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Optimal control for a family of systems in novel state derivative space form, abbreviated as SDS systems in this study, is proposed.
The first step in deriving optimal control laws for SDS systems is to form an augmented cost functional. It turns out that novel
differential Lagrange multipliers must be used to adjoin SDS system constraints (namely, the dynamical equations of the control
system) to the integrand of the original cost functional which is a function of state derivatives. This not only eases our derivation
but also makes our derivation parallel to that for systems in standard state space form. We will show via a real electric circuit that
optimal control for a class of descriptor systems with impulse modes can easily be carried out using our design method. It will be
shown that linear quadratic regulator (LQR) design for linear time-invariant SDS systems using state derivative feedback can be
obtained via an algebraic Riccati equation. Furthermore, this optimal state derivative feedback may also be implemented using an
equivalent state feedback.This is useful in real situationswhen only states but not the state derivatives are available formeasurement.
The LQR design for a double inverted pendulum system is implemented to illustrate the use of our method.

1. Introduction

Optimal control for systems in standard state space form has
long been developed [1–4]. The optimization problem can be
stated as follows:

minimize 𝐽
0 (𝑢) = 𝜙 (𝑥 (𝑡𝑓) , 𝑡𝑓) + ∫

𝑡𝑓

𝑡0

𝐹 (𝑥, 𝑢, 𝑡) 𝑑𝑡 (1a)

subject to �̇� = 𝑓 (𝑥, 𝑢, 𝑡) . (1b)

Note that the integrand in the cost functional 𝐽
0
(𝑢) is

a function of states 𝑥 and controls 𝑢. However, in some
applications, the integrand of an appropriate cost functional
for the problem at hand is not only a function of states and
controls but also a function of the state derivatives �̇�. For
instance, to improve people’s comfort and safety when rid-
ding a vehicle or an airplane, acceleration during the course
of riding must be taken into account. It is then desirable to
minimize the integral of a function of the acceleration during
the course. Since acceleration is the derivative of the velocity,

which is usually a state variable, wemay also consider the cost
functional of the form

𝐽
0 (𝑢) = 𝜙 (𝑥 (𝑡𝑓) , 𝑡𝑓) + ∫

𝑡𝑓

𝑡0

𝐹 (�̇�, 𝑢, 𝑡) 𝑑𝑡. (2)

Note also that not every control system can be modeled
in standard state space form or can easily be handled if it is
expressed in standard state space form. For instance, consider
the following system:

𝐸�̇� = 𝐹𝑥 + 𝑁𝑢. (3)

If the coefficient matrix in state derivatives, 𝐸, is singular,
then the system cannot be expressed in standard state space
form. Such systems are called generalized state space systems
[5], descriptor systems [6], singular systems [7], or semistate
systems [8]. If𝐸 is nearly singular, then it is not easy to handle
such a system using the standard control design.

Extensive applications of descriptor systems arise inmany
areas of engineering such as electrical networks [8], aerospace
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systems [9], smart structures [10], and chemical processes
[11]. Descriptor systems also appear in other areas such as
the dynamic Leontiefmodel for economic production sectors
[12] and biological complex systems [13]. A comprehensive
review is available in [14]. In previous studies, descriptor
systems are further categorized as impulse-free systems and
systems with impulsemodes [14]. If the descriptor system has
impulsive modes, the integration part of the cost functional
may become infinite. In this situation, further investigation of
impulse controllability and the impulsemode elimination has
to be analyzed in control designs [15]. Therefore, descriptor
systems with impulse modes are considered to be difficult
in control designs. On the other hand, control designs for
impulse-free descriptor systems can be carried out in easier
ways. Variational calculus for impulse-free descriptor systems
was derived by Jonckheere [16]. Since then, many optimal
control algorithmswere proposed for impulse-free descriptor
systems [14]. Roughly speaking, the available control design
algorithms for descriptor systems [15, 17–20] are much
more complex than those for the systems in standard state
space form. Consequently, there are barricades for engineers
without strong mathematical background to apply those
sophisticated control algorithms.

