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Given a self-mapping 𝑔 : 𝐴 → 𝐴 and a non-self-mapping 𝑇 : 𝐴 → 𝐵, the aim of this work is to provide suf-
ficient conditions for the existence of a unique point 𝑥 ∈ 𝐴, called g-best proximity point, which satisfies 𝑑(𝑔𝑥, 𝑇𝑥) =

𝑑(𝐴, 𝐵). In so doing, we provide a useful answer for the resolution of the nonlinear programming problem of globally
minimizing the real valued function 𝑥 → 𝑑(𝑔𝑥, 𝑇𝑥), thereby getting an optimal approximate solution to the equation
𝑇𝑥 = 𝑔𝑥. An iterative algorithm is also presented to compute a solution of such problems. Our results generalize a
result due to Rhoades (2001) and hence such results provide an extension of Banach’s contraction principle to the case of
non-self-mappings.

1. Introduction

A fundamental result in the fixed point theory is the Ba-
nach contraction principle, which has various nontrivial
implications in many branches of pure and applied sci-
ences.

Let𝐴 and𝐵 be nonempty subsets of ametric space (𝑋, 𝑑).
We say that a non-self-mapping 𝑇 : 𝐴 → 𝐵 is a contraction
if there exists 𝑘 ∈ [0, 1) such that, for all 𝑥, 𝑦 ∈ 𝑋,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) . (1)

The Banach contraction principle asserts that if a self-
mapping 𝑇 : 𝑋 → 𝑋 is a contraction and (𝑋, 𝑑) is complete,
then 𝑇 has a unique fixed point 𝑥 ∈ 𝑋. This result was
extended to other important classes of mappings and has
numerous applications. For some important and interesting
generalizations of Banach contraction principle, one can refer

to [1, 2]. The following notion of weakly contractive self-
mapping was introduced by Alber and Guerre-Delabriere in
[3].

Definition 1 (see [3]). Let (𝑋, 𝑑) be a metric space and let 𝐴
be a nonempty subset of 𝑋. A self-mapping 𝑇 : 𝐴 → 𝐴 is
said to be weakly contractive if

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) − 𝜓 (𝑑 (𝑥, 𝑦)) , (2)

for all 𝑥, 𝑦 ∈ 𝐴, where 𝜓 : [0, +∞) → [0, +∞) is
a continuous and nondecreasing function such that 𝜓 is
positive on (0, +∞), 𝜓(0) = 0 and lim

𝑡→+∞
𝜓(𝑡) = +∞. If

𝐴 is bounded, then the infinity condition can be omitted.
Since all contractions are weakly contractive with the

function 𝜓(𝑡) = (1 − 𝑘)𝑡, the above theorem extends
Banach contraction principle. In fact, the class of weakly
contractive mappings lies between the classes of mappings



2 Abstract and Applied Analysis

called contraction ones and contractive ones (𝑑(𝑇𝑥, 𝑇𝑦) <

𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦).
Generally, the solution of the equation 𝑇𝑥 = 𝑥, where

𝑇 : 𝐴 → 𝑋 is a non-self-mapping, is called a fixed point
of 𝑇. Hence, the condition 𝑇(𝐴) ∩ 𝐴 ̸= 0 is necessary for the
existence of a fixed point of 𝑇. Clearly, when 𝑇(𝐴) ∩ 𝐴 = 0,
we have 𝑑(𝑥, 𝑇𝑥) > 0, for all 𝑥 ∈ 𝐴. In such a situation
it is natural to search for a point 𝑥 ∈ 𝐴 such that 𝑥 the
is closest to 𝑇𝑥 in some sense. The following well-known
best approximation theorem, due to Fan [4], explores the
existence of an approximate solution to the equation 𝑇𝑥 = 𝑥.

Theorem 2 (see [4]). Let 𝐴 be a nonempty compact convex
subset of a normed linear space 𝑋 and let 𝑇 : 𝐴 → 𝑋 be a
continuous mapping. Then there exists 𝑥 ∈ 𝐴 such that ‖𝑥 −
𝑇𝑥‖ = 𝑑(𝑇𝑥, 𝐴).

Thepoint𝑥 ∈ 𝐴 inTheorem 2 is called a best approximant
of 𝑇 in 𝐴. Again, let 𝐴, 𝐵 be nonempty subsets of a
metric space (𝑋, 𝑑) and let 𝑇 : 𝐴 → 𝐵 be a non-self-
mapping. A point 𝑥

0
∈ 𝐴 is called a best proximity point

of 𝑇 if 𝑑(𝑥
0
, 𝑇𝑥
0
) = 𝑑(𝐴, 𝐵). Some interesting results in

approximation theory can be found in [4–23].
The aim of this paper is to prove some best proximity

point theorems for proximal contractions which are exten-
sions of Banach contraction principle to the case of non-self-
mappings. Precisely, given a self-mapping 𝑔 : 𝐴 → 𝐴 and
a non-self-mapping 𝑇 : 𝐴 → 𝐵, this work focuses on 𝑔-
best proximity point theorems for some classes of proximal
contractions and a new family of mappings known as 𝑔-weak
contractions. In fact, we provide sufficient conditions for the
existence of a unique point 𝑥 ∈ 𝐴, called 𝑔-best proximity
point, which satisfies the condition 𝑑(𝑔𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵).
Further, an iterative algorithm is furnished to determine
an optimal approximate solution in the guise of a 𝑔-best
proximity point. As a consequence, one can compute an
optimal approximate solution to some coincidence point
equations.

2. Preliminaries

Let R
+
denote the set of all positive real numbers and

N denote the set of all positive integers. Let 𝐴, 𝐵 be two
nonempty subsets of a metric space (𝑋, 𝑑). Let us fix the
following notation which will be needed throughout this
paper:

𝐴
0
= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ,

𝐵
0
= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} ,

(3)

where 𝑑(𝐴, 𝐵) = inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵}. In [11], the
authors discussed sufficient conditions which guarantee the
nonemptiness of𝐴

0
and 𝐵

0
. Also, in [20], the authors proved

that 𝐴
0
is contained in the boundary of 𝐴.

We denote by Ψ the set of nondecreasing functions 𝜓 :

[0, +∞) → [0, +∞) satisfying the following condition:

(𝜓1) lim
𝑛→+∞

𝜓
𝑛
(𝑡) = 0, for all 𝑡 > 0, where 𝜓𝑛 is the 𝑛th

iterate of 𝜓.

Note that if 𝜓 ∈ Ψ, then the following conditions hold:

(𝜓2) 𝜓(𝑡) < 𝑡, for all 𝑡 > 0; 𝜓(0) = 0; 𝜓 is continuous at
𝑡 = 0.

We denote by Φ the set of nondecreasing functions 𝜓 :

[0, +∞) → [0, +∞) such that 𝜓(𝑡) = 0 if and only if 𝑡 = 0

and with Φ
𝑐
= {𝜓 ∈ Φ : 𝜓 is continuous at 𝑡 = 0}.

Definition 3 (see [21]). Let𝐴 and 𝐵 be two nonempty subsets
of a metric space (𝑋, 𝑑). A non-self-mapping 𝑇 : 𝐴 → 𝐵 is
said to be a proximal 𝜓-contraction of the first kind if

𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) = 𝑑 (V, 𝑇𝑦) ⇒ 𝑑 (𝑢, V) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) ,
(4)

for all 𝑢, V, 𝑥, 𝑦 ∈ 𝐴, where 𝜓 ∈ Ψ. If 𝜓(𝑡) = 𝛼𝑡 for some
𝛼 ∈ [0, 1), then 𝑇 is said to be a proximal contraction of the
first kind.

