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This paper is concerned with the boundedness and attractiveness of nonlinear switched delay systems whose subsystems have
different equilibria. Some sufficient conditions which can guarantee the system’s boundedness are obtained. In addition, we work
out the regionwhere the solutionwill remain and furthermore the relationship between the initial function and the bounded region.
Based on the new concept of attractor with switching laws, we show that the nonlinear switched delay system is attractive and then
obtain the attractive region.

1. Introduction

A switched system is a collection of finite continuous
variable systems (called subsystems) along with a discrete
event governing the “switching” among them (called the
switching law). In reality, there are many switched systems
that occur naturally or by design, such as those in the fields
of control, communication, computer, and signal processes.
Indeed, these systems are always suited to describe practical
dynamical behaviors with hybrid nature in engineering and
technology [1, 2]. In the last decades, they have attracted
considerable attention among control theorists, computer
scientists, and practicing engineers in the study of switched
systems and switching control design and hence rich theoret-
ical results have been obtained (see [3–20] and the references
therein).

Up to now, most of the studies on switched systems
require that all subsystems share a common equilibrium.
However, in many real world problems, the assumption that
all subsystems share a common equilibriummaynot hold and
thus the assumption may limit the applicability of stability
results. Recently, it is pointed out in [21, 22] that, when

subsystems have different equilibria or no equilibrium, a
switched system can still exhibit interesting behaviors under
appropriate switching laws. Such behaviors are similar to
those of a conventional bounded or stable system near an
equilibrium point. In this paper, we introduce some bound-
edness and attractiveness notions to define such behaviors
for switched delay systems. Such notions are extensions of
the traditional boundedness and attractiveness concepts in
[15, 16].

In this paper, we focus on the boundedness and attractive-
ness problems for a simple yet important class of nonlinear
switched delay systems, which includes three main contri-
butions. First, we propose the concept of attractor with the
switching law and the notation of a function 𝜑 ∈ 𝐶

𝜏
in

the neighbourhood of a subset Ω ∈ 𝑅
𝑛 which is different

from the conventional concept of the distance between two
subsets of𝑅𝑛. Second, we propose sufficient conditions which
guarantee that the switched delay system is bounded or
attractive. Third, we explicitly construct a switching law and
the region in which the solutions remain (boundedness)
and explicitly construct the attractor for the switched delay
systems.
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2. Problem Statement

Consider the nonlinear switched delay system

𝑥̇ = 𝐴
𝛾
𝑥 + 𝑓
𝛾
(𝑥 (𝑡 − 𝜏)) , 𝛾 ∈ I ≜ {1, 20, . . . , 𝑁} , (1)

where 𝑥 ∈ 𝑅
𝑛, 𝑓
𝛾
∈ 𝐶(𝑅

𝑛

, 𝑅
𝑛

), and 𝐴
𝛾
∈ 𝑅
𝑛×𝑛, 𝜏 ≥ 0. It is

assumed that

(H1) there exist 𝛼 > 0, 𝑀 ≥ 1 such that ‖𝑒𝐴𝛾𝑡‖ ≤ 𝑀𝑒
−𝛼𝑡;

(H2) there exists 𝐿, 0 < 𝐿 < 𝛼/𝑀, such that ‖𝑓
𝛾
(𝑥) −

𝑓
𝛾
(𝑦)‖ ≤ 𝐿 ‖𝑥 − 𝑦‖, 𝑥, 𝑦 ∈ R𝑛, 𝛾 ∈ I;

(H3) 𝐴
𝛾
𝑥 + 𝑓
𝛾
(𝑥) = 0 has only one solution 𝑥𝛾 ∈ R𝑛 and

𝑥
𝛾

̸= 𝑥
𝑙 for 𝛾 ̸= 𝑙, 𝛾, 𝑙 ∈ I.

Let Γ = {𝑥
𝛾
(𝑡; 0, 𝑥

𝑗

), 𝛾, 𝑗 ∈ I, 𝑡 ∈ 𝑅+}, where

𝑥
𝛾
(𝑡; 0, 𝑥

𝑗

) = 𝑒
𝐴𝛾𝑡𝑥
𝑗

+ ∫

𝑡

0

𝑒
𝐴𝛾(𝑡−𝑢)𝑓

𝛾
(𝑥
𝛾
(𝑢 − 𝜏)) 𝑑𝑢 (2)

and denote that 𝐷 = max{‖𝑥𝛾 − 𝑥
𝑗

‖, 𝛾 ̸= 𝑗, 𝛾, 𝑗 ∈ I}, 𝐶
𝜏
≜

𝐶([−𝜏, 0], 𝑅
𝑛

), and for 𝜑 ∈ 𝐶
𝜏
, define

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝜏 = sup
𝜃∈[−𝜏,0]

󵄩󵄩󵄩󵄩𝜑 (𝜃)
󵄩󵄩󵄩󵄩 . (3)

Let 𝑥
𝛾
(𝑡; 𝑡
0
, 𝜑) ≜ 𝑥

𝛾
(𝑡) be the solution of the initial value

problem

𝑥̇
𝛾
(𝑡) = 𝐴

𝛾
𝑥
𝛾
+ 𝑓
𝛾
(𝑥
𝛾
(𝑡 − 𝜏)) ,

𝑥
𝛾
(𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝜏, 0] .