If the matrix 𝐹 in (3) is nonsingular, it can be expressed
in reciprocal state space (RSS) form [10, 21] as follows:

𝑥 = 𝐴�̇� + 𝐵𝑢. (4)

Since the system eigenvalues are the reciprocals of the
eigenvalues of matrix 𝐴 in (4), the name of reciprocal state
space form was given by the first author of this paper. In this
form, one can easily carry out control designs such as pole
placement [22], eigenstructure assignment [22], and linear
quadratic regulator (LQR) designs [22] using state derivative
feedback. Therefore, as long as a descriptor system with
impulsivemode can be expressed in RSS form, control design
can be easily performed by applying state derivative feedback.

Motivated by the analysis above, instead of the systems
in standard state space form, a family of control systems in
novel state derivative space form, abbreviated as SDS systems,
is investigated in this study. The dynamic equation of an SDS
system can be described as

𝑥 = 𝑓 (�̇�, 𝑢, 𝑡) . (5)

2. Optimality Conditions

The optimal control problem in this study can be stated as
follows:

minimize 𝐽
0 (𝑢) = 𝜙 (𝑥 (𝑡𝑓) , 𝑡𝑓) + ∫

𝑡𝑓

𝑡0

𝐹 (�̇�, 𝑢, 𝑡) 𝑑𝑡 (6a)

subject to 𝑥 = 𝑓 (�̇�, 𝑢, 𝑡) . (6b)

Further, we assume that the terminal time 𝑡
𝑓
is free and the

final states are free but must be constrained to the surface
defined by Ψ[𝑥(𝑡

𝑓
)] = 0. Notice that the integrand of

the cost functional may also include the state 𝑥; namely,
𝐹 = 𝐹(𝑥, �̇�, 𝑢, 𝑡). Simply using the system equation (6b), this

function 𝐹 can be reduced to a function that depends only on
�̇�, 𝑢, and 𝑡.

To handle this optimization problem, we first form an
augmented cost functional as follows:

𝐽 = 𝜙 (𝑥 (𝑡
𝑓
) , 𝑡
𝑓
) + ]𝑇Ψ[𝑥 (𝑡

𝑓
)]

+ ∫

𝑡𝑓

𝑡0

[𝐹 (�̇�, 𝑢, 𝑡) + �̇�
𝑇
(𝑡) (𝑓 (�̇�, 𝑢, 𝑡) − 𝑥)] 𝑑𝑡.

(7)

Here, ] is a vector of usual Lagrange multipliers for the
final state constraints. Note that novel differential Lagrange
multipliers �̇�, instead of the usual 𝜆, have been used to adjoin
SDS system constraints (6b) to the integrand of the original
cost functional which is a function of state derivatives. This
not only eases our derivation but also makes our derivation
parallel to that for systems in standard state space form.

The Hamiltonian is defined by

𝐻(�̇�, 𝑢, �̇�, 𝑡) = 𝐹 (�̇�, 𝑢, 𝑡) + �̇�
𝑇
(𝑡) 𝑓 (�̇�, 𝑢, 𝑡) . (8)

Substituting (8) to (7), we have

𝐽 = 𝜙 (𝑥 (𝑡
𝑓
) , 𝑡
𝑓
) + ]𝑇Ψ[𝑥 (𝑡

𝑓
)] + ∫

𝑡𝑓

𝑡0

(𝐻 − �̇�
𝑇
𝑥) 𝑑𝑡. (9)

Now consider the following small perturbations:

𝑥 → 𝑥 + 𝛿𝑥, 𝑢 → 𝑢 + 𝛿𝑢, 𝑡
𝑓
= 𝑡
𝑓
+ 𝑑𝑡
𝑓
. (10)

To minimize (9), the variation of (9) must be zero. That is,

0 = Δ𝐽 = [
𝜕𝜙

𝜕𝑥
+ ]𝑇

𝜕Ψ

𝜕𝑥
]
𝑡=𝑡𝑓

𝑑𝑥 (𝑡
𝑓
) +

𝜕𝜙

𝜕𝑡
𝑓

𝑑𝑡
𝑓

+ ∫

𝑡𝑓

𝑡0

𝛿 (𝐻 − �̇�
𝑇
𝑥) 𝑑𝑡 +

𝜕

𝜕𝑡
𝑓

[∫

𝑡𝑓

𝑡0

(𝐻 − �̇�
𝑇
𝑥) 𝑑𝑡] 𝑑𝑡

𝑓
.