Definition 4 (see [21]). Let𝐴 and 𝐵 be two nonempty subsets
of a metric space (𝑋, 𝑑). A non-self-mapping 𝑇 : 𝐴 → 𝐵 is
said to be a proximal 𝜓-contraction of the second kind if

𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) = 𝑑 (V, 𝑇𝑦)

⇒ 𝑑 (𝑇𝑢, 𝑇V) ≤ 𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ,
(5)

for all 𝑢, V, 𝑥, 𝑦 ∈ 𝐴, where 𝜓 ∈ Ψ. If 𝜓(𝑡) = 𝛼𝑡 for some
𝛼 ∈ [0, 1), then 𝑇 is said to be a proximal contraction of the
second kind.

Definition 5 (see [14]). Let𝐴 and 𝐵 be two nonempty subsets
of a metric space (𝑋, 𝑑). A non-self-mapping 𝑇 : 𝐴 → 𝐵 is
said to be a weak proximal 𝜓-contraction of the first kind if

𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) = 𝑑 (V, 𝑇𝑦)

⇒ 𝑑 (𝑢, V) ≤ 𝑑 (𝑥, 𝑦) − 𝜓 (𝑑 (𝑥, 𝑦)) ,
(6)

for all 𝑢, V, 𝑥, 𝑦 ∈ 𝐴, where 𝜓 ∈ Φ.

Definition 6 (see [14]). Let𝐴 and 𝐵 be two nonempty subsets
of a metric space (𝑋, 𝑑). A non-self-mapping 𝑇 : 𝐴 → 𝐵 is
said to be a weak proximal 𝜓-contraction of the second kind
if
𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) = 𝑑 (V, 𝑇𝑦)

⇒ 𝑑 (𝑇𝑢, 𝑇V) ≤ 𝑑 (𝑇𝑥, 𝑇𝑦) − 𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ,
(7)

for all 𝑢, V, 𝑥, 𝑦 ∈ 𝐴, where 𝜓 ∈ Φ.

An example of a non-self-mapping 𝑇 that is weak proxi-
mal 𝜓-contraction of the first and second kinds can be found
in [14].

The following result is a best proximity point theorem for
weak proximal 𝜓-contraction of the first and second kinds.

Theorem 7 (see [14, Theorem 3.1]). Let 𝐴 and 𝐵 be closed
subsets of a complete metric space (𝑋, 𝑑) such that 𝐴

0
and 𝐵

0

are nonvoid. Suppose that the mappings 𝑔 : 𝐴 → 𝐴 and
𝑇 : 𝐴 → 𝐵 satisfy the following conditions:
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(a) 𝑇 is a weak proximal 𝜓-contraction of the first and
second kinds;

(b) 𝑔 is an isometry;
(c) 𝑇(𝐴

0
) ⊆ 𝐵
0
;

(d) 𝐴
0
⊆ 𝑔(𝐴

0
);

(e) 𝑇 preserves the isometric distance with respect to 𝑔.

Then, there exists a unique element 𝑥∗ in 𝐴 such that
𝑑(𝑔𝑥
∗
, 𝑇𝑥
∗
) = 𝑑(𝐴, 𝐵). Further, for any fixed element 𝑥

0
in

𝐴
0
, the iterative sequence {𝑥

𝑛
}, defined by 𝑑(𝑔𝑥

𝑛+1
, 𝑇𝑥
𝑛
) =

𝑑(𝐴, 𝐵) for every 𝑛 ∈ N ∪ {0}, converges to the element 𝑥∗.

Note that in Theorem 7, Sadiq Basha assumes that the
function 𝜓 ∈ Φ is continuous such that lim

𝑡→+∞
𝜓(𝑡) = +∞.

Let us define the notion of non-self-𝑔-weakly contractive
mappings as follows.

Definition 8. Let (𝑋, 𝑑) be a metric space, let 𝐴, 𝐵 be two
nonempty subsets of 𝑋, and let 𝑔 : 𝐴 → 𝐴. A non-self-
mapping 𝑇 : 𝐴 → 𝐵 is said to be a 𝑔-weakly contractive
mapping if there exists 𝜓 ∈ Φ

𝑐
such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑔𝑥, 𝑔𝑦) − 𝜓 (𝑑 (𝑔𝑥, 𝑔𝑦)) , (8)

for all 𝑥, 𝑦 ∈ 𝐴.

Note that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑔𝑥, 𝑔𝑦) − 𝜓 (𝑑 (𝑔𝑥, 𝑔𝑦)) < 𝑑 (𝑔𝑥, 𝑔𝑦) (9)

if 𝑥, 𝑦 ∈ 𝐴with 𝑔𝑥 ̸= 𝑔𝑦; that is,𝑇 is a 𝑔-contractivemapping.
Sankar Raj, in [22], introduced the notion called 𝑃-

property, which was used to prove an extended version of
Banach contraction principle.

Definition 9. Let (𝐴, 𝐵) be a pair of nonempty subsets of a
metric space (𝑋, 𝑑) with 𝐴

0
̸= 0.

(i) The pair (𝐴, 𝐵) is said to have the 𝑃-property if and
only if 𝑑(𝑥

1
, 𝑦
1
) = 𝑑(𝐴, 𝐵) = 𝑑(𝑥

2
, 𝑦
2
) implies

𝑑(𝑥
1
, 𝑥
2
) = 𝑑(𝑦

1
, 𝑦
2
), where 𝑥

1
, 𝑥
2
∈ 𝐴
0
and 𝑦

1
, 𝑦
2
∈

𝐵
0
(see [22]).

(ii) The pair (𝐴, 𝐵) is said to have the weak 𝑃-property if
and only if 𝑑(𝑥

1
, 𝑦
1
) = 𝑑(𝐴, 𝐵) = 𝑑(𝑥

2
, 𝑦
2
) implies

𝑑(𝑥
1
, 𝑥
2
) ≤ 𝑑(𝑦

1
, 𝑦
2
), where 𝑥

1
, 𝑥
2
∈ 𝐴
0
and 𝑦

1
, 𝑦
2
∈

𝐵
0
(see [24]).

It is easy to see that, for any nonempty subset 𝐴 of𝑋, the
pair (𝐴, 𝐴) has the 𝑃-property.

Definition 10. Let 𝐴 and 𝐵 be two nonempty subsets of a
metric space (𝑋, 𝑑). Let 𝑔 : 𝐴 → 𝐴 be a self-mapping and
𝑇 : 𝐴 → 𝐵 a non-self-mapping. Then

(i) 𝑔 ∈ G
𝐴
if 𝑔 is continuous and 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑔𝑥, 𝑔𝑦),

for all 𝑥, 𝑦 ∈ 𝐴;
(ii) 𝑇 ∈ T

𝑔
if 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑇𝑔𝑥, 𝑇𝑔𝑦) for all 𝑥, 𝑦 ∈ 𝐴;

(iii) 𝑇 is said to preserve (isometric) distance with respect
to 𝑔 if 𝑑(𝑇𝑔𝑥, 𝑇𝑔𝑦) = 𝑑(𝑇𝑥, 𝑇𝑦), for every 𝑥, 𝑦 ∈ 𝐴

(see [9]).

3. Best Proximity Point Theorems for
Proximal Contractions

In this section, we establish some results of best proximity
point for proximal 𝜓-contractions and weak proximal 𝜓-
contractions.

Theorem 11. Let 𝐴 and 𝐵 be two nonempty subsets of a
complete metric space (𝑋, 𝑑). Suppose that 𝐴

0
is nonempty

and closed. Assume also that the mappings 𝑇 : 𝐴 → 𝐵 and
𝑔 : 𝐴 → 𝐴 satisfy the following conditions:

(a) 𝑇 is a proximal 𝜓-contraction of the first kind;
(b) 𝑔 ∈ G

𝐴0
;

(c) 𝑇(𝐴
0
) ⊆ 𝐵
0
;

(d) 𝐴
0
⊆ 𝑔(𝐴

0
).