(4)

If 𝜑 ≡ 𝑥
𝑗 especially, denote that 𝑥

𝛾
(𝑡; 𝑡
0
, 𝑥
𝑗

) ≜ 𝑥
𝑗

𝛾
(𝑡), 𝑗 ∈

I, and let 𝑥(𝑡; 𝑡
0
, 𝜑, 𝜎) ≜ 𝑥(𝑡) be the solution of (1) with the

switching law 𝜎 as

𝑥̇ (𝑡) = 𝐴
𝛾
𝑥 + 𝑓
𝛾
(𝑥 (𝑡 − 𝜏)) , 𝛾 ∈ I,

𝑥 (𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(5)

where 𝑥
𝑡
≜ 𝑥(𝑡 + 𝜃), 𝜃 ∈ [−𝜏, 0]. Since all the subsystems are

autonomous, we can take 𝑡
0
= 0 without loss of generality.

Let 𝜎 = ((𝑡
1
, 𝑖
1
), . . . , (𝑡

𝑘
, 𝑖
𝑘
), . . .) be the switching law of the

switched system (1), where 𝑖
𝑘
∈ I and 0 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ <

𝑡
𝑘
< ⋅ ⋅ ⋅ ; that is, under the switching law 𝜎, the subsystem

𝑖
𝑘
is active during the time interval [𝑡

𝑘−1
, 𝑡
𝑘
). Suppose that

𝑖
𝑘

̸= 𝑖
𝑘+1

holds, whichmeans that a subsystemwill be definitely
switched to a different subsystemwhen the switching triggers.

3. Boundedness

In this section, we will study the boundedness problem of the
switched delay system (1).

Definition 1. Suppose that 𝛿 > 0, Ω ⊂ 𝑅
𝑛, and then a

neighborhood of Ω in 𝐶
𝜏
is defined as

𝐵
𝛿
(Ω) = {𝜑 | 𝜑 ∈ 𝐶

𝜏
, sup
𝜃∈[−𝜏,0]

𝜌 (𝜑 (𝜃) , Ω) ≤ 𝛿} , (6)

where the distance 𝜌 between 𝑥 ∈ 𝑅
𝑛 andΩ is defined as

𝜌 (𝑥,Ω) = inf {󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 | 𝑦 ∈ Ω} . (7)

Definition 2. Anonnegative number𝜇 is called the dwell time
of the switching law

𝜎 = ((𝑡
1
, 𝑖
1
) , . . . , (𝑡

𝑘
, 𝑖
𝑘
) , . . .) , (8)

if

𝜇 = inf {󵄨󵄨󵄨󵄨𝑡𝑘+1 − 𝑡𝑘
󵄨󵄨󵄨󵄨 , 𝑘 = 1, 2, . . .} (9)

holds.

Lemma 3. Let 𝜇 be the dwell time of the switching law 𝜎 =

((𝑡
1
, 𝑖
1
), . . . , (𝑡

𝑘
, 𝑖
𝑘
), . . .), and 𝛿 > 0 is a constant. If 𝜇 ≥

max{𝜏, (ln(𝑀(𝛿+𝐷)/𝛿))/(𝛼−𝑀𝐿)}, then 𝜑 ∈ 𝐵
𝛿
(𝑥
𝑖0) implies

that 𝑥
𝑡𝑘
∈ 𝐵
𝛿
(𝑥
𝑖𝑘), where

𝑥
𝑡𝑘
= 𝑥
𝑡𝑘
(𝜃) = 𝑥 (𝑡

𝑘
+ 𝜃, 0, 𝜑, 𝜎) , 𝜃 ∈ [−𝜏, 0] . (10)

Proof. Suppose that 𝜑 ∈ 𝐵
𝛿
(𝑥
𝑖0) and the switching law is

defined as 𝜎 = ((𝑡
1
, 𝑖
1
), . . . , (𝑡

𝑘
, 𝑖
𝑘
), . . .). Then, we will use

induction to prove the result. When 𝑚 = 1, 𝑡 ∈ [0, 𝑡
1
], we

will prove that

sup
𝜃∈[−𝜏,0]

󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑡
1
+ 𝜃, 0, 𝜑, 𝜎) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩
≤ 𝛿. (11)

In fact,

󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑡, 0, 𝜑, 𝜎) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑡) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖1
𝑡

𝜑 (0) + ∫

𝑡

0

𝑒
𝐴𝑖1
(𝑡−𝑢)

𝑓
𝑖1
(𝑥
𝑖1
(𝑢 − 𝜏)) 𝑑𝑢

− 𝑒
𝐴𝑖1
𝑡

𝑥
𝑖1 − ∫

𝑡

0

𝑒
𝐴𝑖1
(𝑡−𝑢)

𝑓
𝑖1
(𝑥
𝑖1) 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖1
𝑡
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝜑 (0) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖1
(𝑡−𝑢)

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖1
(𝑥
𝑖1
(𝑢 − 𝜏)) − 𝑓

𝑖1
(𝑥
𝑖1)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

≤ 𝑀𝑒
−𝛼𝑡

󵄩󵄩󵄩󵄩󵄩
𝜑 (0) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩

+𝑀𝐿∫

𝑡

0

𝑒
−𝛼(𝑡−𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑢 − 𝜏) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢.

(12)
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Then,

𝑒
𝛼𝑡
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑡) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝜑 (0) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩
+𝑀𝐿∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑢 − 𝜏) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝜑 (0) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩
+𝑀𝐿∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑢 − 𝜏) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝜑 (0) − 𝑥

𝑖0
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖0 − 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩
]

+ 𝑀𝐿∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑢 − 𝜏) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

≤ 𝑀[𝛿 + 𝐷] +𝑀𝐿∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑢

− 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢.