(11)

The individual terms of variation in (11) can be obtained as
follows:

𝛿𝐻 =
𝜕𝐻

𝜕�̇�
𝛿�̇� +

𝜕𝐻

𝜕𝑢
𝛿𝑢 + 𝛿�̇�

𝑇 𝜕𝐻

𝜕�̇�𝑇
=
𝜕𝐻

𝜕�̇�
𝛿�̇� +

𝜕𝐻

𝜕𝑢
𝛿𝑢 + 𝛿�̇�

𝑇
𝑓,

𝛿 (−�̇�
𝑇
𝑥) = −𝛿�̇�

𝑇
𝜕 (�̇�
𝑇
𝑥)

𝜕�̇�𝑇
−
𝜕 (�̇�
𝑇
𝑥)

𝜕𝑥
𝛿𝑥 = −𝛿�̇�

𝑇
𝑥 − �̇�
𝑇
𝛿𝑥.

(12)

Because of the system constraint (6b), we have −𝛿�̇�
𝑇
𝑥 +

𝛿�̇�
𝑇
𝑓 = 0. Adding (12) yields

𝛿 (𝐻 − �̇�
𝑇
𝑥) =

𝜕𝐻

𝜕�̇�
𝛿�̇� +

𝜕𝐻

𝜕𝑢
𝛿𝑢 − �̇�

𝑇
𝛿𝑥, (13)

∴ ∫

𝑡𝑓

𝑡0

𝛿 (𝐻 − �̇�
𝑇
𝑥) 𝑑𝑡 = ∫

𝑡𝑓

𝑡0

(
𝜕𝐻

𝜕�̇�
𝛿�̇� +

𝜕𝐻

𝜕𝑢
𝛿𝑢 − �̇�

𝑇
𝛿𝑥)𝑑𝑡.

(14)
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Integrating by parts for the term −�̇�
𝑇
𝛿𝑥, we obtain

−∫

𝑡𝑓

𝑡0

�̇�
𝑇
𝛿𝑥𝑑𝑡 = −∫

𝑡𝑓

𝑡0

�̇�
𝑇
𝑑𝑡𝛿𝑥 = −∫

𝑡𝑓

𝑡0

(
𝑑𝜆

𝑑𝑡
)

𝑇

𝑑𝑡𝛿𝑥

= −∫

𝑡𝑓

𝑡0

𝑑𝜆
𝑇
𝛿𝑥 = −𝜆

𝑇
𝛿𝑥


𝑡𝑓

𝑡0

+ ∫

𝑡𝑓

𝑡0

𝜆
𝑇
𝑑 (𝛿𝑥)

= −𝜆
𝑇
𝛿𝑥


𝑡𝑓

𝑡0

+ ∫

𝑡𝑓

𝑡0

𝜆
𝑇𝑑 (𝛿𝑥)

𝑑𝑡
𝑑𝑡

= −𝜆
𝑇
(𝑡
𝑓
) 𝛿𝑥 (𝑡

𝑓
) + 𝜆
𝑇
(𝑡
0
) 𝛿𝑥 (𝑡

0
)

+ ∫

𝑡𝑓

𝑡0

𝜆
𝑇
𝛿�̇�𝑑𝑡.

(15)

Substituting (15) back to (14), we have

∫

𝑡𝑓

𝑡0

𝛿 (𝐻 − �̇�
𝑇
𝑥) 𝑑𝑡 = ∫

𝑡𝑓

𝑡0

[(
𝜕𝐻

𝜕�̇�
+ 𝜆
𝑇
)𝛿�̇� +

𝜕𝐻

𝜕𝑢
𝛿𝑢] 𝑑𝑡

− 𝜆
𝑇
(𝑡
𝑓
) 𝛿𝑥 (𝑡

𝑓
) + 𝜆
𝑇
(𝑡
0
) 𝛿𝑥 (𝑡

0
) .

