,] = By Px”

- Pe[x" - .‘42329‘*]"2
- w, (20, — ) | B, Pc [u,

_BIPC[x* - #sz’C*]"2

< "Pc [”n - ﬂszun]

- Vszun]



Abstract and Applied Analysis

< Gy = p2B,) = (x" = iy Byx™)|°
— (26, — ) [|By P [, — 1 By, ]
_BIPC [X* - AMZBZ’X*]HZ
< Ny = %" = 112 (26, - o) | By, — Byx™ |
— (20, = ) |Byv, - By

<ty =" < e, = 2"
(35)
Next, we prove that the sequence {x,} is bounded; without

loss of generality we can assume that 8, < o, foralln > 1.
From (29), we have

“xnﬂ - X*” =

‘an (xn) + Z (‘xifl - (Xi) Vlyn

n
—o,x" — Z (o) — o) Vix”
i=1

<o [ f (o) = £ ()] + e [ f (57) = 7|

+ Z (o1 =) [Viy = Vi

i=1

<o [ f (o) = S ()] + e [ f (27) = 7|

n
+ ) (o — o) ||)’n - X*"
i=1

1

< o [1f () = f () + e £ (67) = %7
+(1-a,) |BSx, + (1= B,) 2, = x7||
< o [ f (o) = )]+ e [ f (27) = 7|
+ (1= a,) (B, [[Sx, = Sx™| + B, [}sx™ — 7]
+(1=B) |z = x7[)
< ap [, = 7| + e, | f () - &7
+ (1= a,) (B s = %7 + By 5™ = 7|
+(1=B) [ = ")
=(1-a,(1-p))
X [l =27 + e, |L£ (x7) = 7
+(1=a) B flsx” =7 < (1= e, (1= p)
X[y =27 + e, |1 £ (x7) - 7
2
< (1-a, (1-p) |2, = 7|
+a, (| f () =7+ [lsx" - x7[)

5
* an(l _P)
=10 (1= -+ =2
x (If (67) = 7 + [Jsx™ = x7[))
N 1 * *
< max{||x, - x"| ’lTp("f(x ) -7
+[$x" = x|}
(36)

By induction on n, we obtain [x, — x*[| < max {|x, —
), (/1 = p)Lf (™) = x*[| + 1ISx™ = x|}, for n > 0 and
x, € C.Hence, {x,} isbounded and, consequently, we deduce
that {u,}, {z,}, {v,,}, and {y,} are bounded. O

Lemma 13. Let x* € S* n MEP(F) n F(T) and {x,} be the
sequence generated by Algorithm 11. Then one has

(a) lim,,_, o llx,; — x,Il = 0.

(b) The weak w-limit set w,(x,) ¢ F(T),(w,(x,) = {x :
X, — x}).

Proof. Since u, = T, (x,, - r,Dx,) and u,,_, = T, (x, ;-
7,_1Dx,_,), we have

1
F(”n’y)+ <Dxn’y_un> + - <y_un’un_xn> >0,
T,

" (37)
Yy € C,
F (-1, y) + (D1 y =ty 1)
+ nl—l (¥ = Up1s Uy = X,g) 20, (38)
Vy eC.

Take y = u,_; in (37) and y = u,, in (38), we get

F (un’ un—l) + <Dxn’ Up1 — un>

1
+ — (un—l — Uy Uy — xn> =0,
n

(39)
F (un—l’ un) + <Dxn—1’ Uy = un—l)

1
+

<un S L xn—l) > 0.

Tp1

Adding (39) and using the monotonicity of F, we have

<Dxn71 - Dxn’ Uy — un71>

U, 1 — X,— u, — X (40)
+<un_un—1’ n—1 n-1 _ “n n>20,

Tn

n-1
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which implies that Next, we estimate

0< <”n U1,y (DX, = Dx,,) + . (o1 = %51) "Zn _ Zn—1||2

—(u, - x,) > = |Pc [Pc [y = t2Byt,] = i1 By Pe [y, = 1By, ]|
- PC [PC [un—l - MZBZMn—l]
- B P [un—l - !42Bzun—1]]"2

< "Pc (4, — 4, Byus,,] — 14, B, P [, — py Byu, ]

= (Pc [tp1 = 2Byt ]
“(x, - - In 2
(% = 7uDx,) = 2y +rn71 x"—1> 1 By P (1 — Byt )|

= "PC (4, — 4 Byts,,] = Pe [thy—y — p1 Byt |

- (BIPC [un - nu2B2un]

" (44)
= (% = D) = X ¢ rn: xn_1> =l =i =B, Pe [ty — Byt 1)
T < "PC [un - AMZBZun] - PC [un—l - ‘MZBZun—l] “2
=\ Upn-1 ~ Uy 1- r (un—l - 'xn—l)
o - (20, — ;)
+ ('xn—l - rann—l) - (xn - rann) > X "BIPC [un - AMZBZun]
2
o ”n—1”2 =By Pc [ty — By, ]|
< Hun_l - un” < "PC [”‘n - P’szun] - Pc [un—l - .“232”#1] “2
"n < "(un - un—l) ) (Bzun - Bzun—l)nz
x|l - N ”unfl - xnflll R )
-1
! <l = s | = 11 (26, — ) || By, = Byt |
+ "('xn—l - rann—l) - (xn - rann)" } < "un _ un—1"2'
2
= [l = 2| It follows from (43) and (44) that
< Hunfl - un”
r ”Zn - zn—IH < "xn—l - xn”
1= 2 s =5+ s - . ! )
Tn-1 + ;{ |rn—1 - rn| “un—l - xn—l” .
- ”un - unflllz
4D From (29) and the previous inequality, we get
and then
r _
s =l < 1= 2ty =5 . 15 = el
e
( ) < ||ﬁnsxn + (1 - ﬁn) Zy = (ﬁn—lsxn—l + (1 - ﬁn—l) Zn—l)”
+ %,y — x| -