(13)

Furthermore, since the right hand side of the inequality is
increasing function, we have

𝑒
𝛼𝑡
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑡
− 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀[𝛿 + 𝐷]

+𝑀𝐿∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑢

− 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢,

(14)

and then, by applying the Bellman-Gronwall inequality to
(14), we have

𝑒
𝛼𝑡
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑡
− 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀[𝛿 + 𝐷] 𝑒

𝑀𝐿𝑡

, (15)

and thus

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑡
− 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀[𝛿 + 𝐷] 𝑒

−(𝛼−𝑀𝐿)𝑡

. (16)

Let 𝑡 = 𝑡
1
; we get

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡1
− 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩𝜏
=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑡1

− 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀[𝛿 + 𝐷] 𝑒

−(𝛼−𝑀𝐿)𝑡1 ≤ 𝛿,

(17)

and (11) is proved. Suppose that, when 𝑚 = 𝑘, the result is
right; that is, 𝑥

𝑡𝑘
∈ 𝐵
𝛿
(𝑥
𝑖𝑘), and then we will prove that 𝑥

𝑡𝑘+1
∈

𝐵
𝛿
(𝑥
𝑖𝑘+1); that is,

sup
𝜃∈[−𝜏,0]

󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑡
𝑘+1

+ 𝜃, 0, 𝜑, 𝜎) − 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩
≤ 𝛿. (18)

In fact, when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

], 𝑥(𝑡, 0, 𝜑, 𝜎) = 𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
, 0, 𝑥
𝑡𝑘
),

and thus
󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑡, 0, 𝜑, 𝜎) − 𝑥

𝑖𝑘+1
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
, 0, 𝑥
𝑡𝑘
) − 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘)𝑥

𝑡𝑘
(0)

+ ∫

𝑡−𝑡𝑘

0

𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘−𝑢)𝑓

𝑖𝑘+1
(𝑥
𝑖𝑘+1

(𝑢 − 𝜏)) 𝑑𝑢

− 𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘)𝑥

𝑖𝑘+1

−∫

𝑡−𝑡𝑘

0

𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘−𝑢)𝑓

𝑖𝑘+1
(𝑥
𝑖𝑘+1) 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘)

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡𝑘
(0) − 𝑥

𝑖𝑘+1
󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡−𝑡𝑘

0

󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘−𝑢)

󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖𝑘+1

(𝑥
𝑖𝑘+1

(𝑢 − 𝜏)) − 𝑓
𝑖𝑘+1

(𝑥
𝑖𝑘+1)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

≤ 𝑀𝑒
−𝛼(𝑡−𝑡𝑘)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡𝑘
(0) − 𝑥

𝑖𝑘+1
󵄩󵄩󵄩󵄩󵄩

+ 𝑀𝐿∫

𝑡−𝑡𝑘

0

𝑒
−𝛼(𝑡−𝑡𝑘−𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑢 − 𝜏) − 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝑑𝑢,

(19)

and then we have

𝑒
𝛼(𝑡−𝑡𝑘)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
, 0, 𝜑) − 𝑥

𝑖𝑘+1
󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡𝑘
(0) − 𝑥

𝑖𝑘+1
󵄩󵄩󵄩󵄩󵄩

+ 𝑀𝐿∫

𝑡−𝑡𝑘

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑢 − 𝜏) − 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡𝑘
(0) − 𝑥

𝑖𝑘
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘 − 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩
]

+ 𝑀𝐿∫

𝑡−𝑡𝑘

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑢 − 𝜏) − 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

≤ 𝑀[𝛿 + 𝐷] +𝑀𝐿∫

𝑡−𝑡𝑘

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1𝑢

− 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢.

(20)

Since the right hand side of the inequality is increasing
function, we have

𝑒
𝛼(𝑡−𝑡𝑘)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1(𝑡−𝑡𝑘)

− 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩𝜏

≤ 𝑀[𝛿 + 𝐷] +𝑀𝐿∫

𝑡−𝑡𝑘

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1𝑢

− 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢.

(21)

Applying the Bellman-Gronwall inequality to (21) yields

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1(𝑡−𝑡𝑘)

− 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩𝜏
=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡
− 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩𝜏

≤ 𝑀[𝛿 + 𝐷] 𝑒
−(𝛼−𝑀𝐿)(𝑡−𝑡𝑘).

(22)
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Let 𝑡 = 𝑡
𝑘+1

, and then we get

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡𝑘+1

− 𝑥
𝑖𝑘+1

󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀[𝛿 + 𝐷] 𝑒

−(𝛼−𝑀𝐿)(𝑡𝑘+1−𝑡𝑘) ≤ 𝛿, (23)

and (18) is proved. The proof is completed.

Remark 4. Lemma 3 shows that if the initial function 𝜑 is
in the 𝛿 neighborhood of 𝑥𝑖0 , then the solution 𝑥(𝑡, 0, 𝜑, 𝜎)

with the switching law 𝜎 whose dwell time satisfies 𝜇 ≥

max{𝜏, (ln(𝑀(𝛿 + 𝐷)/𝛿))/(𝛼 − 𝑀𝐿)} has the following
property: at the 𝑘th switching point, the function 𝑥(𝑡

𝑘
+

𝜃, 0, 𝜑, 𝜎)(𝜃 ∈ [−𝜏, 0]) is in the 𝛿 neighborhood of 𝑥𝑖𝑘 .

Theorem 5. Let 𝜇 be the dwell time of the switching law
𝜎 = ((𝑡

1
, 𝑖
1
), . . . , (𝑡

𝑘
, 𝑖
𝑘
), . . .) and 𝛿 > 0 is a constant. If 𝜇 ≥

max{𝜏, ln(𝑀(𝛿 + 𝐷)/𝛿)/(𝛼 − 𝑀𝐿)}, then 𝜑 ∈ 𝐵
𝛿
(𝑥
𝑖0) implies

that the solution 𝑥(𝑡, 0, 𝜑, 𝜎) of (1) satisfies 𝑥(𝑡) ∈ 𝐵
𝑀𝛿
(Γ).