Then there exists a unique point 𝑥 ∈ 𝐴
0
such that

𝑑(𝑔𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵). Moreover, for every 𝑥
0
∈ 𝐴
0
there exists

a sequence {𝑥
𝑛
} ⊆ 𝐴 such that 𝑑(𝑔𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵) for

every 𝑛 ∈ N ∪ {0} and 𝑥
𝑛
→ 𝑥.

Proof. Let 𝑥
0
∈ 𝐴
0
. Since 𝑇(𝐴

0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑔(𝐴

0
), there

exists 𝑥
1
∈ 𝐴
0
such that

𝑑 (𝑔𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) . (10)

Again, for 𝑥
1
∈ 𝐴
0
, there exists 𝑥

2
∈ 𝐴
0
such that

𝑑 (𝑔𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) . (11)

By repeating this process, for 𝑥
𝑛
∈ 𝐴
0
, we can find 𝑥

𝑛+1
∈ 𝐴
0

such that

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ N. (12)

Since 𝑇 is a proximal 𝜓-contraction of the first kind and 𝑔 ∈
G
𝐴0
, we have

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝑑 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛
)

≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

(13)

for every 𝑛 ∈ N ∪ {0}. Since 𝜓 is nondecreasing, we get by
induction that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝜓
𝑛
(𝑑 (𝑥
1
, 𝑥
0
)) . (14)

By the definition of 𝜓, letting 𝑛 → +∞, we obtain that

lim
𝑛→+∞

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 0. (15)

We now prove that {𝑥
𝑛
} is a Cauchy sequence. Given that

𝜀 > 0 there exists 𝑛(𝜀) ∈ N such that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) < 𝜀 − 𝜓 (𝜀) , ∀𝑛 ≥ 𝑛 (𝜀) . (16)

Now, fix𝑚 ≥ 𝑛(𝜀) and we prove that

𝑑 (𝑥
𝑚
, 𝑥
𝑛+1

) < 𝜀, ∀𝑛 ≥ 𝑚. (17)
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Note that (17) holds if 𝑛 = 𝑚, by (16). Assume that (17) holds
for some 𝑛 ≥ 𝑚. Since 𝑇 is a proximal 𝜓-contraction of the
first kind,

𝑑 (𝑥
𝑚
, 𝑥
𝑛+2

) ≤ 𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝑑 (𝑥
𝑚+1

, 𝑥
𝑛+2

)

≤ 𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝑑 (𝑔𝑥
𝑚+1

, 𝑔𝑥
𝑛+2

)

≤ 𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝜓 (𝑑 (𝑥
𝑚
, 𝑥
𝑛+1

))

< 𝜀 − 𝜓 (𝜀) + 𝜓 (𝜀) = 𝜀.

(18)

This implies that (17) holds, for all 𝑛 ≥ 𝑚, and hence

lim
𝑚→+∞

𝑑 (𝑥
𝑚
, 𝑥
𝑛+1

) = 0. (19)

That is, {𝑥
𝑛
} is a Cauchy sequence. By the completeness of 𝑋

and since 𝐴
0
is closed, we have 𝑥

𝑛
→ 𝑥 ∈ 𝐴

0
. Moreover, by

the continuity of 𝑔, we have 𝑔𝑥
𝑛
→ 𝑔𝑥 and thus 𝑔𝑥 ∈ 𝐴

0
,

since𝑔𝑥
𝑛
∈ 𝐴
0
, for all 𝑛 ∈ N. On the other hand, since𝑥 ∈ 𝐴

0

and 𝑇(𝐴
0
) ⊆ 𝐵
0
, there exists 𝑧 ∈ 𝐴 such that

𝑑 (𝑧, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (20)

Clearly 𝑧 ∈ 𝐴
0
. Again, since 𝑇 is a proximal 𝜓-contraction of

the first kind, we get

𝑑 (𝑧, 𝑔𝑥
𝑛+1

) ≤ 𝜓 (𝑑 (𝑥, 𝑥
𝑛
)) ≤ 𝑑 (𝑥, 𝑥

𝑛
) , (21)

for all 𝑛 ∈ N. Letting 𝑛 → +∞, we obtain that 𝑑(𝑧, 𝑔𝑥
𝑛+1

) →

0 and then 𝑧 = 𝑔𝑥. This implies that

𝑑 (𝑔𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (22)

To prove the uniqueness, let 𝑥∗ be another point in 𝐴
0
such

that

𝑑 (𝑔𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (23)

If 𝑥 ̸= 𝑥
∗, since 𝑔 ∈ G

𝐴0
and 𝑇 is a proximal 𝜓-contraction of

the first kind, we get

𝑑 (𝑥, 𝑥
∗
) ≤ 𝑑 (𝑔𝑥, 𝑔𝑥

∗
) ≤ 𝜓 (𝑑 (𝑥, 𝑥

∗
))

< 𝑑 (𝑥, 𝑥
∗
) ,

(24)

which is a contradiction; thus we have 𝑥 = 𝑥∗.

Remark 12. If in Theorem 11 we assume 𝑔 ∈ G
𝐴
, then we

get that there exists a unique 𝑥 ∈ 𝐴 such that 𝑑(𝑔𝑥, 𝑇𝑥) =
𝑑(𝐴, 𝐵).

From Theorem 11 and the above remark, we obtain the
following corollary.

Corollary 13 (see [9, Theorem 3.1]). Let 𝐴 and 𝐵 be two
nonempty subsets of a complete metric space (𝑋, 𝑑). Suppose
that𝐴

0
is nonempty and closed. Assume also that themappings

𝑇 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐴 satisfy the following conditions:

(a) 𝑇 is a proximal contraction of the first kind;
(b) 𝑔 is an isometry;

(c) 𝑇(𝐴
0
) ⊆ 𝐵
0
;

(d) 𝐴
0
⊆ 𝑔(𝐴

0
).

Then there exists a unique point 𝑥 ∈ 𝐴 such that
𝑑(𝑔𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵). Moreover, for every 𝑥

0
∈ 𝐴
0
there exists

a sequence {𝑥
𝑛
} ⊆ 𝐴 such that 𝑑(𝑔𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵) for

every 𝑛 ∈ N ∪ {0} and 𝑥
𝑛
→ 𝑥.

If in Theorem 11 the mapping 𝑔 is the identity on 𝐴, then
we get the following corollary.

Corollary 14. Let 𝐴 and 𝐵 be two nonempty subsets of a
complete metric space (𝑋, 𝑑). Suppose that𝐴

0
is nonempty and

closed. Let 𝑇 : 𝐴 → 𝐵 satisfy the following conditions:

(a) 𝑇 is a proximal 𝜓-contraction of the first kind;
(b) 𝑇(𝐴

0
) ⊆ 𝐵
0
.

Then there exists a unique point𝑥 ∈ 𝐴 such that 𝑑(𝑥, 𝑇𝑥) =
𝑑(𝐴, 𝐵). Moreover, for every 𝑥

0
∈ 𝐴
0
there exists a sequence

{𝑥
𝑛
} ⊆ 𝐴 such that 𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵) for every 𝑛 ∈ N∪{0}

and 𝑥
𝑛
→ 𝑥.

The following theorem is our main result for proximal 𝜓-
contractions of the second kind.