= Sx, = Sx,.1) + (B, — Bn1) Sx,.—
Without loss of generality, let us assume that there exists a 18, (Sx, ne1) + By = Bot) 1
real number g such thatr, > y > 0, for all positive integers 7. +(1=B) (zp = 24-1) + (Bact = Bu) Zns|
Then, we get

< ﬁn “xn - xrﬁl“ + (1 - /3n) "Zn - anlll
(43) + 1By = Buca | (1Sx51 ]| + 121 ]))
< ﬁn “xn - xn—l” + (1 - ﬁn)

"”nﬂ - ”n" < ”xn—l - xn"

1
+ ;{ |rn—1 - rnl "un—l - xn—l“ .
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1

{ls =l % s =l = 3l
u

+ |ﬁn - /))n—ll ("an—lu + ”Zn—ln)

1
< “xn - xn—1" + ;{ |rn—1 - rnl "”rl—l - xn—ln

+ |ﬁn - ﬁn—1| ("an—lu + ”Zn—ln) .
(46)

Next, we estimate

”xn+1 - xn" <

“nf (xn) + Zn: (ai—l - “i) szn

- ( o f (1) + "21 (@ — ) Vi)’n—l)
= nan (f (xn) - f (xnfl)) + (“n - (anl) f (xnfl)

n
+ Z (0‘1‘—1 - ‘xi) (V1yn - Viyn—l)
i=1

+ (ocn—l - “n) Vnyn—l "

< a, || f (x,) = f (,00)|
+ Z (@ = @) [|[Viyy = Viyu|l

+ |“n - 0‘an| ("f (xnfl)” + ”Vnynfl")

< @,p %, = x,] + Z (1 = ) |9 = Yo

i=1
+ lOCn - ‘xn—1| ("f (xn—l)” + ”Vnyn—lll)
=a,p ”xn - xn—l" + (1 - (xn) "yn - yn—lll

+ l‘xn - ‘xn—1| ("f (xn—l)” + ”Vnynflll) .
(47)

From (46) and (47), we have

||xn+1 - xn” < o, p "xn - xn—l” + (1 - an)

1
=l s =l s =0

18, B (155, + il |
+ |(Xn - an—ll (”f (xn—l)" + ”Vnyn—l")
1
= (1 - (1 - P) (xn) "xn - xn—l" + ;{ |Tn—1 - rnl

x "”rl—l - xn—ln

+ |ﬁn - ﬁn—ll (stn—lll + "Zn—l”)

+ |‘Xn - “n—ll (“f (xn—l)" + "Vnyn—ln)
< (1 - (1 - P) ‘xn) ”xn - xn—l" +M

1
X <; |rn—1 - rnl + |ﬁn _ﬁn—1| + |(Xn _‘xn—1|> >
(48)

where

M = max {sup PR S T T
n>1 n>1

sup (15 (s, D1+ WD
) (49)

It follows by conditions (a)-(d) of Algorithm 11 and Lemma 7
that

lim ||3anrl - xn" =0. (50)

n—00

Next, we show that lim,, _, llu, — x,|l = 0. Since x* € §* n
MEP(F)NF(T)and &, + Y i, (o;_; — ;) = 1, by using (31) and
(35), we obtain

|lxn+1 -x" "2

<

(an ('xn) + z (ai—l - (Xi) ‘fzyn - (an*
i1

n 2

—Z (@ — ) Vix®

i=1

< ay|f (o) =1+ ) (@ — @) [Viy = Vi
i=1

<o f () =[] + 2 (ot = ) [, = %"

<o f () = %"+ (1-a,)
x (Bulsx, "I+ (1= ) o - *°TP)
<l f () = x| + (1 - ) oIS, = 7
+(1-a,) (1-B,)
< = x| = 1y (26, - 1)

2 (20, - .“1) "Ban - Bly*llz}

2

x||Byu,, — B,x"

<a|f (o) = x|+ BullSx, - %"
+(1-a,) (1-8,)
x{lx, = %" = 1, (20~ 1,) |Dx, = D[
~ (26, - ,) | By, = B,

—uy (26, — ;) "31Vn - B1)’*”2}



="+ B, = 2P+ ey -

- /';n) {rn (2’7 - rn) “Dxn - Dx* "2

< (xn"f(xn)
-(1-a,)(1

+ 4 (20, — ) | By, — Byx” "2
+y (260, = ) | Byv, - Bl)’*llz} :
(51)
Then, from the previous inequality, we get
(1 - ‘Xn) (1 - /3n) {rn (2’7 - n) “Dxn - 1)36*"2
+ (20, = ) | By, = By
+py (26, = 1) [|Byv, - Bl)’*”Z}
< ‘xn“f (xn) - x*"2 + ﬁn”sxn - X*HZ
e L
= ‘xn“f (xn) - x*"2 + ﬁnnsxn B x*"2
+ (e =27+ 6nir = %71 e = %l
(52)
Since liminf, | r, < limsup,_, 7, < 2x,lim, _, lx,,.; —
x,ll = 0,&, — 0,and 8, — 0, we obtain lim,, , [|B,u, —
B,x*| = 0,lim, _, . IB;v, — B,y"ll = 0, and lim,, _, . ||IDx,, —