(16)

It can be shown [23] that

𝑑𝑥 (𝑡
𝑓
) = 𝛿𝑥 (𝑡

𝑓
) + �̇� (𝑡

𝑓
) 𝑑𝑡
𝑓
. (17)

Therefore, in (16), we have

−𝜆
𝑇
(𝑡
𝑓
) 𝛿𝑥 (𝑡

𝑓
) = −𝜆

𝑇
(𝑡
𝑓
) 𝑑𝑥 (𝑡

𝑓
) + 𝜆
𝑇
(𝑡
𝑓
) �̇� (𝑡
𝑓
) 𝑑𝑡
𝑓
.

(18)

In (11), we have

𝜕𝜙

𝜕𝑡
𝑓

𝑑𝑡
𝑓
+

𝜕

𝜕𝑡
𝑓

[∫

𝑡𝑓

𝑡0

(𝐻 − �̇�
𝑇
𝑥) 𝑑𝑡] 𝑑𝑡

𝑓

= (𝐻 +
𝜕𝜙

𝜕𝑡
𝑓

− �̇�
𝑇
𝑥)𝑑𝑡

𝑓
.

(19)

Applying (14)–(19) to (11), one obtains

Δ𝐽 = [
𝜕𝜙

𝜕𝑥
+ ]𝑇

𝜕Ψ

𝜕𝑥
− 𝜆
𝑇
]
𝑡=𝑡𝑓

𝑑𝑥 (𝑡
𝑓
)

+ ∫

𝑡𝑓

𝑡0

[(
𝜕𝐻

𝜕�̇�
+ 𝜆
𝑇
)𝛿�̇� +

𝜕𝐻

𝜕𝑢
𝛿𝑢] 𝑑𝑡 + 𝜆

𝑇
(𝑡
0
) 𝛿𝑥 (𝑡

0
)

+ (𝐻 +
𝜕𝜙

𝜕𝑡
𝑓

− �̇�
𝑇
𝑥 + 𝜆
𝑇
�̇�) 𝑑𝑡

𝑓
= 0.

(20)

Since the final state 𝑥(𝑡
𝑓
) is free, in addition to SDS sys-

tem constraint in (6b), from (20), necessary conditions of

the optimization problem in (6a) and (6b) can be stated as
follows:

𝜕𝐻

𝜕�̇�
= −𝜆
𝑇
, (21)

𝜕𝐻

𝜕𝑢
= 0, (22)

𝜆
𝑇
(𝑡
0
) 𝛿𝑥 (𝑡

0
) = 0 (initial conditions) , (23)

𝜆
𝑇
(𝑡
𝑓
) = [

𝜕𝜙

𝜕𝑥
+ ]𝑇

𝜕Ψ

𝜕𝑥
]
𝑡=𝑡𝑓

(terminal conditions) .

(24)

From (6b) and (8), the “transversality condition” [23] for 𝑡
𝑓

can be determined via the following equation:

[𝐻 +
𝜕𝜙

𝜕𝑡
𝑓

− �̇�
𝑇
𝑥 + 𝜆
𝑇
�̇�] 𝑑𝑡
𝑓

= [𝐹 + �̇�
𝑇
𝑓 +

𝜕𝜙

𝜕𝑡
𝑓

− �̇�
𝑇
𝑥 + 𝜆
𝑇
�̇�] 𝑑𝑡
𝑓

= [𝐹 + 𝜆
𝑇
�̇� +

𝜕𝜙

𝜕𝑡
𝑓

]𝑑𝑡
𝑓
= 0.

(25)

In the following simple example, we wish to illustrate
the point that when the system under consideration can be
expressed in both standard state space (SSS) form and state
derivative space (SDS) form, optimal designs are equivalent.

Example 1. Suppose that we wish to find a control 𝑢 to mini-
mize the following cost functional:

𝐽 = 𝑡
𝑓
+ ∫

𝑡𝑓

0

(𝑢
2
+ �̇�) 𝑑𝑡 (26)

subject to

𝑥 = −
1

2
�̇� + 𝑢 = 𝑓 (�̇�, 𝑢) (in SDS form) , (27)

�̇� = −2𝑥 + 2𝑢 = 𝑓 (𝑥, 𝑢) (in SSS form) , (28)

𝑥(0) = 3, and 𝑡
𝑓
is free.