Theorem 15. Let 𝐴 and 𝐵 be two nonempty subsets of a
complete metric space (𝑋, 𝑑). Suppose that 𝑇(𝐴

0
) is nonempty

and closed. Assume also that the mappings 𝑇 : 𝐴 → 𝐵 and
𝑔 : 𝐴 → 𝐴 satisfy the following conditions:

(a) 𝑇 is a proximal 𝜓-contraction of the second kind;
(b) 𝑇 ∈ T

𝑔
;

(c) 𝑇(𝐴
0
) ⊆ 𝐵
0
;

(d) 𝐴
0
⊆ 𝑔(𝐴

0
).

Then there exists a point 𝑥 ∈ 𝐴 such that 𝑑(𝑔𝑥, 𝑇𝑥) =

𝑑(𝐴, 𝐵). Moreover, if 𝑇 is injective, then the point 𝑥 such that
𝑑(𝑔𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) is unique.

Proof. Similar to the proof of Theorem 11, we can find a
sequence {𝑥

𝑛
} ⊆ 𝐴

0
such that

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ N ∪ {0} . (25)

Since 𝑇 is a proximal 𝜓-contraction of the second kind, we
have

𝑑 (𝑇𝑔𝑥
𝑛+1

, 𝑇𝑔𝑥
𝑛
) ≤ 𝜓 (𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

)) (26)

for every 𝑛 ∈ N. Since 𝑇 ∈ T
𝑔
, we get

𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
) ≤ 𝜓 (𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

)) (27)

for every 𝑛 ∈ N. Since𝜓 is nondecreasing, we get by induction
that

𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
) ≤ 𝜓
𝑛
(𝑑 (𝑇𝑥

1
, 𝑇𝑥
0
)) . (28)

By definition of 𝜓, letting 𝑛 → +∞, we obtain that

lim
𝑛→+∞

𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 0. (29)
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Similar to the proof of Theorem 11, we prove that {𝑇𝑥
𝑛
} is a

Cauchy sequence. By the completeness of𝑋 and since 𝑇(𝐴
0
)

is closed, we have 𝑇𝑥
𝑛
→ 𝑇𝑢 ∈ 𝐵

0
. Moreover, there exists

𝑧 ∈ 𝐴
0
such that

𝑑 (𝑧, 𝑇𝑢) = 𝑑 (𝐴, 𝐵) . (30)

Since 𝐴
0
⊆ 𝑔(𝐴

0
), we obtain that 𝑧 = 𝑔𝑥 for some 𝑥 ∈ 𝐴

0
,

and then

𝑑 (𝑔𝑥, 𝑇𝑢) = 𝑑 (𝐴, 𝐵) . (31)

Again, since𝑇 is a proximal𝜓-contraction of the second kind,
we get

𝑑 (𝑇𝑥, 𝑇𝑥
𝑛+1

) ≤ 𝑑 (𝑇𝑔𝑥, 𝑇𝑔𝑥
𝑛+1

)

≤ 𝜓 (𝑑 (𝑇𝑢, 𝑇𝑥
𝑛
))

≤ 𝑑 (𝑇𝑢, 𝑇𝑥
𝑛
) .

(32)

Letting 𝑛 → +∞, we obtain that 𝑑(𝑇𝑥, 𝑇𝑥
𝑛+1

) → 0 and
hence 𝑇𝑥 = 𝑇𝑢. This implies that

𝑑 (𝑔𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (33)

To prove the uniqueness, let 𝑥∗ be another point in 𝐴 such
that

𝑑 (𝑔𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (34)

If 𝑥 ̸= 𝑥
∗, since 𝑇 ∈ T

𝑔
is injective, we deduce

𝑑 (𝑇𝑥, 𝑇𝑥
∗
) ≤ 𝑑 (𝑇𝑔𝑥, 𝑇𝑔𝑥

∗
)

≤ 𝜓 (𝑑 (𝑇𝑥, 𝑇𝑥
∗
))

< 𝑑 (𝑇𝑥, 𝑇𝑥
∗
) ,

(35)

which is a contradiction; thus we have 𝑇𝑥 = 𝑇𝑥
∗ and hence

𝑥 = 𝑥
∗.

FromTheorem 15, we deduce the following corollary.

Corollary 16 (see [15, Theorem 3.2]). Let 𝐴 and 𝐵 be two
nonempty subsets of a complete metric space (𝑋, 𝑑). Suppose
that 𝑇(𝐴

0
) is nonempty and closed. Assume also that the

mappings 𝑇 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐴 satisfy the following
conditions:

(a) 𝑇 is a proximal contraction of the second kind;
(b) 𝑔 is an isometry;
(c) 𝑇 preserves isometric distance with respect to 𝑔;
(d) 𝑇(𝐴

0
) ⊆ 𝐵
0
;

(e) 𝐴
0
⊆ 𝑔(𝐴

0
).

Then there exists a point 𝑥 ∈ 𝐴 such that 𝑑(𝑔𝑥, 𝑇𝑥) =

𝑑(𝐴, 𝐵). Moreover, if 𝑧 ∈ 𝐴 is another point for which
𝑑(𝑔𝑧, 𝑇𝑧) = 𝑑(𝐴, 𝐵), then 𝑇𝑥 = 𝑇𝑧.

If inTheorem 15 the mapping 𝑔 is the identity on 𝐴, then
we get the following corollary.

Corollary 17. Let 𝐴 and 𝐵 be two nonempty subsets of a
complete metric space (𝑋, 𝑑). Suppose that 𝑇(𝐴

0
) is nonempty

and closed. Let 𝑇 : 𝐴 → 𝐵 satisfy the following conditions:
(a) 𝑇 is a proximal 𝜓-contraction of the second kind;
(b) 𝑇(𝐴

0
) ⊆ 𝐵
0
.

Then there exists a point 𝑥 ∈ 𝐴 such that 𝑑(𝑥, 𝑇𝑥) =

𝑑(𝐴, 𝐵). Moreover, if 𝑇 is injective on 𝐴, then the point 𝑥 such
that 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) is unique.

The following is a theorem for weak proximal 𝜓-
contractions of the first kind.

Theorem 18. Let 𝐴 and 𝐵 be two nonempty subsets of a
complete metric space (𝑋, 𝑑). Suppose that 𝐴

0
is nonempty

and closed. Assume also that the mappings 𝑇 : 𝐴 → 𝐵 and
𝑔 : 𝐴 → 𝐴 satisfy the following conditions:

(a) 𝑇 is a weak proximal 𝜓-contraction of the first kind;
(b) 𝑔 ∈ G

𝐴0
;

(c) 𝑇(𝐴
0
) ⊆ 𝐵
0
;

(d) 𝐴
0
⊆ 𝑔(𝐴

0
).

Then there exists a unique point 𝑥 ∈ 𝐴
0
such that

𝑑(𝑔𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵). Moreover, for every 𝑥
0
∈ 𝐴
0
there exists

a sequence {𝑥
𝑛
} ⊆ 𝐴 such that 𝑑(𝑔𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵) for

every 𝑛 ∈ N ∪ {0} and 𝑥
𝑛
→ 𝑥.