Proof. We use mathematical induction to prove the result.
When 𝑡 ∈ [0, 𝑡

1
],

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ)

≤
󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑡, 0, 𝜑, 𝜎) − 𝑥 (𝑡, 0, 𝑥

𝑖0 , 𝜎)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑡, 0, 𝜑, 𝜎) − 𝑥

𝑖1
(𝑡, 0, 𝑥

𝑖0)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑡) − 𝑥

𝑖1
(𝑡)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖1
𝑡

𝜑 (0) + ∫

𝑡

0

𝑒
𝐴𝑖1
(𝑡−𝑢)

𝑓
𝑖1
(𝑥
𝑖1
(𝑢 − 𝜏)) 𝑑𝑢

−𝑒
𝐴𝑖1
𝑡

𝑥
𝑖0 − ∫

𝑡

0

𝑒
𝐴𝑖1
(𝑡−𝑢)

𝑓
𝑖1
(𝑥
𝑖1
(𝑢 − 𝜏)) 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖1
𝑡

(𝜑 (0) − 𝑥
𝑖0)
󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒
𝐴𝑖1
(𝑡−𝑢)

(𝑓
𝑖1
(𝑥
𝑖1
(𝑢 − 𝜏)) − 𝑓

𝑖1
(𝑥
𝑖1
(𝑢 − 𝜏))) 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀𝑒
−𝛼𝑡

󵄩󵄩󵄩󵄩󵄩
𝜑 (0) − 𝑥

𝑖0
󵄩󵄩󵄩󵄩󵄩

+ 𝐿𝑀∫

𝑡

0

𝑒
−𝛼(𝑡−𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑢 − 𝜏) − 𝑥

𝑖1
(𝑢 − 𝜏)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

≤ 𝑒
−𝛼𝑡

[𝑀𝛿 + 𝐿𝑀∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑢

− 𝑥
𝑖1𝑢

󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢] ,

(24)

which implies that

𝑒
𝛼𝑡
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑡
− 𝑥
𝑖1𝑡

󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀𝛿 + 𝐿𝑀∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑢

− 𝑥
𝑖1𝑢

󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢,

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑡
− 𝑥
𝑖1𝑡

󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀𝛿𝑒

−(𝛼−𝐿𝑀)𝑡

≤ 𝑀𝛿.

(25)

Thus, for 𝑡 ∈ [0, 𝑡
1
] and 𝜑 ∈ 𝐵

𝛿
,

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ) ≤ 𝑀𝛿. (26)

Suppose that, when 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
], (26) holds. Now we prove

that, when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

],

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ) ≤ 𝑀𝛿. (27)

In fact, by Lemma 3, we know that 𝑥
𝑡𝑘
∈ 𝐵
𝛿
(𝑥
𝑖𝑘) and

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ)

≤
󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑡, 0, 𝜑, 𝜎) − 𝑥

𝑖𝑘

𝑖𝑘+1

(𝑡 − 𝑡
𝑘
, 0, 𝑥
𝑖𝑘)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
, 0, 𝑥
𝑡𝑘
, 𝜎) − 𝑥

𝑖𝑘

𝑖𝑘+1

(𝑡 − 𝑡
𝑘
, 0, 𝑥
𝑖𝑘)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
) − 𝑥
𝑖𝑘

𝑖𝑘+1

(𝑡 − 𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘)𝑥

𝑡𝑘
(0)

+ ∫

𝑡−𝑡𝑘

0

𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘−𝑢)𝑓

𝑖𝑘+1
(𝑥
𝑖𝑘+1

(𝑢 − 𝜏)) 𝑑𝑢

− 𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘)𝑥

𝑖𝑘

−∫

𝑡−𝑡𝑘

0

𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘−𝑢)𝑓

𝑖𝑘+1
(𝑥
𝑖𝑘

𝑖𝑘+1

(𝑢 − 𝜏)) 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀𝑒
−𝛼(𝑡−𝑡𝑘)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡𝑘
(0) − 𝑥

𝑖𝑘
󵄩󵄩󵄩󵄩󵄩

+ 𝐿𝑀∫

𝑡−𝑡𝑘

0

𝑒
−𝛼(𝑡−𝑡𝑘−𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑢 − 𝜏) − 𝑥
𝑖𝑘

𝑖𝑘+1

(𝑢 − 𝜏)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

≤ 𝑒
−𝛼(𝑡−𝑡𝑘) [𝑀𝛿 + 𝐿𝑀∫

𝑡−𝑡𝑘

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1𝑢

− 𝑥
𝑖𝑘

𝑖𝑘+1𝑢

󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢] ,

(28)

which implies that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
) − 𝑥
𝑖𝑘

𝑖𝑘+1

(𝑡 − 𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀𝛿𝑒

−(𝛼−𝐿𝑀)(𝑡−𝑡𝑘) ≤ 𝑀𝛿

(29)

and thus

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ) ≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
) − 𝑥
𝑖𝑘

𝑖𝑘+1

(𝑡 − 𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀𝛿.

(30)

Thus, for all 𝑡 ≥ 0, we have

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ) ≤ 𝑀𝛿. (31)

The proof is completed.

Remark 6. (i) The result inTheorem 5 shows that if the initial
function 𝜑 is in the 𝛿 neighborhood of 𝑥𝑖0 , then the solution
𝑥(𝑡, 0, 𝜑, 𝜎) with the switching law whose dwell time satisfies
𝜇 ≥ max{𝜏, (ln(𝑀(𝛿 + 𝐷)/𝛿))/(𝛼 − 𝑀𝐿)} is in the 𝑀𝛿

neighborhood of the set Γ.
(ii) Theorem 5 not only shows the boundedness of the

switched system but also gives the region in which the
solution will remain.