Let us first solve this problem using the SDS approach.
The Hamiltonian is given by

𝐻(�̇�, 𝑢, �̇�, 𝑡) = (𝑢
2
+ �̇�) + �̇� (−

1

2
�̇� + 𝑢) . (29)

Necessary conditions (21) and (22) give

𝜕𝐻

𝜕�̇�
= 1 −

1

2
�̇� = −𝜆,

𝜕𝐻

𝜕𝑢
= 2𝑢 + �̇� = 0; (30)

that is,

�̇� − 2𝜆 − 2 = 0, 𝑢 = −
�̇�

2
. (31)
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Since the initial condition 𝑥(0) = 3 is given, we have
𝛿𝑥(0) = 0. Hence, (23) is satisfied. Since Ψ = 0 and the 𝜙
is independent of 𝑥, the terminal condition (24) gives

𝜆 (𝑡
𝑓
) = [

𝜕𝜙

𝜕𝑥
]
𝑡=𝑡𝑓

= 0. (32)

Since 𝑡
𝑓
is free, the transversality condition (25) nowbecomes

[𝐹 + 𝜆�̇� +
𝜕𝜙

𝜕𝑡
𝑓

] = 𝑢
2
+ �̇� + 𝜆�̇� + 1

= 𝑢
2
+ (𝜆 + 1) �̇� + 1 = 0.

(33)

In summary, (27) and (31)–(33) constitute the optimality
conditions for the system (27) in SDS form.

For comparison, we then solve this problem again for the
system (28) in standard state space form using the standard
optimization techniques. The Hamiltonian is given by

�̃� (�̇�, 𝑢, 𝜆, 𝑡) = (𝑢
2
+ �̇�) + �̃� (−2𝑥 + 2𝑢)

= (𝑢
2
− 2𝑥 + 2𝑢) + �̃� (−2𝑥 + 2𝑢) .

(34)

Necessary conditions for the optimality [23] are given by

𝜕�̃�

𝜕𝑥
= −2 − 2�̃� = −

̇̃
𝜆,

𝜕�̃�

𝜕𝑢
= 2𝑢 + 2 + 2�̃� = 2𝑢 +

̇̃
𝜆 = 0;

(35)

that is,

̇̃
𝜆 − 2�̃� − 2 = 0, 𝑢 = −

̇̃
𝜆

2
. (36)

The terminal condition is given by

�̃� (𝑡
𝑓
) = [

𝜕𝜙

𝜕𝑥
]
𝑡=𝑡𝑓

= 0. (37)

The transversality condition is given by

[�̃� +
𝜕𝜙

𝜕𝑡
𝑓

] = (𝑢
2
− 2𝑥 + 2𝑢) + �̃� (−2𝑥 + 2𝑢) + 1

= (𝑢
2
+ �̇�) + 𝜆 (−2𝑥 + 2𝑢) + 1

= 𝑢
2
+ �̇� + 𝜆�̇� + 1 = 𝑢

2
+ (𝜆 + 1) �̇� + 1 = 0.

(38)

It is not surprising to find that necessary conditions (31)–
(33) for the system (27) in SDS form and those necessary
conditions (36)–(38) for the system (28) in standard state
space form are identical. This means that optimal control
design for systems that can be expressed in both SDS and
standard state space forms is the same.

Solving (27) and (31)–(33), we have

𝑥 (𝑡) = 3.081 ⋅ 𝑒
−2𝑡

− 0.081 ⋅ 𝑒
2𝑡
,

𝜆 (𝑡) = 0.162 ⋅ 𝑒
2𝑡
− 1,

𝑢 (𝑡) = −0.162 ⋅ 𝑒
2𝑡
,

𝑡
𝑓
= 0.909.

(39)

3. Descriptor Circuit System with
Impulse Modes

The following circuit shown in Figure 1 is an example of a
descriptor system with impulse mode [8]. It is generally con-
sidered to be difficult to carry out the optimal control design
for such a system. However, we will find that, simply trans-
forming the dynamic equations of the system into the SDS
form in the first place, the optimal control design becomes as
straightforward as the usual optimal control design approach
used for standard state space systems.