Dx*| = 0.
Since T, is firmly nonexpansive, we have
n

e, — %7 = T, (x,-1r,Dx,) =T, (x" —r,Dx" :
<{(u,-x",(x, - r,Dx,) - (x* —r,Dx"))
1 w2
- Ul

+|(x, - r,Dx,) - (x* - r,,Dx*)“2
= lu, - x*

-[(x, - r,Dx,) - (x* —r,Dx") || }

(53)
Hence,
Jun = %" I < |, = 7,Dx,) = (x" = 1, Dx)|°
~ luy = %, + 1, (Dx,, = Dx")|
< Jxn = 2 = [y = %, + 1D, = D)
< e =" = =
+ 21, [, ~ x| | D, ~ Dx"]
(54)
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From (51), (35), and the previous inequality, we have

5" < | f () - x|

"xn+1
+ (1 - “n) (ﬂn"an - x*”2
+(1=B) |z - x[)
< (xn"f (xn) - x*uz + (1 - ‘xn)

X (Ballsx, = "I + (1= B) Ju, - x°[)
< o[ () = %"+ (1= ,)
x{B,| B.)
% (s = %" = 1ty = x|

= %[ [Dx,, = Dx7[)}

+2r, ||un

< (xn"f (xn) -

+ %, —x*"2 -(1-

X+ B, -

“n) (1 - ﬁn) "un - xn"2

+2r, |u, - x,| | Dx, - Dx"|.
(55)
Hence,
(1 - ) ﬁn ”u xn”Z < ‘xn“f (xn -
+ BallSc, = %+ e, = %7
- |lxn+1 - x*"2
+2r, |u, - x,| | Dx, — Dx"|| (56)

<a | f (x,) = x"|P + B, 8%, - x|

+ (ln = %"+ s = ") 60 =

+2r, |u, - x,| | Dx, — Dx"|.
Since lim,, _, ,lIx,.; — x,1 = 0, @, — 0, 3, — 0, and
lim,, _, ,[IDx, — Dx*| = 0, we obtain
Jim flu, x| = (57)

From (21), we get
v = y°I°
= [P lut, = Bty ] ~ Pe " = By
< (=" (" - Bx"))
— uy (Byu, — Bzx*)"2

- (- I

- Hszun) -
1 * *
T i T

_““n - X" =y (Byu, — Byx”)
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R R s

* 12

— 1y (20, — w,) "Bzun -

- "”n -x" - W (Bzun - Bzx*)
~(v, —y*)||2}
1
A T
_"un ~Vu— (BZMn - BZx*) - (X* - y*)”Z}

< Sl =y I+ sy ="

l\)l>—‘

- ” un_vn_(x* _y*)"2
+2/’l2 <un_vn - (x* _y*)’BZun _Bzx*>

w2
15 |Bau, - B,x [}
<Al + =P

- ”un ~Vn— (x* _y*)llz

+2M2 "un “Va— (x* - y*)" "BZun - B2x*"} .
(58)

Hence,
R e A e S
+ 21t 1ty = v, = (5" = y7)]| | Bytay — Box”|
< e = = ety = |
+ 21, |u, - x| |Dx,, - Dx"|
Nty = v = " = )|

+ 2#2 ||un “Vn T (X* - y*)" "BZun - BZx*" ’
(59)

where the last inequality follows from (54). On the other
hand, from (29) and (21), we obtain

Iz, = %" = |Pelv, - mByv,] - Poly” = mByy°|
< (2, = x" (vy = Byv,) = (v = B1y"))
- Mo T -y~ By, By
- ||Vn - J’* - (Bl"n - Bl)’*)
- (2, ’}

= lew=xF + v =1

NI»—!

-2y <Vn _y*’Blvn _Bly*>

Hence,

+ 41 |Biv, = By |
_”Vn_)’* —ty (Byv, = Byy")
(2, - x|}
1
< Ml ol F
-y (20, — ) “Bl"n - B1)’*"2
—”Vn_y* — (Blvn_Bly*)
~ (2, - x|}
1
<5 {lz-x I -yl
_"Vn_zn_["l (Blvn_Bly*)
-y)I°}
1
<5 {lz-x I -yl

- ”Vn —Z, t (x* - y*)"2

24y (Va =2, + (x" = y7), Byv, = Biy")}

< len =" +lv =y

l\)l>—‘

=2+ (7 =0
2 v, =z + (57 =y

x ”Blvn - Bly* “}

lew =" < v =y I = v =20+ (=" = )

+ 2‘“1 “Vn -z, t (X* - y*)" "Blvn - Bly
< e =" = =

+ 21, |lu, — x,| | Dx,, — Dx"||

+ 2‘“2 “un “Vn T (x* - y*)” “BZun - BZx
- ”Vn %yt (x* - y*)"2

+ 2[41 “Vn —Zy, Tt ('X* - y*)" "Blvn - Bly

(60)

|

I

-

(61)

where the last inequality follows from (59). From (51) and the
previous inequality, we have

“an

- x*”2 < a, | f(x,) - x* 2

o)
X (BulSx, = I + (1= B) [z~ x°)
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< a|f (x,) =<7+ (1 - )
x {BlIsx, — x|
(1= B,) (e = %" =l = %l
+2r, [|u, - x,| | Dx, - Dx"{))
+(1=B,) (Nt = v = (x" = ")
+ 24t [ty = v, = (2" = y7)|
X [|Byu, = Byx")
+(1=B) (v = 20+ " = )|
+ 24 v, — 2, + (x" =y
x B, - Biy||) |

<a|f(x,) - x*"2 + BlISx, - x*HZ

2

= I+ 2, s, =
x| Dx, - Dx"|
+ 24, [y = v, = (x" = 5"
x| By, = By || + 2 v, = 2 + (27 = ¥
x|Bv, =By’ = (1~ ex,) (1= B,)
| e A S
v, =z, + " =y}

