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We introduce a new wavelet transform within the framework of the local fractional calculus. An illustrative example of local
fractional wavelet transform is also presented.

1. Introduction

Wavelet transforms have been applied successfully in the
areas of signals analysis, data compression, and sound
processing (see, for details, [1–6] and the references cited
therein). Although there is scaled and shifted versions of
a mother wavelet, the daughter wavelets are structured as
follows (see [3–5]):

𝜑
𝑎,𝑏

(𝑡) =
1

𝑎1/2
𝜑(

𝑡 − 𝑏

𝑎
) , (1)

where 𝑎 is the dyadic dilation, 𝑏 is the dyadic position, and
𝑎
−1/2 is the normalization factor. The expression of a one-

dimensional wavelet transform for a given continuous signal
𝑓(𝑡) is given by

𝑊
𝜑
𝑓 (𝑎, 𝑏) = ∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏

(𝑡)𝑑𝑡 (2)

and the reconstruction formula becomes

𝑓 (𝑥) = 𝐶
𝜑
∬

∞

−∞

1

𝑎2
𝑊
𝜑
𝑓 (𝑎, 𝑏) 𝜑

𝑎,𝑏
(𝑡) 𝑑𝑎 𝑑𝑏, (3)

where

𝐶
𝜑
= ∫

∞

−∞

𝑓 (𝑥)

2

|𝑥|
𝑑𝑥. (4)

Recently, fractional wavelet transform, as a generalization
of the classical wavelet transform, was proposed in [7]. The
one-dimensional fractal wavelet transform of a continuous
signal 𝑓(𝑡) has the following form:

𝑊
𝜑
𝑓 (𝑎, 𝑏) = ∬

∞

−∞

𝐵 (𝑥, 𝑡) 𝑓 (𝑡) 𝜑
𝑎,𝑏

(𝑥)𝑑𝑡 𝑑𝑥, (5)

where 𝐵(𝑥, 𝑡) denotes a bulk optics kernel.
The reconstructing formula of the input is defined as

given by the following expression:

𝑓 (𝑥) =
1

𝐶
𝜑

∬

∞

−∞

1

𝑎3
𝑊
𝜑
𝑓 (𝑎, 𝑏) 𝐵 (𝑥, 𝑡) 𝜑

𝑎,𝑏
(𝑡) 𝑑𝑎 𝑑𝑏 𝑑𝑡 𝑑𝑡.

(6)

We notice that the fractional wavelet transforms was
applied to image encryption [8], to the simultaneous spectral
analysis in [9], and to the composite signals in [10, 11]. For
other definition of fractional wavelet transform, see [12] and
the references cited therein.
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Keeping in mind the study of the fractal signals (local
fractional continuous signals), a new local fractional wavelet
transform was developed in [13] based upon the local frac-
tional Fourier transform [14] via local fractional calculus [15–
18]. In this paper, we investigate the local fractional Fourier
transform to deal with the local fractional wavelet transforms
by implementing the local fractional calculus.

The organization of the paper is as follows. Section 2
presents the concept of local fractional Fourier transform
and wavelet. Section 3 discusses the derivation of the local
fractional continuous wavelet transform. Section 4 studies
the wave space and Section 5 present an illustrative exam-
ple. Finally, Section 6 outlines the main conclusions of our
present investigation.

2. Local Fractional Fourier
Transform and Wavelet

Let 𝑓(𝑥) be local fractional continuous function, which is
denoted as follows (see [18]):

𝑓 (𝑥) ∈ 𝐶
𝛼
(−∞,∞) . (7)

The space of local fractional continuous functions 𝐶
𝑝,𝛼

[𝑎, 𝑏],
under 𝑝-norm, is given by (see [13])

𝑓
𝑝,𝛼=(

1

Γ (1+𝛼)
∫

𝑏

𝑎

𝑓 (𝑥)

𝑝

(𝑑𝑥)
𝛼

)

1/𝑝

, for 1≤𝑝 < ∞,

(8)

where the operator is local fractional operator.
The space 𝐿

𝑝,𝛼
[R] norm on 𝐶

𝑝,𝛼
[R] is defined by

𝑓
𝑝,𝛼 =: (

1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥)

𝑝

(𝑑𝑥)
𝛼

)

1/𝑝

< ∞ (9)

for 1 ≤ 𝑝 < ∞. This is infinite for 𝑎 and 𝑏.
The local fractional Fourier transforms in fractal space is

defined as follows (see [13, 14]):

𝐹
𝛼
{𝑓 (𝑥)} = 𝑓

𝐹,𝛼

𝜔
(𝜔)

:=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝐸
𝛼
(−𝑖
𝛼

𝜔
𝛼

𝑥
𝛼

) 𝑓 (𝑥) (𝑑𝑥)
𝛼

.