Proof. Let 𝑥
0
∈ 𝐴
0
. Since 𝑇(𝐴

0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑔(𝐴

0
), there

exists 𝑥
1
∈ 𝐴
0
such that

𝑑 (𝑔𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) . (36)

Again, for 𝑥
1
∈ 𝐴
0
, there exists 𝑥

2
∈ 𝐴
0
such that

𝑑 (𝑔𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) . (37)

By repeating this process, for 𝑥
𝑛
∈ 𝐴
0
, we can find 𝑥

𝑛+1
∈ 𝐴
0

such that

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ N ∪ {0} . (38)

Since𝑇 is a weak proximal𝜓-contraction of the first kind and
𝑔 ∈ G

𝐴0
, we have

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝑑 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) − 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) ,

(39)

for every 𝑛 ∈ N. Let 𝑡
𝑛
= 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

); then {𝑡
𝑛
} is a bounded

nonincreasing sequence of nonnegative real numbers.There-
fore, {𝑡

𝑛
} converges to 𝑡, where 𝑡 ≥ 0. Now let us claim that

𝑡 = 0. Suppose that 𝑡 > 0. Since 𝜓 ∈ Φ, we get 0 < 𝜓(𝑡) ≤

𝜓(𝑡
𝑛
), for all 𝑛 ∈ N. Then, we have

𝑡
𝑛
= 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) ≤ 𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

)

≤ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) − 𝜓 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
))

= 𝑡
𝑛−1

− 𝜓 (𝑡
𝑛−1

)

≤ 𝑡
𝑛−1

− 𝜓 (𝑡) .

(40)
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Inductively we obtain 𝑡
𝑛+𝑝

≤ 𝑡
𝑛
− 𝑝𝜓(𝑡), which is a

contradiction for 𝑝 large enough. Therefore 𝑡 = 0 and hence
𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) → 0.
Now let us claim that {𝑥

𝑛
} is a Cauchy sequence. Suppose

it is not. Then there exist 𝜀 > 0 and subsequences {𝑥
𝑚𝑘
}, {𝑥
𝑛𝑘
}

of {𝑥
𝑛
} such that

𝑟
𝑘
= 𝑑 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
) ≥ 𝜀, 𝑑 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘−1

) < 𝜀, (41)

and 𝑛
𝑘
> 𝑚
𝑘
≥ 𝑘, for all 𝑘 ∈ N. Therefore,

𝜀 ≤ 𝑟
𝑘
≤ 𝑑 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘−1

) + 𝑑 (𝑥
𝑛𝑘−1

, 𝑥
𝑛𝑘
)

< 𝜀 + 𝑡
𝑛𝑘−1

.

(42)

By letting 𝑘 → +∞, we have

lim
𝑘→+∞

𝑟
𝑘
= 𝜀. (43)

Since

𝑑 (𝑔𝑥
𝑚𝑘+1

, 𝑇𝑥
𝑚𝑘
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑔𝑥
𝑛𝑘+1

, 𝑇𝑥
𝑛𝑘
) = 𝑑 (𝐴, 𝐵) ,

(44)

and 𝑇 is a weak proximal 𝜓-contraction of the first kind, we
obtain that

𝑑 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

) ≤ 𝑑 (𝑔𝑥
𝑚𝑘+1

, 𝑔𝑥
𝑛𝑘+1

)

≤ 𝑑 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) − 𝜓 (𝑑 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
)) .

(45)

Thus,

𝜀 ≤ 𝑟
𝑘
≤ 𝑑 (𝑥

𝑚𝑘
, 𝑥
𝑚𝑘+1

) + 𝑑 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

) + 𝑑 (𝑥
𝑛𝑘+1

, 𝑥
𝑛𝑘
)

= 𝑡
𝑚𝑘
+ 𝑡
𝑛𝑘
+ 𝑑 (𝑥

𝑚𝑘+1
, 𝑥
𝑛𝑘+1

)

≤ 𝑡
𝑚𝑘
+ 𝑡
𝑛𝑘
+ 𝑑 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
) − 𝜓 (𝑑 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
))

≤ 𝑡
𝑚𝑘
+ 𝑡
𝑛𝑘
+ 𝑑 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
) − 𝜓 (𝜀) .

(46)

Letting 𝑘 → +∞, we have 𝜀 ≤ 𝜀 − 𝜓(𝜀), which is a
contradiction. Therefore, {𝑥

𝑛
} is a Cauchy sequence. By the

completeness of𝑋 and since𝐴
0
is closed, we have 𝑥

𝑛
→ 𝑥 ∈

𝐴
0
. Moreover, by the continuity of 𝑔, we have 𝑔𝑥

𝑛
→ 𝑔𝑥 and

thus 𝑔𝑥 ∈ 𝐴
0
, since 𝑔𝑥

𝑛
∈ 𝐴
0
, for all 𝑛 ∈ N.

On the other hand, since 𝑥 ∈ 𝐴
0
and 𝑇(𝐴

0
) ⊆ 𝐵

0
, there

exists 𝑧 ∈ 𝐴
0
such that

𝑑 (𝑧, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (47)

Again, since 𝑇 is a weak proximal 𝜓-contraction of the first
kind, we get

𝑑 (𝑧, 𝑔𝑥
𝑛+1

) ≤ 𝑑 (𝑥, 𝑥
𝑛
) − 𝜓 (𝑑 (𝑥, 𝑥

𝑛
)) ≤ 𝑑 (𝑥, 𝑥

𝑛
) . (48)

Letting 𝑛 → +∞, we obtain that 𝑑(𝑧, 𝑔𝑥
𝑛+1

) → 0 and then
𝑧 = 𝑔𝑥. This implies that

𝑑 (𝑔𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (49)

To prove the uniqueness, let 𝑥∗ be another point in 𝐴
0
such

that
𝑑 (𝑔𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (50)

If 𝑥 ̸= 𝑥
∗, since 𝑔 ∈ G

𝐴0
and 𝑇 is a weak proximal 𝜓-

contraction of the first kind, we get

𝑑 (𝑥, 𝑥
∗
) ≤ 𝑑 (𝑔𝑥, 𝑔𝑥

∗
)

≤ 𝑑 (𝑥, 𝑥
∗
) − 𝜓 (𝑑 (𝑥, 𝑥

∗
))

< 𝑑 (𝑥, 𝑥
∗
) ,

(51)

which is a contradiction; thus we have 𝑥 = 𝑥∗.

Remark 19. If in Theorem 18 we assume 𝑔 ∈ G
𝐴
, then we

get that there exists a unique 𝑥 ∈ 𝐴 such that 𝑑(𝑔𝑥, 𝑇𝑥) =
𝑑(𝐴, 𝐵).

If we take 𝑔 as the identity mapping on 𝐴 in Theorem 18,
then we get the following corollary, which extends a result of
Rhoades [25] to non-self-mappings.

Corollary 20. Let 𝐴 and 𝐵 be two nonempty subsets of a
complete metric space (𝑋, 𝑑). Suppose that𝐴

0
is nonempty and

closed. Let 𝑇 : 𝐴 → 𝐵 satisfy the following conditions:
(a) 𝑇 is a weak proximal 𝜓-contraction of the first kind;
(b) 𝑇(𝐴

0
) ⊆ 𝐵
0
.

Then there exists a unique point 𝑥 ∈ 𝐴
0
such that

𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵). Moreover, for every 𝑥
0
∈ 𝐴
0
there exists a

sequence {𝑥
𝑛
} ⊆ 𝐴 such that 𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵) for every

𝑛 ∈ N ∪ {0} and 𝑥
𝑛
→ 𝑥.

The following theorem is our main result for weak
proximal 𝜓-contractions of the second kind.

Theorem 21. Let 𝐴 and 𝐵 be two nonempty subsets of a
complete metric space (𝑋, 𝑑). Suppose that 𝑇(𝐴

0
) is nonempty

and closed. Assume also that the mappings 𝑇 : 𝐴 → 𝐵 and
𝑔 : 𝐴 → 𝐴 satisfy the following conditions:

(a) 𝑇 is a weak proximal 𝜓-contraction of the second kind;
(b) 𝑇 ∈ T

𝑔
;

(c) 𝑇(𝐴
0
) ⊆ 𝐵
0
;

(d) 𝐴
0
⊆ 𝑔(𝐴

0
).