(62)

Hence,

(1-a,)(1-p,)
X (= 20l + 1t = v = (<" = )|
=20+ " =y}
< a, | £x) = [+ Bllsx, - <[
M I B
+ 27, lu, = x| |Dx,, - Dx|
+ 2083 [ty = v = (2" = ") | Byt = Box”|
+ 24y v = 2, + (x" = y")| |Bv, = By’
<o, ) = x|+ BflSx, - x|
(= %"+ 1%s = %7 ) [ =

+2r, |u, - x,| | Dx, - Dx"||

Abstract and Applied Analysis

+ 245 [y = v = (5" = y") [ |Bou, - Box”|

+ 2t v, =z, + (3" = y")||Byv, - By
(63)

Since lim, =0« — 0p, — 0 and

n%oo”xrﬁl - xn”

lim, _, ,IIDx, - Dx*|| = 0, lim,_, IByu, — B,x™| = 0,
lim,,_, ,IIB;v,, — B,y = 0, we obtain
nh—{%o |ty = v = (x" = y")| =0,
(64)

Jim v, -z, + (x" - y")| = 0.

Since
= 2ol < et = v, = (=7 = 7))
+ ||Vn_zn+(x -y )"’
we get
Jimfu, -z, = 0. (66)
It follows from (57) and (66) that
,,h_,ngo ”xn - Zn" =0. (67)

Now, letz € F(T) N S N MEP(F); since for eachi > 1,V;x,, €
Coanda, + )" (o —a;) = 1, wehave Y (a;_; — )Vix,, +
a,z € C. And

-

1]
—_

(‘xi—l - (Xi) (xn - ‘/ixn)

+(1-a,)x,

b, [%f (5)+ 3 (01— ) Vi,

i=1
<i

:PC

=

((xi—l - ai) Vvixn + (XnZ> + 0,2 = Xy

Il
—

“nf (xn) + Z (“i—l - (xi) szn

i=1

+a, (Z - xn+1)

_PC

n
(‘xi—l - 061-) Vvixn + OCnZ]
i=1

1

+ (1 - ‘xn) (xn - xn+1) .
(68)
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It follows that

M:

( X1 — 1) <X Vixn’xn_x*>

< [nf(x)+

n
P [Z (2 — &) Vix, + &,z

i=1

1

M=

(-1 — ) Viy,

1l
—_

0y (2= Xy %, X°)

+ (1 - an) <xn ~Xp+ > X T x*>

IN

P R CET o | ey
+ (1= ) = ] 0 =

< o, 1f ()~ 2l [, - ]

; z (s = ) [ = ol [, - °]
T N [

# (1= ) = o =

— o If ()~ 2l [, - ]
CRY YN
T [ -~
(1= a) - x

< o, 1f (%)~ 2l |, - ]
(=) |55+ (1 B) 2 -
= 2+ =l = 7]
+ (1= ) = o 50—

< o, 1f (%) - 2l |, - ]

(1= a,) By 5%, - 3 s - 5°]
F (1= a) (1= B) o - 5l [, - ']
T [

+ (1 - ‘Xn) "xn - xn+1“ “xn - x*” :

xn_x*”

From Lemma 10 and the previous inequality, we get

Z(al 1= |X —VX ”

-
y X, — X >

Xn (f n) z +Z “z’) (Viyn_vixn)

1
n
< Z ((Xi—l - “i) <xn - Vi'xn’ Xy — .X'*>
i=1
<a, | f (x,) = 2| [, - %7
+ (1 - ‘Xn) :Bn stn - xn" "xn - x*"
+ (1 - (xn) (1 - ﬁn) ”Zn - xn" "xn - x* “
+ 0, 2 = x| |2, = <7
+ (1 - “n) “xn - xn+1|l ”Xn -x
(70)
Since lim,, , (lIx,; — %, = 0, @, — 0, B, — 0, and
lim, _, lx, — z,|l = 0, we obtain
n
nlglgo; (‘xi—l - “i) “xn - Vixn"2 =0. (71)

. 2 2
Since (a;_; — ay)llx, = Vix,I© < XL (o = a)lx, = Vix, |
and {a,} is strictly decreasing, we have

lim ||x Vixn” =0. (72)

n— oo
Hence, we obtain
”xn B Vixn"
(1-k)

Since {x,} is bounded, without loss of generality, we can
assume that x, — w € C. It follows from Lemma 6 that
w € F(T). Therefore, w,,(x,) c F(T). O

Jim[x, - Tix, | = lim =0, Vi>1l (73)

Theorem 14. The sequence {x,} generated by Algorithm I

converges strongly to z = Ps-vppcrnrer) f (2), which is the

unique solution of the variational inequality
(I-f)z,x-2z) >0, V¥xeS NMEP(F)NF(T). (74)

Proof. Since {x,} is bounded x, — w and from Lemma 13,
we have w € F(T). Next, we show that w € MEP(F). Since
u, =T, (x, - r,Dx,), we have

F(un’y) + <D'xn’y—un> + l <y_un’un _'xn> =0,
n (75)

Vy e C.
It follows from monotonicity of F that
<Dxn’y _un> + l (y_ Uy Uy _xn> = F(y’un)’
rn

VyeC,

<Dxnk,y—unk> + <y—unk,u> > F(y,unk),
My

Vy e C.
(76)
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Since lim,, _, llu, — x,| = 0 and x,, — w, it easy to observe
thatu, — w.Forany0O<t<landyeClety, =ty+(1-
t)w; we have y, € C. Then from (76), we obtain