(10)

Its inverse is formulated as follows (see [13, 14]):

𝑓 (𝑥) = 𝐹
−1

𝛼
(𝑓
𝐹,𝛼

𝜔
(𝜔))

:=
1

(2𝜋)
𝛼
∫

∞

−∞

𝐸
𝛼
(𝑖
𝛼

𝜔
𝛼

𝑥
𝛼

) 𝑓
𝐹,𝛼

𝜔
(𝜔) (𝑑𝜔)

𝛼

, 𝑥 > 0.

(11)

Let 𝜑(𝑥) ∈ 𝐿
2,𝛼

[R] and let

𝜑
𝐹,𝛼

𝜔
(𝜔) =

1

Γ (1 + 𝛼)
∫

∞

−∞

𝐸
𝛼
(−𝑖
𝛼

𝜔
𝛼

𝑥
𝛼

) 𝜑 (𝑥) (𝑑𝑥)
𝛼

,

0 < 𝛼 ≤ 1.

(12)

When

𝜑
𝐹,𝛼

𝜔
(𝜔) =

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑 (𝑥) (𝑑𝑥)
𝛼

= 0, 0 < 𝛼 ≤ 1, (13)

the function 𝜑(𝑥) is called a local fractional wavelet [13].
Let 𝜑(𝑥) ∈ 𝐿

2,𝛼
[R]. Then, we have

𝜑𝑎,𝑏,𝛼 (𝑡)

2

1,𝛼
=

1

𝑎𝛼Γ (1 + 𝛼)
∫

∞

−∞

𝜑𝑎,𝑏,𝛼 (𝑡)

2

(𝑑𝑥)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑 (𝑡)

2

(𝑑𝑥)
𝛼

=
𝜑


2

1,𝛼
,

(14)

so that

𝜑
𝑎,𝑏,𝛼

(𝑡) =
1

𝑎𝛼/2
𝜑(

𝑡 − 𝑏

𝑎
) , (15)

where 𝑎, 𝑏 ∈ R and 𝑎 ̸= 0.

3. Local Fractional Continuous
Wavelet Transform

Let 𝜑 ∈ 𝐿
2,𝛼

[R]. Then, we arrive at the following relation:

𝜑𝑎,𝑏,𝛼 (𝑡)

1

2,𝛼
=

1

𝑎𝛼Γ (1 + 𝛼)
∫

∞

−∞

𝜑𝑎,𝑏,𝛼 (𝑡)

2

(𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑 (𝑡)

2

(𝑑𝑡)
𝛼

=
𝜑


1

2,𝛼
,

(16)

where 𝜑
𝑎,𝑏,𝛼

(𝑡) = (1/𝑎
𝛼/2

)𝜑((𝑡 − 𝑏)/𝑎), 𝑎, 𝑏 ∈ R, and 𝑎 ̸= 0.
Similarly, we get

𝜑𝑏,𝛼 (𝑡)

1

2,𝛼
=

𝜑

1

2,𝛼
. (17)

Taking 𝜑
𝑏,𝛼

(𝑡) in place of 𝜑
𝑎,𝑏,𝛼

(𝑡)𝐸
𝛼
(−𝑖
𝛼

𝜔
𝛼

𝑡
𝛼

), we obtain

Θ
𝜑
𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏) = ⟨𝑓 (𝑡) , 𝜑
𝑎,𝑏,𝛼

(𝑡)⟩

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

.

(18)

In the special case when 𝑓(𝑡) = 1, we have the following
relation:

Θ
𝜑
𝑎,𝑏,𝛼

(𝑎, 𝑏) =
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼 (19)

such that
1

Γ (1 + 𝛼)
∫

∞

−∞

Θ
𝜑
𝑎,𝑏,𝛼

(𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡) (𝑑𝑏)
𝛼

= |𝑎|
𝛼

[
1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑 (𝑡) (𝑑𝑡)
𝛼

]

2

.