Abstract and Applied Analysis 5

By the same procedure of Lemma 3 and Theorem 5, we
can study the boundedness of the solution of the following
nonlinear switched multidelays system:

𝑥̇ = 𝐴
𝛾
𝑥 +

𝑃

∑

𝑗=1

𝑓
𝛾𝑗
(𝑥, 𝑥 (𝑡 − 𝜏

𝛾𝑗
)) , 𝛾 ∈ I ≜ {1, 2, . . . , 𝑁} ,

(32)

where 𝑥 ∈ 𝑅
𝑛, 𝑓
𝛾𝑗
∈ 𝐶(𝑅

𝑛

×𝑅
𝑛

, 𝑅
𝑛

), 𝐴
𝛾
∈ 𝑅
𝑛×𝑛, and 0 ≤ 𝜏

𝛾𝑗
≤

𝜏.
Assume that

(H1)’ there exist 𝛼 > 0, 𝑀 ≥ 1 such that ‖𝑒𝐴𝛾𝑡‖ ≤ 𝑀𝑒
−𝛼𝑡;

(H2)’ there exists𝐿, 0 < 𝐿 < 𝛼/2𝑃𝑀, such that ‖𝑓
𝛾𝑗
(𝑥
1
, 𝑥
2
)−

𝑓
𝛾𝑗
(𝑦
1
, 𝑦
2
)‖ ≤ 𝐿[‖𝑥

1
−𝑦
1
‖+‖𝑥
2
−𝑦
2
‖], 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈

𝑅
𝑛, 𝛾 ∈ I, and 𝑗 = 1, 2, . . . , 𝑃;

(H3)’ 𝐴
𝛾
𝑥 + ∑

𝑃

𝑗=1
𝑓
𝛾𝑗
(𝑥, 𝑥) = 0 has only one solution 𝑥𝛾 ∈

𝑅
𝑛 and 𝑥𝑗 ̸= 𝑥

𝑙 for 𝑗 ̸= 𝑙, 𝑗, 𝑙 ∈ I.

Let Γ󸀠 = {𝑥
𝑗

𝑖
(𝑡; 0, 𝑥

𝑗

), 𝑖, 𝑗 ∈ I, 𝑡 ∈ 𝑅+}. Similarly, we can obtain
the following.

Lemma 7. Let 𝜇 be the dwell time of the switching law 𝜎 =

((𝑡
1
, 𝑖
1
), . . . , (𝑡

𝑘
, 𝑖
𝑘
), . . .), and 𝛿 > 0 is a constant. If 𝜇 ≥

max{𝜏, (ln(𝑀(𝛿 + 𝐷)/𝛿))/(𝛼 − 2𝑃𝑀𝐿)}, then 𝜑 ∈ 𝐵
𝛿
(𝑥
𝑖0)

implies that the solution 𝑥(𝑡, 0, 𝜑, 𝜎) of (32) satisfies 𝑥
𝑡𝑘

∈

𝐵
𝛿
(𝑥
𝑖𝑘).

Theorem 8. Let 𝜇 be the dwell time of the switching law
𝜎 = ((𝑡

1
, 𝑖
1
), . . . , (𝑡

𝑘
, 𝑖
𝑘
), . . .), and 𝛿 > 0 is a constant. If

𝜇 ≥ max{𝜏, (ln(𝑀(𝛿 +𝐷)/𝛿))/(𝛼 − 2𝑃𝑀𝐿)}, then 𝜑 ∈ 𝐵
𝛿
(𝑥
𝑖0)

implies that the solution 𝑥(𝑡, 0, 𝜑, 𝜎) of (32) satisfies 𝑥(𝑡) ∈

𝐵
𝑀𝛿
(Γ
󸀠

) for all 𝑡 ∈ 𝑅+.

4. Attractiveness

In this section, we first give the concept of an attractor
of the switched system with switching law, and then we
study the existence of the attractor of the nonlinear switched
delay system (1).We will establish sufficient conditions which
guarantee the existence of the attractor and furthermore
we can find out the switching law and the attractor of the
switching delay system (1).

Definition 9. A set Ω ⊂ 𝑅
𝑛 is called an attractor of the

switched system (1) with a switching law 𝜎, if there exists a
𝛿 > 0 such that, for any 𝜀 > 0, there exists a 𝑇 > 0, such that,
for any 𝜑 ∈ 𝐵

𝛿
(Ω) ∩ 𝐶

𝜏
, 𝑡 ≥ 𝑇 implies 𝜌(𝑥(𝑡, 0, 𝜑, 𝜎), Ω) ≤ 𝜀.

Remark 10. According to Definition 9,Ω is an attractor of the
switched system (1) with a switching law 𝜎 if and only if there
exists 𝛿 > 0 such that 𝜑 ∈ 𝐵

𝛿
(Ω) implies

lim
𝑡→∞

𝑥 (𝑡, 0, 𝜑, 𝜎) = 0. (33)

In this section, we will prove that Γ is the attractor of system
(1). For convenience, we first show that

𝜑 ∈ 𝐵
𝛿
(Γ) 󳨐⇒ lim

𝑡→∞

𝑥 (𝑡, 0, 𝜑, 𝜎) = 0 (34)

is equivalent to

𝜑 ∈ 𝐵
𝛿
(𝑥
𝑖

) 󳨐⇒ lim
𝑡→∞

𝑥 (𝑡, 0, 𝜑, 𝜎) = 0. (35)

Lemma 11. For any given 𝜀 > 0, 𝜆 > 0, there exists 𝑇(𝜀, 𝜆) =
ln(𝑀Δ/𝜆𝜀)/(𝛼 − 𝑀𝐿) > 0 such that if 𝜑 ∈ 𝐵