<Dyt’yt - ”nk> 2 <Dyt’yt - unk> - <Dxnk’yt — Uy,
- <yt — Uy w> +F(yt’unk)
My

= <Dyt - Dunk’yt — Uy,

+ <Dunk - Dxnk, Vi = Uy,

Uy, — Xy
Y ),

" 77)

Since D is Lipschitz continuous and lim,, _,  [lu,—x, | = 0, we
obtain lim; _, | Du,, — Dx, || = 0. From the monotonicity
of D and U, — w,it follows from (77) that

(Dyp yr —w) = F(y,w). (78)

Hence, from assumptions (i)-(iv) of Lemma 4 and (78), we
have

0= F(yt’yt) <tF ()’t>)’) +(1- t)F(}’trw)
<tF(y,y)+(1—1)(Dy, y, - w) (79)
<tF(y,y)+(1—-t)t(Dy,y-w)

which implies that F(y,, y) + (1 = t){Dy,, y — w) > 0. Letting
t — 0., we have

F(w,y)+(Dw,y-w) >0, VyeC, (80)

which implies that w € MEP(F). Next, we show that w € S*.
Since lim,, _, . llx,, — z,l = 0 and there exists a subsequence
{x,, } of {x,} such thatx, — w,iteasytoobservethatz, —
w. For any x, y € C, using (23), we have

R -
= [|Pc [Pe [x — tByx] — iy By P [x — 4y Byx]]
~Pe[Pe [y - tBoy) - Bl Pe [y — By y ]|
< (P [x = p2Byx] = Pc [y = 12Byy])

—t (BIPC [x - yszx] - B, F¢ [J’ - P‘szJ’])HZ

Abstract and Applied Analysis

< |Pe [x - 1, Bx] = Pe [y - B,y
— 1 (26, — i) [Pelix = ,Byx) = Pely = i, Boy|°
< |Pclx - yByx] = Pely — Byl
< [(x - t,B,%) = (y = t:Boy) |
<x- I
— 1 (26, — ) [ Byx = By’

< Jx =5’
(81)

This implies that Q : C — C is nonexpansive. On the other
hand,

s
= ”PC [Pc [u,, — w2 By, ] — o1y By Pe [, — iy By, ||
Q=) (82)
= lQ () - (=)l
< 2l
Since lim,, _, o, llu,, — z,ll = 0 (see (66)), we have lim,, _, llz,, —
Q(z,)ll = 0. It follows from Lemma 6 that w = Q(w), which

implies from Lemma 3 that w € S”.
Thus, we have

weS " NMEP(F)NF(T). (83)
Next, we claim that limsup,, _, . (f(2z) — 2, x,, — z) < 0 where
z = Psameppynre) f (2)-

Since {x, } is bounded, there exists a subsequence {xnk} of
{x,} such that

lim sup (f (z) - z,x,, — z) = lim sup <f(z) -2Z,X, —z>
n—oo k — oo

=(f(e)-zw-2z)<0.
(84)

Next, we show that x, — z.
One has

|wml—¢2=<xmfw@fu»

n
_z (Qioy = ) VY X1 — Z>

i=1

+@Jm>

n

+Z (@ =) Viyy =2, %, — Z>

i=1
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< <ocnf ()

+Z (“1 17 Vyn Xn+1 _Z>

o, <f(xn)—f<z),xn+1 - 2)

<a,p ||x

<a,p ||x

<

IN

<a,pl,

+a, (f (2) = 2, %01 — 2)

+Z(“z 17 <Vyn Xn+1 _Z>

<a, ||f %) = f @ %1~ 2]

+a, (f (2) = 2, %01 — 2)

n
+ Z (G
i=1

) [Viy = 2 s = 2]

n = 2l s = 2]

+a, (f (2) = 2, %01 — 2)

+Z(“z 1~

%) [y = 2| Ir = 2|

| B
T, <f (Z) 2 X4 T Z> + (1 - (Xn)
x {B, [ISx, - Sz|

+B, ISz = 2l + (1= B,) |z, — 2|}
X [1%01 = 2|
= 2|| | %1 -~ 2]
+ 0, (f (2) - 2, %y, — 2)

x (1 - (xn) {:Bn “xn - Z" + /311 Sz - z|

+ (1 - Bn) “xn - Z"} "xn+1 -

(1=, (1= p)) [x, 2|
X “xn+1 - Z" Ta, <f (2) -2, Xn+1 ~ Z>
+ (1 - Ocn) ﬁn ”SZ - Z” ”'xn+1 - Z"

l_an(l_p)
elon)

+a, (f (2) = 2, %01 — 2)
+ (1 - an) ﬁn ”SZ - Z“ ”xn+1 - Z"

which implies that

[%ner =2

2 20, ( 2
1 s rZ —
s( H%(l )u /|

2,
1+(xn(1—

%, = 2| + e = 2l)

)<f(Z) 25 Xyl Z>

13

2(1_“n)ﬁn
" Tra,(1-p)

<(1- 22 Y
20, (1 - p) {

1+(xn(1_P)

152 — 2l |51 2]

1
1_P <f(Z)—Z,xn+1 —Z>

L (1-a)p,
a, (1-p)

< =21}

1Sz - z||

(86)

Lety, =2a,(1-p)/(1 +a,(1-p)) and ,, = e, (1 —p)/(1 +
o, (1=p)){(1/(1=p)){f(2) — 2, X1, —2)+((1 —x,,) B,/ (e, (1 -
PIOISz = 2zl x4, — 2}

Since

l+a,(1-p)<2,

00
Z(Xn = 00,
n=1

1
lim sup {1— (f(2) =2z, %, — 2) (87)
n— 0o - p
1-a,)p,
+Q ISz — || ||, — z||} <0.
%y (1 - P)
It follows that
< : [
Zyn =00 lim sup—lim < 0. (88)

n—o Yy

Thus, all the conditions of Lemma 7 are satisfied. Hence, we
deduce that x,, — z.