(20)

Hence, there exists the following relation:

1

Γ2 (1 + 𝛼)
∬

∞

−∞

𝑎
−2𝛼

Θ
𝜑
𝑎,𝑏,𝛼

(𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡) (𝑑𝑎)
𝛼

(𝑑𝑏)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

|𝑥|
−𝛼

(𝑑𝑥)
𝛼

.

(21)
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In general, we also deduce the following identities:

𝑓 (𝑥) =
∫
∞

−∞

(
𝑓 (𝑥)


2

/|𝑥|
𝛼

) (𝑑𝑥)
𝛼

Γ3 (1 + 𝛼)

× ∬

∞

−∞

𝑎
−2𝛼

Θ
𝜑
𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡) (𝑑𝑏)
𝛼

(𝑑𝑎)
𝛼

,

Θ
𝜑
𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏) =
1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

.

(22)

Now, we establish the following relations:

̃Θ
𝜑
𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏) =
𝑎
−𝛼/2

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

,

0 < 𝛼 ≤ 1,

𝑓 (𝑥) =
∫
∞

−∞

(
𝑓 (𝑥)


2

/|𝑥|
𝛼

) (𝑑𝑥)
𝛼

Γ3 (1 + 𝛼)

× ∬

∞

−∞

𝑎
−2𝛼 ̃Θ
𝜑
𝑎,𝑏,𝛼

𝑓 (𝑎, 𝑏)𝜑
𝑎,𝑏,𝛼

× (𝑡) (𝑑𝑎)
𝛼

(𝑑𝑏)
𝛼

.

(23)

Hence, the local fractional continuous wavelet transform
takes the following form (see [13]):

𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏)=
𝑎
−𝛼/2

Γ (1+𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

, 0<𝛼≤1.

(24)

And the inversion formula of local fractional continuous
wavelet transform is derived as follows (see [14]):

𝑓 (𝑥) =
𝐶
𝜑,𝛼

Γ2 (1 + 𝛼)

× ∬

∞

−∞

𝑎
−2𝛼

𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏) 𝜑
𝑎,𝑏,𝛼

(𝑡) (𝑑𝑎)
𝛼

(𝑑𝑏)
𝛼

,

0 < 𝛼 ≤ 1,

(25)

where

𝐶
𝜑,𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑥)

2

|𝑥|
𝛼

(𝑑𝑥)
𝛼

, 0 < 𝛼 ≤ 1. (26)

4. The Wavelet Space

In order to differ the classical wavelets from fractional wave-
lets, here we formulate a wavelet space as follows. In fact, a
wavelet space is defined by

𝑊
𝜑,𝛼

[R] = { (𝜑, 𝛼) : 𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏)

=
𝑎
−𝛼/2

Γ (1+𝛼)
∫

∞

−∞

𝑓(𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼

, 0<𝛼≤1} .

(27)

When the fractal dimension 𝛼 is equal to 1, from (27), we
deduce (see [3–5])

𝑊
𝜑,1

[R] = { (𝜑, 1) : 𝑊
𝜑,1

𝑓 (𝑎, 𝑏)

= 𝑎
−1/2

∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,1

(𝑡)𝑑𝑡, 𝛼 = 1} ,

(28)

where 𝑓(𝑡) is continuous and 𝑊
𝜑,1

𝑓(𝑎, 𝑏) ∈ 𝑊
𝜑,1

[R].
Taking the fractal dimension 0 < 𝛼 < 1, we derive a

formula given by

𝑊
𝜑,𝛼

𝑓 (𝑎, 𝑏) =
𝑎
−𝛼/2

Γ (1 + 𝛼)
∫

∞

−∞

𝑓 (𝑡) 𝜑
𝑎,𝑏,𝛼

(𝑡)(𝑑𝑡)
𝛼 (29)

with 𝑊
𝜑,𝛼

𝑓(𝑎, 𝑏) ∈ 𝑊
𝜑,𝛼

[R], where 𝑓(𝑡) is a local fractional
continuous function.

5. An Illustrative Example

In order to construct the local fractional continuous wavelet,
we suppose that 𝜙(𝑡) is𝑚𝛼 times the local fractional differen-
tiable function.

We define the local fractional wavelet𝜑(𝑡) bymeans of the
following expression:

𝜑 (𝑡) =
𝑑
𝑚𝛼

𝑦

𝑑𝑥𝑚𝛼
, (30)

where the differential operator is the local fractional operator
proposed by Yang [18] (for other definition, see [19] and the
references cited therein).

