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It is proved that, except for the uninorms and the nullnorms, there are no continuous weak uninorms who have no more than
one nontrivial idempotent element. And some examples of discontinuous weak uninorms are shown. All of these examples are not
𝑛-uninorms, thus not uninorms or nullnorms.

1. Introduction

A mapping from [0, 1]
2 to [0, 1] is called an AMC operator

[1, 2], if it is associative, monotone nondecreasing in both
variables, and commutative. The most famous AMC oper-
ator in fuzzy mathematics is the 𝑡-norms [3–5] and the 𝑡-
conorms. In recent years, the weak forms of the 𝑡-norms
interest the logisticians, such as the uninorms [6, 7], the
nullnorms (𝑡-operators) [8, 9], the 𝑛-uninorms [10, 11], and
the weak uninorms [12, 13].

It is easy to find that the weak uninorms are the most
general class; that is, all the 𝑡-norms, the 𝑡-conorms, the
(𝑛-)uninorms, and the nullnorms are weak uninorms. Con-
versely, it is not valid; that is, a weak uninorm could be none
of the others [12].

As we all know, for a weak uninorm 𝑅, its idempotent ele-
ments are the points 𝑥 subject to 𝑅(𝑥, 𝑥) = 𝑥. The elements
0 and 1 are the trivial idempotent elements of all the weak
uninorms. All the common examples of the nontrivial weak
uninorms are with infinite idempotents. Then, the following
problem arises.

Problem 1 (see [14]). Is there a nontrivial weak uninorm with
no more than one nontrivial idempotent elements?

This problem can be divided into two parts: continuous
weak uninorms and discontinuous ones. In this paper, wewill
give answers to this problem separately.

The contentwill be arranged as follows: in Section 2, some
basic definitions will be given, and it will be proved that there

is no nontrivial continuous weak uninorms with none or one
nontrivial idempotent element. In Section 3, some examples
of weak uninorms with nontrivial idempotent elements are
given. These examples give positive answers to the problem
above. Section 4 also shows examples of weak uninorms,
which have one ormore idempotent elements. Section 5 gives
a conclusion of this paper.

2. Continuous Weak Uninorms

Definition 2 (see [3, 4]). An AMC operator 𝑇 is a 𝑡-norm,
if ∀𝑥 ∈ [0, 1], 𝑇(𝑥, 1) = 𝑥.

An AMC operator 𝑆 is a 𝑡-conorm, if for any 𝑥 ∈ [0, 1],
𝑆(𝑥, 0) = 𝑥.

Definition 3 (see [6, 7]). An AMC operator 𝑈 is said to be
uninorm if there exists some element 𝑒 ∈ [0, 1] called the
neutral element such that for all 𝑥 ∈ [0, 1], 𝑈(𝑥, 𝑒) = 𝑥.

Clearly, if 𝑒 = 1 then 𝑈 is a 𝑡-norm and if 𝑒 = 0 then 𝑈

is a 𝑡-conorm [7].

Definition 4. AnAMCoperator 𝑉 is called a nullnorm [8] (𝑡-
operator [9]) if there exists an absorbing element 𝜆 ∈ [0, 1];
that is, 𝑉(𝑥, 𝜆) = 𝜆, such that for all𝑥 ∈ [0, 𝜆], 𝑉(𝑥, 0) = 𝑥

and for all𝑥 ∈ [𝜆, 1], 𝑉(𝑥, 1) = 𝑥.

Obviously, if 𝜆 = 0, then the nullnorm is a 𝑡-norm; and
if 𝜆 = 1, then it is a 𝑡-conorm.
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Definition 5 (see [10, 11]). {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
}
𝑧
1
,𝑧
2
,...,𝑧
𝑛−1

is called
an 𝑛-neutral element of an AMC operator 𝑈

𝑛
, if for 0 = 𝑧

0
<

𝑧
1

< ⋅ ⋅ ⋅ < 𝑧
𝑛

= 1 and 𝑒
𝑖
∈ [𝑧
𝑖−1

, 𝑧
𝑖
], we have 𝑈

𝑛
(𝑒
𝑖
, 𝑥) = 𝑥,

∀𝑥 ∈ [𝑧
𝑖−1

, 𝑧
𝑖
].

An AMC operator is called an 𝑛-uninorm, if it has an 𝑛-
neutral element {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
}
𝑧
1
,𝑧
2
,...,𝑧
𝑛−1

.

Obviously, each uninorm and nullnorm is an 𝑛-uninorm.
And the converse is not valid. Examples could be found in
[10].

Definition 6 (see [12, 13]). An AMC operator 𝑅 is named
a weak uninorm if for any 𝑥 ∈ [0, 1], there exists some
element 𝑢

𝑥
∈ [0, 1] such that 𝑅(𝑥, 𝑢

𝑥
) = 𝑥.

If 𝑢
𝑥
in particular is a fixed value 𝑒 for all 𝑥 ∈ [0, 1],

then 𝑒 is called the neutral element of 𝑅. And in this
case, 𝑅 comes to be uninorm [7]. If there is some element 𝜆 ∈

[0, 1], subject to for all𝑥 ∈ [0, 𝜆], 𝑢
𝑥

= 0, and for all 𝑥 ∈

[𝜆, 1], 𝑢
𝑥
= 1, it is a nullnorm [8].

One can easily see that 𝑛-uninorms are weak uninorms.
However, a weak uninorm may not be an 𝑛-uninorm and
thus neither a nullnorm nor a uninorm. Examples are in
[12, 13].