Since Ps-vp(p)nreryf 18 @ contraction, there exists a
unique z € C such that z = Ps. \vppg)nr(r) f (2). From (20), it
follows that z is the unique solution of the problem (74). This
completes the proof. O

Theorem 15. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let D,B; : C — H be n,0;-inverse
strongly monotone mappings for each i = 1,2, respectively. Let
F : CxC — R be a bifunction satisfying the assumptions
(i)-(iv) of Lemma 4, S : C — H a nonexpansive mapping,
and {T;}7°, C — C a countable family of k;-strict
pseudocontraction mappings such that S*NMEP(F)NF(T) + 0,
where F(T) = (o, F(I;) = (o, F(V,). Let f be a p-
contraction mapping. For a given x, € C arbitrarily, let the
iterative sequences {u,}, {x,},{v,}, and {z,} be generated by

1
F(un’y)+ <Dxn’y_un> +— <y_un’un_xn> >0,
T

Yy € G

2z, = Pc [Pc [u, — o Byu, ] — i B, Pc [u, — 1, Byu, ]| 5
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V= BuSxy + (1= B,) 2,3 Setw, = a, f(x,) + Y., (a_; — ;)V;y,. From (47) and (48),
we obtain
'xn+1 = PC “nf (xn) + Z (oci—l - (xi) Vlyn > Vn > O> "erl B xl’l" < ||wl’l B wn*1||
= (59) B. B
S(l—(l )”x ﬂl"

where V; = kI + (1 - k))T;, 0 <k; <1, u; € (0,20,) for each P

i=12{r,} c(0,219), oy = 1, {a,} is a strictly decreasing M ( (/) [r = 1| + 1By = B
sequence in (0, 1), and {3,} is a sequence in (0, 1) satisfying the B B
following conditions:

+ I‘xn n 1| )
(a) lim,_, o, = 0and ¥, a, = 00, B
(b) lim,_, o, (B,/a,) = T € (0,00), (1= (1 p)a) = o le X |
()Xo (@1 = ;) < 0o and X2, 1B, = Bl < 00, -
1 1
(@) lim, oo (/)1 = 1l + Ty = o] + By = # (1= (=p)a) o = <ﬁ— " )
BulletuB,) = 0, no
1 - -
(e) there exists a constant K > 0 such that (1/a,)|(1/,) — +M <( ()11 = 1| + 1Br = B
1/B, DI <K, Bn P
(f) liminf, _, 1, <limsup,_, 1, <2nand Y2, |, — +M)
r,l < oco. B
Then, sequence {x,} generated by Algorithm (89) converges <(1-(1-p)a,) 211 % = s
strongly to x* € S* N MEP(F) n F(T), which is the unique B
solution of the variational inequality 1 1
+ %, = x|l |5 —
) ) ) ) " n n 1" ﬂn ﬁn—l
<;(I—f)x +(I-8)x",x—x >20, 00) M((l/y)|g—rn_1|+|[3n—/3ﬁn_1|
Vx € S* N MEP (F)n F(T). " "
|(xn n 1|
Proof. From lim, _, . (B,/a,) = T € (0,00), without loss of B,
generality, we can assume that 8, < (1 + 7)a, foralln > 1.
Hence 3, — 0. By similar argument as that lemmas 12 and <(1-(1-p)a,) Pn = Xnotl Hx Xt |
13, we can deduce that {x,,} is bounded, lim, _, . [|x,,,; =%,/ = - B
0, lim,_,  lx, — z,ll = 0 (see (67)), and (I - V})x,] — O.
Then, we have + o, K [, = x4
1 — —
"yn - xn" s :8n “xn - an" + M ( ( /‘bl) |7’n rn_l' + |'8n ﬁn—ll
(91) :Bn ﬁn
+(1-B)|x, -z, — 0 asn— oco.
|“n n 1| )
It follows that, for all i > 1, P
< (1- (1= p)ay) Lo ]
"yn - Vixn“ = ”yn - xn" + "xn - Vixn“ —0 - P % B
(92) n-1
as n — o0. + “nK ”xn _ xn—1"
From (91) and (92), we have M < (1/u) |7’n - rn—ll + |,3n - ﬁn—ll
B By
13~ Vil < Dy = Vi + Vi = Vo] e
.
S||yn—Vixn||+||yn—xn||—>0 as n — 0. B,

(93) (94)
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Lety, = (1 - p)a, and §,, = «,K|x,, — x,_ || + M((1/w)lr, -
Tyuil/ B + 1By = Bacal/ By + 1o, — 11/ B,,). From conditions
(a) and (d), we have
[es) . 6n
Zyn = 00, lim -2 =0. (95)
= n—»my
By Lemma 7, we obtain
lim ”xn+1 - xn" -0
n—oo » - >
(96)
lim ||wn+1 - wn” = lim ||wn+1 wn” 0
n— 00 T ns00 o ’

n

From (89), we have

Xn+1 = PC [wn] —w, t anf (xn)

+Z((xz 1 (Vyn yn)+(1_ocn)yn'

Hence, it follows that
- an) X, to,Xx,

Xp = Xps1 = (1

- (PC [wn] —w, t “nf (xn)

+Z(“z 17 (Vyn yn)+(1_(xn)yn>

= (1 - ‘xn) [ﬁn (xn - an) + (1 - /';n) (xn - Zn)]