Then there exists a point 𝑥 ∈ 𝐴 such that 𝑑(𝑔𝑥, 𝑇𝑥) =

𝑑(𝐴, 𝐵). Moreover, if 𝑇 is injective on 𝐴, then the point 𝑥 such
that 𝑑(𝑔𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) is unique.

Proof. Similar to the proof of Theorem 18, we can find a
sequence {𝑥

𝑛
} ⊆ 𝐴

0
such that

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ N ∪ {0} . (52)

Since 𝑇 is a weak proximal 𝜓-contraction of the second kind,
we have
𝑑 (𝑇𝑔𝑥

𝑛+1
, 𝑇𝑔𝑥
𝑛
) ≤ 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

) − 𝜓 (𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛−1

))

≤ 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛−1

)

(53)
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for every 𝑛 ∈ N. Since 𝑇 ∈ T
𝑔
, we get

𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
) ≤ 𝑑 (𝑇𝑔𝑥

𝑛+1
, 𝑇𝑔𝑥
𝑛
) ≤ 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

) (54)

for every 𝑛 ∈ N. Let 𝑡
𝑛

= 𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

); then {𝑡
𝑛
}

is a bounded nonincreasing sequence of nonnegative real
numbers. Therefore, {𝑡

𝑛
} converges to 𝑡, where 𝑡 ≥ 0. Now

let us claim that 𝑡 = 0. Suppose that 𝑡 > 0. Since 𝜓 ∈ Φ, we
get 0 < 𝜓(𝑡) ≤ 𝜓(𝑡

𝑛
), for all 𝑛 ∈ N. Then, we have

𝑡
𝑛
= 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1

) ≤ 𝑑 (𝑇𝑔𝑥
𝑛
, 𝑇𝑔𝑥
𝑛+1

)

≤ 𝑑 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) − 𝜓 (𝑑 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
))

= 𝑡
𝑛−1

− 𝜓 (𝑡
𝑛−1

)

≤ 𝑡
𝑛−1

− 𝜓 (𝑡) .

(55)

Inductively we obtain 𝑡
𝑛+𝑝

≤ 𝑡
𝑛
− 𝑝 𝜓(𝑡), which is a

contradiction for 𝑝 large enough. Therefore 𝑡 = 0 and hence
𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

) → 0.
Now let us claim that {𝑇𝑥

𝑛
} is a Cauchy sequence.

Suppose it is not. Then there exist 𝜀 > 0 and subsequences
{𝑇𝑥
𝑚𝑘
}, {𝑇𝑥
𝑛𝑘
} of {𝑇𝑥

𝑛
} such that

𝑟
𝑘
= 𝑑 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘
) ≥ 𝜀, 𝑑 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘−1

) < 𝜀, (56)

and 𝑛
𝑘
> 𝑚
𝑘
≥ 𝑘, for all 𝑘 ∈ N. Therefore, we get

𝜀 ≤ 𝑟
𝑘
≤ 𝑑 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘−1

) + 𝑑 (𝑇𝑥
𝑛𝑘−1

, 𝑇𝑥
𝑛𝑘
)

< 𝜀 + 𝑡
𝑛𝑘−1

.

(57)

By letting 𝑘 → +∞, we have

lim
𝑘→+∞

𝑟
𝑘
= 𝜀. (58)

Since

𝑑 (𝑔𝑥
𝑚𝑘+1

, 𝑇𝑥
𝑚𝑘
) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑔𝑥
𝑛𝑘+1

, 𝑇𝑥
𝑛𝑘
) = 𝑑 (𝐴, 𝐵) ,

(59)

and 𝑇 is a weak proximal 𝜓-contraction of the second kind,
we obtain that

𝑑 (𝑇𝑥
𝑚𝑘+1

, 𝑇𝑥
𝑛𝑘+1

) ≤ 𝑑 (𝑇𝑔𝑥
𝑚𝑘+1

, 𝑇𝑔𝑥
𝑛𝑘+1

)

≤ 𝑑 (𝑇𝑥
𝑚𝑘
, 𝑇𝑥
𝑛𝑘
) − 𝜓 (𝑑 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘
)) .

(60)

Thus,

𝜀 ≤ 𝑟
𝑘
≤ 𝑑 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑚𝑘+1

) + 𝑑 (𝑇𝑥
𝑚𝑘+1

, 𝑇𝑥
𝑛𝑘+1

)

+ 𝑑 (𝑇𝑥
𝑛𝑘+1

, 𝑇𝑥
𝑛𝑘
)

= 𝑡
𝑚𝑘
+ 𝑡
𝑛𝑘
+ 𝑑 (𝑇𝑥

𝑚𝑘+1
, 𝑇𝑥
𝑛𝑘+1

)

≤ 𝑡
𝑚𝑘
+ 𝑡
𝑛𝑘
+ 𝑑 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘
) − 𝜓 (𝑑 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘
))

≤ 𝑡
𝑚𝑘
+ 𝑡
𝑛𝑘
+ 𝑑 (𝑇𝑥

𝑚𝑘
, 𝑇𝑥
𝑛𝑘
) − 𝜓 (𝜀) .

(61)

Letting 𝑘 → +∞, we have 𝜀 ≤ 𝜀 − 𝜓(𝜀), which is a
contradiction. Therefore, {𝑇𝑥

𝑛
} is a Cauchy sequence. By the

completeness of𝑋 and since 𝑇(𝐴
0
) is closed, we have 𝑇𝑥

𝑛
→

𝑇𝑢 ∈ 𝐵
0
. Moreover, there exists 𝑧 ∈ 𝐴

0
such that

𝑑 (𝑧, 𝑇𝑢) = 𝑑 (𝐴, 𝐵) . (62)

Since 𝐴
0
⊆ 𝑔(𝐴

0
), we obtain that 𝑧 = 𝑔𝑥 for some 𝑥 ∈ 𝐴

0
,

and then

𝑑 (𝑔𝑥, 𝑇𝑢) = 𝑑 (𝐴, 𝐵) . (63)

Again, since𝑇 is aweak proximal𝜓-contraction of the second
kind, we get

𝑑 (𝑇𝑥, 𝑇𝑥
𝑛+1

) ≤ 𝑑 (𝑇𝑔𝑥, 𝑇𝑔𝑥
𝑛+1

)

≤ 𝑑 (𝑇𝑢, 𝑇𝑥
𝑛
) − 𝜓 (𝑑 (𝑇𝑢, 𝑇𝑥

𝑛
))

≤ 𝑑 (𝑇𝑢, 𝑇𝑥
𝑛
) .

(64)

Letting 𝑛 → +∞, we obtain that 𝑑(𝑇𝑥, 𝑇𝑥
𝑛+1

) → 0 and
hence 𝑇𝑥 = 𝑇𝑢. This implies that

𝑑 (𝑔𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (65)

To prove the uniqueness, let 𝑥∗ be another point in 𝐴 such
that

𝑑 (𝑔𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (66)

If 𝑥 ̸= 𝑥
∗, since 𝑇 ∈ T

𝑔
is injective on 𝐴, we have

𝑑 (𝑇𝑥, 𝑇𝑥
∗
) ≤ 𝑑 (𝑇𝑔𝑥, 𝑇𝑔𝑥

∗
)

≤ 𝑑 (𝑇𝑥, 𝑇𝑥
∗
) − 𝜓 (𝑑 (𝑇𝑥, 𝑇𝑥

∗
))

< 𝑑 (𝑇𝑥, 𝑇𝑥
∗
)

(67)

which is a contradiction; thus we have 𝑇𝑥 = 𝑇𝑥
∗ and hence

𝑥 = 𝑥
∗.

If in Theorem 21 the mapping 𝑔 is the identity on 𝐴, we
get the following corollary.