Example 2. Consider the descriptor system of the circuit
shown on the left-hand side of Figure 1, and its equivalent
alternating current circuit is shown on the right.The dynamic
equations for the descriptor system are given as

[
𝐶 0

0 0
] �̇� = [

0 1

1 0
] 𝑥 + [

0

1
] 𝑢, 𝑥 = [

V
𝐶

𝑖
𝐸

] = [
𝑥
1

𝑥
2

] . (40)

In the figure, V
𝐶
is the capacitor voltage, 𝑖

𝐸
is the emitter

current, and 𝛼 is the common-base current gain of the
bipolar junction transistor. Suppose that we wish to make the
changing rates of V

𝐶
and 𝑖
𝐸
to be as small as possible in the

time interval [0, 1], that is, keeping the values of V
𝐶
and 𝑖
𝐸

to be constant as possible. Then the cost functional can be
selected as

𝐽 = ∫

1

0

(𝑢
2
+ �̇�
2

1
+ �̇�
2

2
) 𝑑𝑡. (41)

The system may be transformed into the SDS form:

𝑥 = [
0 0

𝐶 0
] �̇� + [

−1

0
] 𝑢. (42)

The Hamiltonian is given by

𝐻 = 𝑢
2
+ �̇�
2

1
+ �̇�
2

2
+ �̇�
1 (−𝑢) + �̇�2 (𝐶�̇�1) . (43)

Necessary conditions (21) and (22) give

𝜕𝐻

𝜕�̇�
1

= 2�̇�
1
+ 𝐶�̇�
2
= −𝜆
1
,

𝜕𝐻

𝜕�̇�
2

= 2�̇�
2
= −𝜆
2
,

𝜕𝐻

𝜕𝑢
= 2𝑢 − �̇�

1
= 0.

(44)
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Figure 1: Descriptor circuit system with impulse mode.

Thus, the optimal control is given by

𝑢 =
�̇�
1

2
. (45)

We may put (42) and (44) in matrix form:

𝑋 =
[
[
[

[

𝑥
1

𝑥
2

𝜆
1

𝜆
2

]
]
]

]

=
[
[
[

[

0 0 −0.5 0

𝐶 0 0 0

−2 0 0 𝐶

0 −2 0 0

]
]
]

]

[
[
[

[

�̇�
1

�̇�
2

�̇�
1

�̇�
2

]
]
]

]

= 𝐴�̇�. (46)

Note that the matrix 𝐴 is nonsingular for any capacitance
𝐶 ̸= 0. For illustrational purpose, we let 𝐶 = 1. The matrix
equation (46) can now be rewritten as

�̇� = 𝐴
−1

𝑋 =
[
[
[

[

0 1 0 0

0 0 0 −0.5

−2 0 0 0

0 2 1 0

]
]
]

]

𝑋 = 𝐴𝑋. (47)

The general solution of (47) is given by

𝑋 =
[
[
[

[

𝑥
1

𝑥
2

𝜆
1

𝜆
2

]
]
]

]

= 𝑘
1

[
[
[

[

0.3224

0.2535

−0.8203

−0.3986

]
]
]

]

𝑒
0.7862𝑡

+ 𝑘
2

[
[
[

[

0.3224

−0.2535

0.8203

−0.3986

]
]
]

]

𝑒
−0.7862𝑡

+ 𝑘
3

[
[
[

[

−0.2535 cos (1.272𝑡)
−0.3224 sin (1.272𝑡)
−0.3986 sin (1.272𝑡)
−0.8203 cos (1.272𝑡)

]
]
]

]

+ 𝑘
4

[
[
[

[

−0.2535 sin (1.272𝑡)
0.3224 cos (1.272𝑡)
0.3986 cos (1.272𝑡)
−0.8203 sin (1.272𝑡)

]
]
]

]

,

(48)

where 𝑘
1
, . . . , 𝑘

4
are constants. The terminal conditions (24)

imply that 𝜆
1
(1) = 𝜆

2
(1) = 0. These, together with the initial

states 𝑥
1
(0) and 𝑥

2
(0), can be used to determine the constants

𝑘
1
, . . . , 𝑘

4
. If we let 𝑥

1
(0) = 1 and 𝑥

2
(0) = 0, then

𝑘
1
= 0.6756, 𝑘

2
= 0.2140,

𝑘
3
= −2.8134, 𝑘

4
= −0.3629.