+ (wn - PC [wn])

+ Z (‘xz 1~ (yn szn) T o, (xn - f (xn))
(98)
and hence
Xn = Xn+1 _ (1 B ﬁn) _
(1 - “n) Bn — an ' ﬂn (xn Zn)
1
+ m (w, = Pc [w,])
(99)
(1 _ Z(‘Xz 17 (yn szn)

+ m(xn_f(xn))'

15

Letv, = (x, -
F(T), we have

X,1)/(1 = a,)B,. For any z € S* N MEP(F) N

<Vn> Xn — Z>

- (; (w, - Pc [w,], P [wyy] — 2)

1- ‘xn) ﬁn
(I~ f) %%, - 2)

(1_ n)ﬂn
+ (x, = Sx,, x, — 2) (100)
+%< n_zn’xn_z>

n

1
' (1_“n)ﬁn2( e

i=1

;) (Y~

Viyn’xn - Z> :

Since S is nonexpansive mapping, f is p-contraction mapping
and V; is k;-strict pseudocontraction mapping. Then, (I — S)
and (I —V;) are monotones, and f is strongly monotone with
coeflicient (1 — p). We can deduce that

(% = S, %, = 2)
={((I-8x,-(I-8)z,x,—z)
+{I-98)z,x,-z)
>{(I-8zx,-2),
(= f)xp 2, = 2)

=((I-f)x,-(I-f)zx,-2)
(1= fzx,-2) = (1-p) |x, - 2|’
+{((I-fz,x,-2),

((I=V}) Yo X, = 2)

=(I=-V) y = U =V)) 2%, = y)
+{(I-V)y,—-(I-V) 2.y, —2)

2((I=-V) y = (I =V) 2%, = y)

= (I =V2) Y X0 = )

= (I =V2) y B (0 = Sx,,) + (1 = B,) (%, = 2,)) -

(101)

From (20), we get

<wn_PC [LU

=<wn_PC[w
+<wn_PC[

> (w, — Pc[w

n] ’PC [wn—l] - Z>

nls Pe (W] = Pe [w,])

uls Pe[w,] = 2)

nls Po [w,1] = Pe [w,]) -

(102)
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Then, from (100)-(102), we have

(x> 5

X<wn_PC[wn]’PC[wnfl]_PC[wn]>
T (- - 2)

+{(I-8)zx,—-2)

, (=B
ﬁfl

(1-B)
(1_ n) nlzlz((xl b i
x <(I _‘/1) V> Xn _Zn>

(1_ Z(“z 17 i

X <(I - Vi)yn’ Xn — an)

(I_P)“n 2
Fi—ayp el

<n Zp> n_z>

(103)

Then, we obtain

w, - P [wn]" "wn—l - wn"

2 1
x,—z|" € ————
b el s |

1
—H«I—f)z)xn—’z)

L (-w)p,

e (v, -2)

—{(I-98)z,x,-z))

_(-p)(-a) .
(1_ ) <n 71’ 1’! >

B <
l_p)an;(all I V)yn’ Xn— % n>
l_p)anlzlz((le i

x <(I - ‘/1) Yo Xn — an>

"wn 1

= (-pa,
—;«I—f)z,x ~2)
(1-p) "

+ (1 _‘xn)/jn
(1-p)a,

w|| [

n = Pe[w,]]

Abstract and Applied Analysis

x ((Vn’xn - Z> - <(I -9) 2, Xy — Z>)
1 (1-B)B.

+ (1 _ P) ﬁn a, || - Zn" "xn _Z“
1 (1 _ﬁn)&

"U-p) B «

N

X

'M3

Il
—

(1 = @) [(T= V) 3l 6, = 2

B
(1 - P) Xn

x ) (&g =) (I =V;) yo %, = Sx,,) -

N

I
—_

(104)

By condition (e) of Theorem 15, there exists a constant N >
0 such that ((1 - ,)/B,) <
., — 0,I-V)y, — 0,and |lw,_, — w,l/a, — 0 as
n — 00, then every weak cluster point of {x,} is also a strong
cluster point. Since {x,,} is bounded, by Lemma 13 there exists
a subsequence {xnk} of {x,} converging to a point x* € F(T);
in similar argument as that Theorem 14 we can show that x* €
S* N MEP(F) n F(T).

N. Since lim llx,,

n— 00

-zl =

From (100)-(102), it follows that, for any z € S§" n

MEP(F) n E(T),

<(I_ f) X Xy — Z>
X, /';nk
_(=a)By ) (

V”k My Z>_

X <wnk - P- [wnk] » Pe [wnk_l] - z>

RSN

My m> e Z>
(Xnk

(1-a,)(1-B0)

- <x”k - Z”k’ x”k - Z>

o,
__Z(al 1 ) <ynk_viynk’xnk_z>
"kt 1
1-a, )
. (a# (5.~ 2)

My

Wy, ~ Fc [w"k]

|

R

o —
k “nk

X <xnk = S5 Xy, — z>
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(1 - ﬁ”k) @ —z
ﬁnk “nk nk nk
(1 - ﬁn )ﬁn
o )

n
%Y (s - o) 1= Vi) i o~ 2]
i=1

_Bay

My i=1

(‘xifl - (Xi) <(I - ‘/z) Y Xy, — ank> .
(105)

Since lim,, , llx,, - z,l =0, v, — 0, (I-V,)y, — 0,and
lw,_, —w,ll/a, — 0;letting k — o0 in (105), we obtain

(I-f)x",x" —z) <—1(x" = Sx",x" - 2); (106)

that is,

1 * * *
<—(I—f)x +(I—S)x,z—x>20. (107)
T
In the following, we show that (90) has unique solution.
Assume that x’ is another solution. Then, we have

(- P’ —xy = e (5wl '),
(108)
(I-fa"x" =) < —r{x" = sx",x" = «").