Corollary 22. Let 𝐴 and 𝐵 be two nonempty subsets of a
complete metric space (𝑋, 𝑑). Suppose that 𝑇(𝐴

0
) is nonempty

and closed. Let 𝑇 : 𝐴 → 𝐵 satisfy the following conditions:

(a) 𝑇 is a weak proximal 𝜓-contraction of the second kind;
(b) 𝑇(𝐴

0
) ⊆ 𝐵
0
.

Then there exists a point 𝑥 ∈ 𝐴 such that 𝑑(𝑥, 𝑇𝑥) =

𝑑(𝐴, 𝐵). Moreover, if 𝑇 is injective on 𝐴, then the point 𝑥 such
that 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) is unique.

4. Best Proximity Point Theorem for
𝑔-Weak Contractions

The following result is a best proximity point theorem for 𝑔-
weak contractions. Recall that a non-self-mapping 𝑇 : 𝐴 →

𝐵 is 𝑔-weakly contractive if there exists 𝜓 ∈ Φ
𝑐
such that

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑔𝑥, 𝑔𝑦)−𝜓(𝑑(𝑔𝑥, 𝑔𝑦)), for all 𝑥, 𝑦 ∈ 𝐴, where
𝑔 : 𝐴 → 𝐴.
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Theorem 23. Let 𝐴 and 𝐵 be closed subsets of a complete
metric space (𝑋, 𝑑) such that𝐴

0
, 𝐵
0
̸= 0 and the pair (𝐴, 𝐵) has

the weak 𝑃-property. Suppose that the mappings 𝑔 : 𝐴 → 𝐴

and 𝑇 : 𝐴 → 𝐵 satisfy the following conditions:

(a) 𝑇 is a 𝑔-weak contraction;
(b) 𝑇(𝐴

0
) ⊂ 𝐵
0
;

(c) 𝐴
0
⊂ 𝑔(𝐴

0
).

Then, there exists an element 𝑥
∗

∈ 𝐴
0
such that

𝑑(𝑔𝑥
∗
, 𝑇𝑥
∗
) = 𝑑(𝐴, 𝐵). Further, if 𝑔 is one to one then we have

a unique element 𝑥∗ ∈ 𝐴 such that 𝑑(𝑔𝑥∗, 𝑇𝑥∗) = 𝑑(𝐴, 𝐵).

Proof. Let 𝑥
0
be an element of 𝐴

0
. In light of the fact that

𝑇(𝐴
0
) ⊂ 𝐵
0
and𝐴

0
⊂ 𝑔(𝐴

0
), it is ensured that there exists an

element 𝑥
1
∈ 𝐴
0
such that

𝑑 (𝑔𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) . (68)

Again, in view of the fact that 𝑇(𝐴
0
) ⊂ 𝐵
0
and𝐴

0
⊂ 𝑔(𝐴

0
), it

is guaranteed that there exists an element 𝑥
2
∈ 𝐴
0
such that

𝑑 (𝑔𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) . (69)

Continuing this process, we can find a sequence {𝑥
𝑛
} in 𝐴

0

such that

𝑑 (𝑔𝑥
𝑛
, 𝑇𝑥
𝑛−1

) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ N. (70)

Since (𝐴, 𝐵) has the weak 𝑃-property, we conclude that

𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≤ 𝑑 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) , ∀𝑛 ∈ N. (71)

Now, as 𝑇 is a 𝑔-weak contraction, we get

𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≤ 𝑑 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

≤ 𝑑 (𝑔𝑥
𝑛−1

, 𝑔𝑥
𝑛
) − 𝜓 (𝑑 (𝑔𝑥

𝑛−1
, 𝑔𝑥
𝑛
)) ,

(72)

where 𝜓 ∈ Φ
𝑐
(see Definition 8). If we set 𝑡

𝑛
= 𝑑(𝑔𝑥

𝑛
, 𝑔𝑥
𝑛+1

),
then {𝑡

𝑛
} is a nonincreasing sequence of nonnegative real

numbers and hence converges. Let 𝑡 ≥ 0 be the limit of the
sequence {𝑡

𝑛
}. Now let us claim that 𝑡 = 0. Suppose that

𝑡 > 0. Since 𝜓 is a nondecreasing function, we deduce that
𝜓(𝑡
𝑛
) ≥ 𝜓(𝑡) > 0, for all 𝑛 ∈ N. Then for any positive integer

𝑛, by (72), we get that

𝑡
𝑛+1

≤ 𝑡
𝑛
− 𝜓 (𝑡) . (73)

Now, for all 𝑛 > 𝑡
1
/𝜓(𝑡), by (73), we obtain that

𝑡
𝑛+1

≤ 𝑡
1
− 𝑛𝜓 (𝑡) < 0, (74)

a contradiction. Therefore 𝑡 = 0 and hence the sequence
{𝑑(𝑔𝑥

𝑛
, 𝑔𝑥
𝑛+1

)} converges to 0. As

𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) ≤ 𝑑 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) ≤ 𝑑 (𝑔𝑥

𝑛−1
, 𝑔𝑥
𝑛
) , (75)

we deduce that the sequence {𝑑(𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)} converges to 0.

Now, let us prove that {𝑇𝑥
𝑛
} is a Cauchy sequence. Let 𝜀 > 0

be given and we choose a positive integer 𝑛(𝜀) such that

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

) ≤ min { 𝜀
2
, 𝜓 (

𝜀

2
)} , (76)

for all 𝑛 ≥ 𝑛(𝜀). Fix 𝑛 ≥ 𝑛(𝜀) and let

𝐴 (𝑛, 𝜀) := {𝑥 ∈ 𝐴 : 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥) ≤ 𝜀} . (77)

Now, it is asserted that if 𝑥 ∈ 𝐴(𝑛, 𝜀) and 𝑢 ∈ 𝐴 is such
that 𝑑(𝑔𝑢, 𝑇𝑥) = 𝑑(𝐴, 𝐵), then 𝑢 ∈ 𝐴(𝑛, 𝜀). First, we note
that as 𝑑(𝑔𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵), then by the weak 𝑃-property

𝑑(𝑔𝑥
𝑛+1

, 𝑔𝑢) ≤ 𝑑(𝑇𝑥
𝑛
, 𝑇𝑥). Two cases will be considered to

establish this fact. Precisely, if 𝑑(𝑔𝑥
𝑛+1

, 𝑔𝑢) ≤ 𝜀/2, then it
follows that

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑢) ≤ 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1

) + 𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑢)

≤
𝜀

2
+ 𝑑 (𝑔𝑥

𝑛+1
, 𝑔𝑢) − 𝜓 (𝑑 (𝑔𝑥

𝑛+1
, 𝑔𝑢))

≤
𝜀

2
+ 𝑑 (𝑔𝑥

𝑛+1
, 𝑔𝑢) ≤ 𝜀.

(78)

On the other hand if 𝜀/2 < 𝑑(𝑔𝑥
𝑛+1

, 𝑔𝑢) ≤ 𝜀, then it follows
that

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑢) ≤ 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛+1

) + 𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑢)

≤ 𝜓(
𝜀

2
) + 𝑑 (𝑔𝑥

𝑛+1
, 𝑔𝑢) − 𝜓 (𝑑 (𝑔𝑥

𝑛+1
, 𝑔𝑢))

≤ 𝜓(
𝜀

2
) + 𝑑 (𝑔𝑥

𝑛+1
, 𝑔𝑢) − 𝜓(

𝜀

2
)

= 𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑢) ≤ 𝜀.