(49)

The optimal control given by (45) can then be determined.

4. LQR Design for SDS Systems

In this section, we consider the LQR problem for linear
time-invariant SDS systems. Suppose that the optimization
problem can be stated as follows:

minimize 𝐽 =
1

2
∫

𝑡𝑓

𝑡0

(�̇�
𝑇
𝑄�̇� + 𝑢

𝑇
𝑅𝑢) 𝑑𝑡 (50a)

subject to 𝑥 = 𝐴�̇� + 𝐵𝑢. (50b)

For simplicity, we assume that𝑄 and𝑅 are symmetric positive
definite matrices. The Hamiltonian is given by

𝐻(�̇�, 𝑢, �̇�, 𝑡) =
1

2
(�̇�
𝑇
𝑄�̇� + 𝑢

𝑇
𝑅𝑢) + �̇�

𝑇
(𝐴�̇� + 𝐵𝑢) . (51)

Necessary conditions (21) and (22) imply that

𝜕𝐻

𝜕�̇�
= �̇�
𝑇
𝑄 + �̇�

𝑇
𝐴 = −𝜆

𝑇
, 𝑢

𝑇
𝑅 + �̇�
𝑇
𝐵 = 0; (52)

that is,

𝜆 = −𝑄�̇� − 𝐴
𝑇
�̇�, 𝑢 = −𝑅

−1
𝐵
𝑇
�̇�. (53)

For a linear time-invariant SDS system, one can let

𝜆 = 𝑆𝑥, (54)

where 𝑆 is a constant matrix to be determined. By (53) and
(54), we have

𝑢 = −𝑅
−1
𝐵
𝑇
�̇� = −𝑅

−1
𝐵
𝑇
𝑆�̇�. (55)
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Substituting (55) into (50b), the closed-loop system becomes

𝑥 = 𝐴�̇� − 𝐵𝑅
−1
𝐵
𝑇
�̇� = (𝐴 − 𝐵𝑅

−1
𝐵
𝑇
𝑆) �̇�. (56)

By (53), (54), and (56), we have

𝑆 (𝐴 − 𝐵𝑅
−1
𝐵
𝑇
𝑆) �̇� = 𝑆𝑥 = 𝜆 = −𝑄�̇� − 𝐴

𝑇
�̇�

= −𝑄�̇� − 𝐴
𝑇
𝑆�̇�;

(57)

that is,

(𝑆𝐴 + 𝐴
𝑇
𝑆 − 𝑆𝐵𝑅

−1
𝐵
𝑇
𝑆 + 𝑄) �̇� = 0. (58)

Since this is true for any �̇�, we obtain the following Riccati
equation for SDS systems:

𝑆𝐴 + 𝐴
𝑇
𝑆 − 𝑆𝐵𝑅

−1
𝐵
𝑇
𝑆 + 𝑄 = 0. (59)

By (55), the optimal state derivative feedback control is given
by

𝑢 = −𝐾�̇�, 𝐾 = 𝑅
−1
𝐵
𝑇
𝑆, (60)

and the closed-loop system becomes

𝑥 = (𝐴 − 𝐵𝐾) �̇�. (61)

The optimal state derivative feedback control law 𝑢 =

−𝐾�̇� may also be implemented using an equivalent state
feedback 𝑢 = −𝐾𝑥. This is useful in real situations when
only states but not the state derivatives are available for
measurement.This can be proved as follows.The closed-loop
system after applying 𝑢 = −𝐾𝑥 becomes

𝑥 = 𝐴�̇� − 𝐵𝐾𝑥, (62)

implying

(𝐼 + 𝐵𝐾) 𝑥 = 𝐴�̇�, (63)

or

𝑥 = (𝐼 + 𝐵𝐾)
−1

𝐴�̇�. (64)

In view of (61), we set

(𝐼 + 𝐵𝐾)
−1

𝐴 = (𝐴 − 𝐵𝐾) . (65)