𝜀
(Γ), 𝜑 ∈ 𝐶

𝜏
,

then the solution 𝑥
𝑖
(𝑡, 0, 𝜑) of the 𝑖𝑡ℎ subsystem of (1) satisfies

𝑥
𝑖𝑡
∈ 𝐵
𝜆𝜀
(𝑥
𝑖

), 𝑡 ≥ 𝑇, where Δ ≜ sup{‖𝑥 − 𝑦‖, 𝑥, 𝑦 ∈ 𝐵
𝜀
(Γ)}., If

𝜑 ∈ 𝐵
𝜀
(𝑥
𝑗

) and 𝜑 ∈ 𝐶
𝜏
especially, then one can take 𝑇(𝜀, 𝜆) =

ln(𝑀(𝜀 + 𝐷)/𝜆𝜀)/(𝛼 − 𝑀𝐿) > 0 such that when 𝑡 ≥ 𝑇 implies
the solution of the 𝑖𝑡ℎ subsystem of (1) 𝑥

𝑖
(𝑡, 0, 𝜑) satisfies 𝑥

𝑖𝑡
∈

𝐵
𝜆𝜀
(𝑥
𝑖

).

Proof. Let 𝑥
𝑖
(𝑡, 0, 𝜑) ≜ 𝑥

𝑖
(𝑡) be the solution of the 𝑖th

subsystem of (1) and 𝜑 ∈ 𝐵
𝜀
(Γ), and then

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
(𝑡) − 𝑥

𝑖
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖𝑡𝜑 (0) + ∫

𝑡

0

𝑒
𝐴𝑖(𝑡−𝑢)𝑓

𝑖
(𝑥
𝑖
(𝑢 − 𝜏)) 𝑑𝑢

− 𝑒
𝐴𝑖𝑡𝑥
𝑖

− ∫

𝑡

0

𝑒
𝐴𝑖(𝑡−𝑢)𝑓

𝑖
(𝑥
𝑖

) 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖𝑡 (𝜑 (0) − 𝑥

𝑖

)
󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒
𝐴𝑖(𝑡−𝑢) [𝑓

𝑖
(𝑥
𝑖
(𝑢 − 𝜏)) − 𝑓

𝑖
(𝑥
𝑖

)] 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀𝑒
−𝛼𝑡

󵄩󵄩󵄩󵄩󵄩
𝜑 (0) − 𝑥

𝑖
󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

𝑀𝐿𝑒
−𝛼(𝑡−𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
(𝑢 − 𝜏) − 𝑥

𝑖
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢,

(36)

which implies that

𝑒
𝛼𝑡
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑡
− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀

󵄩󵄩󵄩󵄩󵄩
𝜑 − 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
+𝑀𝐿∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑢
− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢

(37)

and thus
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑡
− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀Δ𝑒

−(𝛼−𝑀𝐿)𝑡

. (38)

So, when 𝑡 > 𝑇 = ln(𝑀Δ/𝜆𝜀)/(𝛼 −𝑀𝐿), we have
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑡
− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝜆𝜀 and thus 𝑥

𝑖𝑡
∈ 𝐵
𝜆𝜀
(𝑥
𝑖

) . (39)

If 𝜑 ∈ 𝐵
𝜀
(𝑥
𝑗

) specially, it follows from (37), that

𝑒
𝛼𝑡
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑡
− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝜑 − 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
+𝑀𝐿∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑢
− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝜑 − 𝑥
𝑗
󵄩󵄩󵄩󵄩󵄩𝜏
+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗

− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩
]

+ 𝑀𝐿∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑢
− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢

≤ 𝑀[𝜀 + 𝐷] +𝑀𝐿∫

𝑡

0

𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑢
− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢,

(40)
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which implies that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑡
− 𝑥
𝑖
󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀[𝜀 + 𝐷] 𝑒

−(𝛼−𝑀𝐿)𝑡 (41)

and thus, when 𝑡 ≥ 𝑇 = ln(𝑀(𝜀 + 𝐷)/𝜆𝜀)/(𝛼 −𝑀𝐿), we have
‖𝑥
𝑖𝑡
− 𝑥
𝑖

‖
𝜏
≤ 𝜆𝜀; that is, 𝑥

𝑖𝑡
∈ 𝐵
𝜆𝜀
(𝑥
𝑖

). This completes the
proof.

Theorem12. Suppose that the dwell time𝜇 of the switching law
𝜎 = {(𝑡

1
, 𝑖
1
), (𝑡
2
, 𝑖
2
), . . .} satisfies 𝑡

1
≥ ln(𝑀Δ/𝜆𝜀)/(𝛼 −𝑀𝐿). If

𝜇 ≥ max{𝜏, ln(𝑀Δ/𝜆𝜀)/(𝛼−𝑀𝐿)}, then the set Γ is an attractor
of the switched delay system (1).

Proof. From Lemma 11, we can see that we only need to
prove that, for any 𝜑 ∈ 𝐶

𝜏
, 𝜑 ∈ 𝐵

1
(∪
𝑁

𝑖=1
𝑥
𝑖

), the solution
𝑥(𝑡, 0, 𝜑, 𝜎) satisfies lim

𝑡→∞
𝜌(𝑥(𝑡, 0, 𝜑, 𝜎, ), Γ) = 0. In fact,

we take 𝜀 = 1 and 𝜆 = 1/2 in Lemma 11, and then 𝜑 ∈ 𝐶
𝜏

and 𝜑 ∈ 𝐵
1
(𝑥
𝑖0)(𝑖
0
∈ I) implies that 𝑥

𝑡𝑘
∈ 𝐵
1/2
𝑘(𝑥
𝑖𝑘) if

𝜇 ≥ ln[2𝑀(1 + 𝐷)]/(𝛼 − 𝑀𝐿), 𝑘 = 1, 2, . . . . On the other
hand, for 𝑡 ∈ [0, 𝑡

1
], we have

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ)