(79)

So, 𝑢 ∈ 𝐴(𝑛, 𝜀). Now, we prove that

𝑥
𝑛+𝑚

∈ 𝐴 (𝑛, 𝜀) , (80)

for all𝑚 ≥ 1. From 𝑥
𝑛
∈ 𝐴(𝑛, 𝜀) and 𝑑(𝑔𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵),

we deduce that 𝑥
𝑛+1

∈ 𝐴(𝑛, 𝜀); that is (80) holds for 𝑚 = 1.
Now, we assume that (80) holds for some 𝑚 ≥ 1. From,
𝑥
𝑛+𝑚

∈ 𝐴(𝑛, 𝜀) and 𝑑(𝑔𝑥
𝑛+𝑚+1

, 𝑇𝑥
𝑛+𝑚

) = 𝑑(𝐴, 𝐵), we deduce
that 𝑥

𝑛+𝑚+1
∈ 𝐴(𝑛, 𝜀); that is (80) holds for 𝑚 + 1 and hence

for all𝑚 ≥ 1.Thus, it follows that {𝑇𝑥
𝑛
} is a Cauchy sequence.

From the completeness of the space 𝑋, the sequence {𝑇𝑥
𝑛
}

converges to some element 𝑦∗ ∈ 𝐵. From 𝑑(𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑚+1

) ≤

𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑚
), we deduce that {𝑔𝑥

𝑛
} is also a Cauchy sequence.

As𝐴 is a complete subspace of𝑋, then there exists 𝑧 ∈ 𝐴 such
that 𝑔𝑥

𝑛
→ 𝑧. Therefore, we have

𝑑 (𝑧, 𝑦
∗
) = lim
𝑛→+∞

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , (81)

and so 𝑧 ∈ 𝐴
0
. In light of the fact that 𝐴

0
is contained in

𝑔(𝐴
0
), there is 𝑥∗ ∈ 𝐴

0
such that 𝑧 = 𝑔𝑥∗. Since 𝑇(𝐴

0
) ⊂ 𝐵
0
,

there exists an element 𝑥 ∈ 𝐴
0
such that

𝑑 (𝑔𝑥, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (82)

In view of the fact that 𝑇 is a 𝑔-weak contraction and (𝐴, 𝐵)
has the weak 𝑃-property and the continuity of 𝜓 at 𝑡 = 0, we
get

𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥) ≤ 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
∗
)

≤ 𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
∗
) − 𝜓 (𝑑 (𝑔𝑥

𝑛+1
, 𝑔𝑥
∗
)) .

(83)
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Letting 𝑛 → +∞, it follows that 𝑔𝑥 = 𝑔𝑥
∗. Thus, we

conclude that 𝑑(𝑔𝑥∗, 𝑇𝑥∗) = 𝑑(𝐴, 𝐵).
To assert the uniqueness, let us assume that 𝑧∗ ∈ 𝐴 is

another element such that 𝑑(𝑔𝑧∗, 𝑇𝑧∗) = 𝑑(𝐴, 𝐵). Then

𝑑 (𝑔𝑥
∗
, 𝑔𝑧
∗
) ≤ 𝑑 (𝑇𝑥

∗
, 𝑇𝑧
∗
)

≤ 𝑑 (𝑔𝑥
∗
, 𝑔𝑧
∗
) − 𝜓 (𝑑 (𝑔𝑥

∗
, 𝑔𝑧
∗
)) ,

(84)

fromwhich it follows that𝑔𝑥∗ = 𝑔𝑧∗ and hence 𝑧∗ ∈ 𝑔−1𝑔𝑥∗.
If 𝑔 is one to one then we deduce the uniqueness.

Remark 24. From the proof of Theorem 23, we obtain that
the method for getting the sequence {𝑔𝑥

𝑛
}, that is the

relation 𝑑(𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) = 𝑑(𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
), also gives an iterative

algorithm for computing solutions of coincidence equations.

If inTheorem 23 the mapping 𝑔 is the identity on𝐴, then
yields the following result which is a generalization of a result
due to Rhoades [25] to non-self-mappings.

Corollary 25. Let 𝐴 and 𝐵 be closed subsets of a complete
metric space (𝑋, 𝑑) such that𝐴

0
, 𝐵
0
̸= 0 and the pair (𝐴, 𝐵) has

the weak 𝑃-property. Suppose that the mapping 𝑇 : 𝐴 → 𝐵

satisfies the following conditions:

(i) 𝑇 is a 𝑔-weak contraction;
(ii) 𝑇(𝐴

0
) ⊂ 𝐵
0
.

Then, there exists a unique element 𝑥∗ ∈ 𝐴 such that
𝑑(𝑥
∗
, 𝑇𝑥
∗
) = 𝑑(𝐴, 𝐵). Further, for any fixed element 𝑥

0
∈ 𝐴
0
,

the iterative sequence {𝑥
𝑛
}, defined by 𝑑(𝑥

𝑛+1
, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵),

converges to the element 𝑥∗.

Example 26. Consider 𝑋 = R2 with the usual metric. Let us
define

𝐴 := {(𝑥, 𝑦) ∈ R
2
: 𝑥 = 0, 𝑦 ≥ 0} ,

𝐵 := {(𝑥, 𝑦) ∈ R
2
: 𝑥 = 1, 𝑦 ≥ 0} .

(85)

Then 𝐴 and 𝐵 are nonempty closed subsets of𝑋 and 𝐴
0
= 𝐴

and 𝐵
0
= 𝐵. Note that 𝑑(𝐴, 𝐵) = 1. Let 𝑔 : 𝐴 → 𝐴 and

𝑇 : 𝐴 → 𝐵 be defined as 𝑔(0, 𝑥) = (0, 2𝑥) and 𝑇(0, 𝑥) =
(1, 𝑥/(1 + 𝑥)). Define 𝜓 : [0, +∞) → [0, +∞) by 𝜓(𝑡) =
𝑡
2
/(1 + 𝑡), for all 𝑡 ≥ 0. Then, 𝑇 is a 𝑔-weak contraction. As

(𝐴, 𝐵) has the weak 𝑃-property and 𝑔 is one to one, we obtain
that (0, 0) ∈ 𝐴 is the unique 𝑔-best proximity point of 𝑇; that
is, 𝑑(𝑔(0, 0), 𝑇(0, 0)) = 𝑑(𝐴, 𝐵).

The following example shows that the weak𝑃-property in
Theorem 23 cannot be relaxed; that is, a 𝑔-weakly contractive
mapping 𝑇 : 𝐴 → 𝐵may not have a 𝑔-best proximity point
in 𝐴 if the pair (𝐴, 𝐵) does not have the weak 𝑃-property,
where 𝐴 and 𝐵 are nonempty closed subsets of a complete
metric space𝑋.

Example 27. Consider 𝑋 = R with the usual metric, 𝐴 =

{−10, 10} and 𝐵 = {−2, 2}.Then𝐴 and 𝐵 are nonempty closed
subsets of𝑋 with 𝐴

0
= 𝐴 and 𝐵

0
= 𝐵. Note that 𝑑(𝐴, 𝐵) = 8.

Let 𝑇 : 𝐴 → 𝐵 be a mapping given by 𝑇(−10) = 2

and 𝑇(10) = −2. It is easy to see that 𝑇 : 𝐴 → 𝐵 is a
contraction mapping with 𝑇(𝐴

0
) ⊂ 𝐵

0
and hence it is 𝑔-

weakly contractive, where 𝑔 is the identity mapping. Since
𝑑(𝑥, 𝑇𝑥) = 12 > 8 = 𝑑(𝐴, 𝐵), for all 𝑥 ∈ 𝐴, then 𝑇 has no
𝑔-best proximity points. It is worth noting that the pair (𝐴, 𝐵)
does not have the weak 𝑃-property.
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