Then, we have

𝐴 = (𝐼 + 𝐵𝐾) (𝐴 − 𝐵𝐾) = 𝐴 + 𝐵𝐾𝐴 − 𝐵𝐾 − 𝐵𝐾𝐵𝐾, (66)

or

𝐵 (𝐾𝐴 − 𝐾 − 𝐾𝐵𝐾) = 0. (67)

Now let

𝐾𝐴 − 𝐾 − 𝐾𝐵𝐾 = 0, (68)

implying

𝐾 = 𝐾(𝐴 − 𝐵𝐾)
−1
. (69)

5. Controlling a Double Inverted Pendulum

Consider the double inverted pendulum system shown in
Figure 2 [24, 25], where 𝜃

1
is the angle of inclination of the

first arm and 𝜃
2
is the angle of inclination of the second arm

relative to the first arm.This experiment facility is controlled
by Simulink interface [24]. As shown in the figure, there are
two subcontrol systems in this double inverted pendulum.

Our goal is to keep the first arm in a vertical position
pointing downward and second arm in a vertical position but
pointing upward. This means that we wish that

𝜃
1
= −90

∘
, 𝜃

2
= 180

∘
, ̇𝜃

1
= 0, ̇𝜃

2
= 0. (70)

For this system, an initial control is usually needed so that
𝜃
2
approximately lies between 170

∘ and 190
∘ [25, 26]. An

appropriate linearized model, accurate enough for 𝜃
2

∈

[170
∘
, 190
∘
], is given by [24]:

�̇� =
[
[
[

[

0 0 1 0

0 0 0 1

−15.886 8.0562 −0.0405 0

82.083 95.9987 −0.0203 0

]
]
]

]

𝑥 +
[
[
[

[

0

0

2.1649

1.8943

]
]
]

]

𝑢,

(71)

where 𝑥𝑇 = [𝜃
1
𝜃
2

̇𝜃
1

̇𝜃
2
] and 𝑢 is the input voltage. Sup-

pose that we wish to minimize the following cost functional:

𝐽 =
1

2
∫

𝑡𝑓

𝑡0

(�̇�
𝑇
𝑄�̇� + 𝑢

𝑇
𝑅𝑢) 𝑑𝑡, (72)

where 𝑄 = 𝑅 = 𝐼. The controllable system (71) can be
converted in SDS form:

𝑥 = 𝐴�̇� + 𝐵𝑢 =
[
[
[

[

−0.0017 0 −0.0439 0.0037

0.0017 0 0.0375 0.0073

1 0 0 0

0 1 0 0

]
]
]

]

�̇�

+
[
[
[

[

0.0881

−0.0950

0

0

]
]
]

]

𝑢.

(73)

Using the method proposed in the last section, the optimal
state derivative feedback control law (60) is given by 𝑢 =

−𝐾�̇�, where

𝐾 = [−10.9858 −16.5454 −0.1404 −19751] . (74)

An equivalent state feedback control law is given by 𝑢 = −𝐾𝑥,
where

𝐾 = [52.5009 62.6298 3.5922 5.4327] . (75)

We will use the state feedback control law in our real imple-
mentation through the Simulink control interface given in
[24]. Typical simulated trajectories for 𝜃

1
and 𝜃
2
are shown in

Figures 3 and 4, respectively. It is seen that the control goal is
achieved. The full-length video taken during the experiment
is available in [27].
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Figure 2: Double inverted pendulum.
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Figure 3: Trajectory of 𝜃
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6. Conclusion

Optimal control for SDS systems has been investigated in this
paper. Necessary conditions for optimality were derived by
the use of novel differential Lagrange multipliers. In the past,
optimal control design for descriptor systems with impulse
modes is not an easy task. We have shown via a real electric
circuit that optimal control for a class of descriptor systems
with impulsemodes can easily be carried out using our design
method. The optimal LQR design for linear time-invariant
SDS systems using state derivative feedback can be obtained
via an algebraic Riccati equation. Moreover, this optimal
state derivative feedback may also be implemented using an
equivalent state feedback. This is useful in real situations
when only states are available for measurement. Note that
our derivation and design method parallel those for systems
in standard state space form. The LQR design for a double
inverted pendulum systemhas been implemented to illustrate
the use of our method.
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