= 𝜌 (𝑥
𝑖1
(𝑡, 0, 𝜑) , Γ) ≜ 𝜌 (𝑥

𝑖1
(𝑡) , Γ)

= inf {󵄩󵄩󵄩󵄩󵄩𝑥𝑖1 (𝑡) − 𝑦
󵄩󵄩󵄩󵄩󵄩
, 𝑦 ∈ Γ}

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑡) − 𝑥

𝑖1
(𝑡, 0, 𝑥

𝑖0)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑡) − 𝑥

𝑖0

𝑖1

(𝑡)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖1
𝑡

𝜑 (0) + ∫

𝑡

0

𝑒
𝐴𝑖1
(𝑡−𝑢)

𝑓
𝑖1
(𝑥
𝑖1
(𝑢 − 𝜏)) 𝑑𝑢

− 𝑒
𝐴𝑖1
𝑡

𝑥
𝑖0 − ∫

𝑡

0

𝑒
𝐴𝑖1
(𝑡−𝑢)

𝑓
𝑖1
(𝑥
𝑖0

𝑖1

(𝑢 − 𝜏)) 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖1
𝑡

(𝜑 (0) − 𝑥
𝑖0)
󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒
𝐴𝑖1
(𝑡−𝑢)

[𝑓
𝑖1
(𝑥
𝑖1
(𝑢 − 𝜏)) − 𝑓

𝑖1
(𝑥
𝑖0

𝑖1

(𝑢 − 𝜏))] 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀𝑒
−𝛼𝑡

󵄩󵄩󵄩󵄩󵄩
𝜑 (0) − 𝑥

𝑖0
󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

𝑀𝐿𝑒
−𝛼(𝑡−𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑢 − 𝜏) − 𝑥

𝑖0

𝑖1

(𝑢 − 𝜏)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢,

(42)

which implies that

𝑒
𝛼𝑡
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑡) − 𝑥

𝑖0

𝑖1

(𝑡)
󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝜑 − 𝑥
𝑖0
󵄩󵄩󵄩󵄩󵄩𝜏
+ ∫

𝑡

0

𝑀𝐿𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑢

− 𝑥
𝑖0

𝑖1𝑢

󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢.

(43)

Since the right hand side of the above inequality is an
increasing function, we have

𝑒
𝛼𝑡
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑡
− 𝑥
𝑖0

𝑖1𝑡

󵄩󵄩󵄩󵄩󵄩𝜏

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝜑 − 𝑥
𝑖0
󵄩󵄩󵄩󵄩󵄩𝜏
+ ∫

𝑡

0

𝑀𝐿𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑢

− 𝑥
𝑖0

𝑖1𝑢

󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢,

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1𝑡
− 𝑥
𝑖0

𝑖1𝑡

󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀

󵄩󵄩󵄩󵄩󵄩
𝜑 − 𝑥
𝑖0
󵄩󵄩󵄩󵄩󵄩𝜏
𝑒
−(𝛼−𝑀𝐿)𝑡

,

(44)

and thus

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ) ≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖1
(𝑡) − 𝑥

𝑖1
(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑀, (45)

since 𝜑 ∈ 𝐵
1
(𝑥
𝑖0). When 𝑡 ∈ [𝑡

1
, 𝑡
2
], since 𝑥

𝑡1
∈ 𝐵
1/2
(𝑥
𝑖1), we

have

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ)

= 𝜌 (𝑥
𝑖2
(𝑡 − 𝑡
1
, 0, 𝑥
𝑡1
) , Γ) ≜ 𝜌 (𝑥

𝑖2
(𝑡 − 𝑡
1
) , Γ)

= inf {󵄩󵄩󵄩󵄩󵄩𝑥𝑖2 (𝑡 − 𝑡1) − 𝑦
󵄩󵄩󵄩󵄩󵄩
, 𝑦 ∈ Γ}

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖2
(𝑡 − 𝑡
1
) − 𝑥
𝑖2
(𝑡 − 𝑡
1
, 0, 𝑥
𝑖1)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖2
(𝑡 − 𝑡
1
) − 𝑥
𝑖1

𝑖2

(𝑡 − 𝑡
1
)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖2
(𝑡−𝑡1)𝑥

𝑡1
(0)

+ ∫

𝑡−𝑡1

0

𝑒
𝐴𝑖2
(𝑡−𝑡1−𝑢)𝑓

𝑖2
(𝑥
𝑖2
(𝑢 − 𝜏)) 𝑑𝑢

−𝑒
𝐴𝑖2
𝑡

𝑥
𝑖1 − ∫

𝑡−𝑡1

0

𝑒
𝐴𝑖2
(𝑡−𝑡1−𝑢)𝑓

𝑖2
(𝑥
𝑖1

𝑖2

(𝑢 − 𝜏)) 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖2
(𝑡−𝑡1) (𝑥

𝑡1
(0) − 𝑥

𝑖1)
󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡−𝑡1

0

𝑒
𝐴𝑖2
(𝑡−𝑡1−𝑢)

× [𝑓
𝑖2
(𝑥
𝑖2
(𝑢 − 𝜏)) − 𝑓

𝑖2
(𝑥
𝑖1

𝑖2

(𝑢 − 𝜏))] 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀𝑒
−𝛼(𝑡−𝑡1)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡1
(0) − 𝑥

𝑖1
󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡−𝑡1

0

𝑀𝐿𝑒
−𝛼(𝑡−𝑡1−𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖2
(𝑢 − 𝜏) − 𝑥

𝑖1

𝑖2

(𝑢 − 𝜏)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢,

(46)

which implies that

𝑒
𝛼(𝑡−𝑡1)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖2𝑡
− 𝑥
𝑖1

𝑖2𝑡

󵄩󵄩󵄩󵄩󵄩𝜏

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡1
− 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩𝜏
+ ∫