Adding (108), we get

(1-p) "x' —x*"z < <(I—f)x'—(I—f)x*,x' —x*>

<—{(I-8)x -(I-9x"x —-x*)y<o.
(109)

Then, x' = x*. Since (90) has unique solution, it follows that
w,,(x,) = {x}. Since every weak cluster point of {x,} is also
a strong cluster point, we conclude that {x,} — x". This
completes the proof. O

4. Applications

In this section, we obtain the following results by using a
special case of the proposed method. The first result can be
viewed as extension and improvement of the method of Gu
etal. [11] for finding the approximate element of the common
set of solutions of a generalized equilibrium problem and a
hierarchical fixed point problem in a real Hilbert space.

Corollary 16. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let D : C — H be n-inverse strongly
monotone mappings, respectively. Let F : CxC — R bea
bifunction satisfying the assumptions (i)-(iv) of Lemma 4, S :
C — H a nonexpansive mapping, and {T;};o, : C — Coa
countable family of k;-strict pseudocontraction mappings such
that F(T) N MEP(F) 0, where F(T) = N2, F(T;). Let f be a
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p-contraction mapping. For a given x, € C arbitrarily, let the
iterative sequences {u,}, {x,},{y,}, and {z,} be generated by

F(u,, y) +(Dx,, y —u,) + l(y—un,un—xn) >0,
T,

n

Vy € G;

Yn = :anxn + (1 - ﬁn) Ups

n
Xpu1 = Po | o, f (x,) + Z (g =) Ty, |, Yn=0,
i=1
(110)

where o, = 1, {a, } is a strictly decreasing sequence in (0, 1), and
{B,.} is a sequence in (0, 1) satisfying the following conditions:

(a) lim,_, o, = 0and Y2, a, = 00,

(b) lim,, _, o (B,/ex,,) = T € (0, 00),

(©) Xoi(ey,y — o) <coand 3.2 1B,y = Bul < 0,

(d) lim,,_, o ((L/g)(Iry, = Tl + oy — ol + 1By —
B/ (e, ) = 0,

(e) there exists a constant K > 0 such that (1/a,)|(1/,) -
(1/Bp-)l £ K,

(f) liminf,_, 1, > 0and Y2 Ir,_; — 1,| < co.

Then, sequence {x,} generated by Algorithm (110) converges
strongly to x* € MEP(F) N F(T), which is the unique solution
of the variational inequality

1 % % *
<;(I—f)x +(I—S)x,x—x>20, )

Vx € MEP (F)n F(T).

Proof. Putting B, = B, = 0Oand k; = 0, foralli > 1in
Theorem 15, then conclusion of Corollary 16 is obtained. [J

The following result can be viewed as extension and
improvement of the method of Yao et al. [31] for finding
the approximate element of the common set of solutions of
a generalized equilibrium problem and a hierarchical fixed
point problem in a real Hilbert space.

Corollary 17. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let D : C — H be n-inverse strongly
monotone mappings, respectively. Let F : Cx C — R be
a bifunction satisfying the assumptions (i)-(iv) of Lemma 4,
S : C — H a nonexpansive mapping, and T : C — Ca
countable family of k-strict pseudocontraction mappings such
that F(T) N MEP(F) #0. Let f be a p-contraction mapping.
For a given x, € C arbitrarily, let the iterative sequences
{u, b, x, 1 {y,}, and {z,} be generated by

F(u,, y)+(Dx,, y—u,) + l(y—un,un—x,,) >0,
r

n

Vy € G (112)

Yn = ﬂnsxn + (1 - ﬁn) Ups

Xny1 = PC [‘xnf (xn) + (1 - “n) Tyn] s Vnz0,
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where oy = 1, {«,,} is a strictly decreasing sequence in (0, 1) and
{B,.} is a sequence in (0, 1) satisfying the following conditions:
(a) lim,_, oo, = 0and Y, &, = 00,
(b) lim, _, ., (B,/«,) = T € (0, 00),
(c) zzil((xnfl - an) < oo and ZZL |/3n71 - ﬁnl < 00,
(d) hmn—>oo((1/.”)|rn - rn—ll + |“n—1 - (an + |ﬁn—1 -
BuD/ofy = 0,
(e) there exists a constant K > 0 such that (1/«,,)|(1/8,) -
(l/ﬁn—l)l S K)

(f) liminf, , 7, >0and Y2 |r,_; —1,] < 0.

Then, sequence {x,} generated by Algorithm (112) converges
strongly to x* € MEP(F) N F(T'), which is the unique solution
of the variational inequality

<%(I—f)x*+(1—5)x*,x—x*> 20,

Vx € MEP (F)n F (T).

(113)

Proof. PuttingB; =B, =0, k; =0,andT; =T for all i > 1in
Theorem 15, then conclusion of Corollary 17 is obtained. [

5. Conclusions

In this paper, we suggest and analyze an iterative method
for finding the approximate element of the common set of
solutions of (1), (12), and (15) for a strictly pseudocontraction
mapping in real Hilbert space, which can be viewed as a
refinement and improvement of some existing methods for
solving a system of variational inequality problem, a mixed
equilibrium problem, and a hierarchical fixed point problem.
It is easy to verify that Algorithm 11 includes some existing
methods (e.g., [6, 11, 17, 31]) as special cases. Therefore, the
new algorithm is expected to be widely applicable.
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