Then, we get

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑 (𝑡)
𝑡
𝑚𝛼

Γ (1 + 𝑚𝛼)
(𝑑𝑡)
𝛼

= 0 (𝑚 = 0, 1, 2, . . . , 𝑚) .

(31)

Let us consider the following nondifferentiable signal,
namely,

𝜙
𝐻(𝛼)

(𝑡) =

{{{{{{

{{{{{{

{

𝑡
𝛼

Γ (1 + 𝛼)
, 0 ≤ 𝑡 <

1

2
,

(1 − 𝑡)
𝛼

Γ (1 + 𝛼)
,

1

2
≤ 𝑡 < 1,

0, else.

(32)

For 0 ≤ 𝑡 < 1/2, we obtain

𝑑
𝛼

𝜙
𝐻(𝛼)

(𝑡)

𝑑𝑡𝛼
=

𝑑
𝛼

𝑑𝑡𝛼

𝑡
𝛼

Γ (1 + 𝛼)
= 1. (33)

For 1/2 ≤ 𝑡 < 1, we obtain

𝑑
𝛼

𝜙
𝐻(𝛼)

(𝑡)

𝑑𝑡𝛼
=

𝑑
𝛼

𝑑𝑡𝛼

(1 − 𝑡)
𝛼

Γ (1 + 𝛼)
= −1. (34)
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In view of (33)-(34), we get a local fractional wavelet given by

𝜑
𝐻(𝛼)

(𝑡) =

{{{{

{{{{

{

1, 0 ≤ 𝑡 <
1

2
,

−1,
1

2
≤ 𝑡 < 1,

0, else.

(35)

Following (35), we obtain

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝐻(𝛼)

(𝑡) (𝑑𝑡)
𝛼

= 0,

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
2

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

= 1.

(36)

In view of (15), taking 𝑎 = 2
−𝑗 and 𝑏 = 𝑘2

−𝑗, we have

𝜑
𝑎,𝑏,𝛼

(𝑡) =
1

𝑎𝛼/2
𝜑(

𝑡 − 𝑏

𝑎
) = 𝜑

𝑗,𝑘,𝛼
(𝑡)

= 𝜑
2
−𝑗
,𝑘2
−𝑗
,𝛼

(𝑡) = 2
𝑗𝛼/2

𝜑 (2
𝑗

𝑡 − 𝑘)

(37)

for integers 𝑗, 𝑘 ∈ Z.
Hence, we get the following equation:

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) = 2

𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘) . (38)

We thus conclude that
1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡)]
2

(𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

[2
𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘)]
2

(𝑑𝑡)
𝛼

= 2
𝑗𝛼

1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘)]
2

(𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘)]
2

(𝑑 (2
𝑗

𝑡 − 𝑘))
𝛼

=
1

Γ (1 + 𝛼)
∫

∞

−∞

[𝜑
𝐻(𝛼)

(𝑡)]
2

(𝑑𝑡)
𝛼

= 1,

1

Γ (1 + 𝛼)
∫

∞

−∞

𝜑
𝑗,𝑘

𝐻(𝛼)
(𝑡) (𝑑𝑡)

𝛼

=
1

Γ (1 + 𝛼)
∫

1/2

0

2
𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘) (𝑑𝑡)
𝛼

−
1

Γ (1 + 𝛼)
∫

1

1/2

2
𝑗𝛼/2

𝜑
𝐻(𝛼)

(2
𝑗

𝑡 − 𝑘) (𝑑𝑡)
𝛼

= 0.

(39)

6. Concluding Remarks and Observations

A novel local fractional wavelet transformation was investi-
gated by using Fourier transform based upon local fractional
calculus. This transform has been found to be advantageous
in dealing with the functions in fractal space. The wave space
is considered and an illustrative example is shown.

Conflict of Interests

The authors declare that they have no conflict of interests
regarding this paper.

References

[1] I. Daubechies, “The wavelet transform, time-frequency local-
ization and signal analysis,” IEEE Transactions on Information
Theory, vol. 36, no. 5, pp. 961–1005, 1990.

[2] R. K. Martinet, J. Morlet, and A. Grossmann, “Analysis of
sound patterns through wavelet transforms,” Journal of Pattern
Recognition and Artificial Intelligence, vol. 1, no. 2, pp. 273–302,
1987.

[3] C. K. Chui, An Introduction to Wavelets, Academic Press, San
Diego, Calif, USA, 1992.

[4] L. Debnath, Wavelet Transforms and Their Application,
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