𝑡−𝑡1

0

𝑀𝐿𝑒
𝛼𝑢
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖2𝑢

− 𝑥
𝑖1

𝑖2𝑢

󵄩󵄩󵄩󵄩󵄩𝜏
𝑑𝑢,

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖2𝑡
− 𝑥
𝑖1

𝑖2𝑡

󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡1
− 𝑥
𝑖1
󵄩󵄩󵄩󵄩󵄩𝜏
𝑒
−(𝛼−𝑀𝐿)(𝑡−𝑡1),

(47)

and thus

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ) ≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖2𝑡
− 𝑥
𝑖1

𝑖2𝑡

󵄩󵄩󵄩󵄩󵄩𝜏
≤
1

2
𝑀, (48)
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since 𝑥
𝑡1
∈ 𝐵
1/2
(𝑥
𝑖1). Suppose that, for 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
],

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ) ≤
1

2𝑘−1
𝑀. (49)

When 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

], since 𝑥
𝑡𝑘
∈ 𝐵
1/2
𝑘(𝑥
𝑖𝑘), (take 𝜀 = 1/2

𝑘 in
Lemma 11), we have

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ)

= 𝜌 (𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
, 0, 𝑥
𝑡𝑘
) , Γ)

= 𝜌 (𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
) , Γ)

= inf {󵄩󵄩󵄩󵄩󵄩𝑥𝑖𝑘+1 (𝑡 − 𝑡𝑘) − 𝑦
󵄩󵄩󵄩󵄩󵄩
, 𝑦 ∈ Γ}

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
) − 𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
, 0, 𝑥
𝑖𝑘)
󵄩󵄩󵄩󵄩󵄩

≜
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑡 − 𝑡
𝑘
) − 𝑥
𝑖𝑘

𝑖𝑘+1

(𝑡 − 𝑡
𝑘
)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘)𝑥

𝑡𝑘
(0)

+ ∫

𝑡−𝑡𝑘

0

𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘−𝑢)𝑓

𝑖𝑘+1
(𝑥
𝑖𝑘+1

(𝑢 − 𝜏)) 𝑑𝑢

− 𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘)𝑥

𝑖𝑘

−∫

𝑡−𝑡𝑘

0

𝑒
𝐴𝑖
𝑘+1
(𝑡−𝑡𝑘−𝑢)𝑓

𝑖𝑘+1
(𝑥
𝑖𝑘

𝑖𝑘+1

(𝑢 − 𝜏)) 𝑑𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀𝑒
−𝛼(𝑡−𝑡𝑘)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡𝑘
(0) − 𝑥

𝑖𝑘
󵄩󵄩󵄩󵄩󵄩

+𝑀𝐿∫

𝑡−𝑡𝑘

0

𝑒
−𝛼(𝑡−𝑡𝑘−𝑢)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1

(𝑢 − 𝜏) − 𝑥
𝑖𝑘

𝑖𝑘+1

(𝑢 − 𝜏)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

(50)

which implies that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑘+1𝑡

− 𝑥
𝑖𝑘

𝑖𝑘+1𝑡

󵄩󵄩󵄩󵄩󵄩𝜏
≤ 𝑀

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡𝑘
− 𝑥
𝑖𝑘
󵄩󵄩󵄩󵄩󵄩𝜏
𝑒
−(𝛼−𝑀𝐿)(𝑡−𝑡1) ≤

1

2𝑘
𝑀 (51)

and thus

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ) ≤
1

2𝑘
𝑀, 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

] . (52)

Therefore, we have

lim
𝑡→∞

𝜌 (𝑥 (𝑡, 0, 𝜑, 𝜎) , Γ) = 0, (53)

which means that Γ is the attractor of system (1) with a
switching law 𝜎.

Similarly, we can study the existence of the attractor of the
switched delay system (32) with the assumptions (H1)’–(H3)’
and obtain the following results.

Lemma 13. For any given 𝜀 > 0, 𝜆 > 0, there exists

𝑇 (𝜀, 𝜆) = max{𝜏, ln (𝑀 (𝛿 + Δ) /𝛿)

𝛼 − 2𝑃𝑀𝐿
} , (54)

such that if 𝜑 ∈ 𝐵
𝜀
(Γ
󸀠

) and 𝜑 ∈ 𝐶
𝜏
, then the solution 𝑥

𝑖
(𝑡, 0, 𝜑)

of the 𝑖𝑡ℎ subsystem of (32) satisfies 𝑥
𝑖𝑡
∈ 𝐵
𝜆𝜀
(𝑥
𝑖

), 𝑡 ≥ 𝑇. If
𝜑 ∈ 𝐵

𝜀
(𝑥
𝑗

) especially, then one can take 𝑇(𝜀, 𝜆) = ln(𝑀(𝜀 +

𝐷)/𝜆𝜀)/(𝛼 − 2𝑃𝑀𝐿) > 0 such that when 𝑡 ≥ 𝑇 implies the
solution 𝑥

𝑖
(𝑡, 0, 𝜑) of the 𝑖𝑡ℎ subsystem of (32) satisfies 𝑥

𝑖𝑡
∈

𝐵
𝜆𝜀
(𝑥
𝑖

), 𝑡 ≥ 𝑇.

Theorem14. Suppose that the dwell time𝜇 of the switching law
𝜎 = {(𝑡

1
, 𝑖
1
), (𝑡
2
, 𝑖
2
), . . .} satisfies 𝑡

1
≥ ln(𝑀Δ/𝜆𝜀)/(𝛼−2𝑃𝑀𝐿);

if 𝜇 ≥ max{𝜏, ln(𝑀Δ/𝜆𝜀)/(𝛼 − 2𝑃𝑀𝐿)}, then the set Γ󸀠 is an
attractor of the switched delay system (32).
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