As a result, the problem in the introduction arises. And
now, let us give an answer to it: there are no nontrivial
continuous weak uninorms, but there exist discontinuous
ones.

Theorem 7 (Theorem 7 in [15]). If 𝑅 is an AMC operator
on [0, 1] that satisfies the following conditions:

(i) its idempotent elements are just 0 and 1;
(ii) there exists some element 𝑥 ∈ (0, 1) with 𝑅(𝑥, 𝑥) > 𝑥;
(iii) there exists some element 𝑦 ∈ (0, 1) with 𝑅(𝑦, 𝑦) < 𝑦;

then 𝑅 is not continuous, and (𝑑, 𝑑) is a discontinuous point,
with 𝑑 the demarcation point.

From this theorem, we have the following theorem.

Theorem 8. Let 𝑅 be a continuous weak uninorm with no
nontrivial idempotents. Then, we have the following results:

(1) if there exists some 𝑥 ∈ (0, 1) subject to 𝑅(𝑥, 𝑥) < 𝑥,
then 𝑅 is a 𝑡-norm;

(2) if there exists some 𝑥 ∈ (0, 1) subject to 𝑅(𝑥, 𝑥) > 𝑥,
then 𝑅 is a 𝑡-conorm.

Before the proof, let us show the following lemma firstly.

Lemma 9. Let 𝑅 be a continuous AMC operator with no
idempotent elements except 0 and 1.

(1) If for all 𝑥 ∈ (0, 1), 𝑅(𝑥, 𝑥) < 𝑥, then for any 𝑥, 𝑦 ∈

(0, 1), there exists some natural number 𝑛, subject
to 𝑦
𝑛

𝑅
< 𝑥.

(2) If for all 𝑥 ∈ (0, 1), 𝑅(𝑥, 𝑥) > 𝑥, then for any 𝑥, 𝑦 ∈

(0, 1), there exists some natural number 𝑛, subject
to 𝑦
𝑛

𝑅
> 𝑥.

Proof. (1) Since for all𝑥 ∈ (0, 1), 𝑅(𝑥, 𝑥) < 𝑥, for any 𝑛,

𝑥
𝑛+1

𝑅
= 𝑅 (𝑥

2

𝑅
, 𝑥
𝑛−1

𝑅
) ≤ 𝑅 (𝑥, 𝑥

𝑛−1

𝑅
) = 𝑥
𝑛

𝑅
. (1)

Thus, the limit lim
𝑛→∞

𝑥
𝑛

𝑅
exists, denoted by lim

𝑛→∞
𝑥
𝑛

𝑅
=

𝑧. From the continuity of 𝑅, we could know that

𝑧
2

𝑅
= ( lim
𝑛→∞

𝑥
𝑛

𝑅
)

2

= lim
𝑛→∞

𝑥
2𝑛

𝑅
= 𝑧. (2)

Thismeans that 𝑧 is an idempotent element of 𝑅. Because 𝑧 <

𝑥, 𝑧 = 0, that is, for any 𝑥 ∈ (0, 1), the limit of 𝑥
𝑛

𝑅
is 0. Thus,

for any 𝑥, 𝑦 ∈ (0, 1), there exists some natural number 𝑛,
subject to 𝑦

𝑛

𝑅
< 𝑥.

(2) It is similarly.

Now, let us show the proof of Theorem 8.

Proof. Since a weak uninorm is an AMC operator. From
Theorem 7, we could know that the squares of the elements
in (0, 1) are either all strictly smaller than themselves or all
strictly bigger than themselves; that is,

either ∀𝑥 ∈ [0, 1] , 𝑅 (𝑥, 𝑥) < 𝑥,

or ∀𝑥 ∈ (0, 1) , 𝑅 (𝑥, 𝑥) > 𝑥.

(3)

(1) for all𝑥 ∈ (0, 1), 𝑅(𝑥, 𝑥) < 𝑥. Let’s show that 𝑅 is
a 𝑡-norm. From the definition of weak uninorms, for
any 𝑥 ∈ (0, 1), there is some 𝑦 ∈ [0, 1], subject
to 𝑅(𝑥, 𝑦) = 𝑥. If 𝑦 ̸= 1, from Lemma 9, there exists
some 𝑛, subject to 𝑦

𝑛

𝑅
< 𝑥. Thus, 𝑥 = 𝑅(𝑥, 𝑦) = ⋅ ⋅ ⋅ =

𝑅(𝑥, 𝑦
𝑛

𝑅
) ≤ 𝑅(𝑥, 𝑥) < 𝑥, contradiction.Therefore, 𝑦 =

1; that is, for any 𝑥 ∈ (0, 1), 𝑅(𝑥, 1) = 𝑥. From
the monotonicity of 𝑅, we could know that 𝑅(0, 1) =

0 and from the idempotence of 1, we have 𝑅(1, 1) = 1.
As a result,

∀𝑥 ∈ [0, 1] , 𝑅 (𝑥, 1) = 𝑥, (4)

that is, 𝑅 is a 𝑡-norm.
(2) Similarly.

This theorem shows that there are no continuous weak
uninorms with no nontrivial idempotents, except the 𝑡-
norms and the 𝑡-conorms. For weak uninorms with just one
nontrivial idempotent element, we have a similar result.

Theorem 10. There are no continuous weak uninorms with
just one idempotent element 𝜆 ∈ (0, 1), except the uninorms
and the nullnorms.

Proof. Suppose that 𝑅 is a continuous weak uninorm, with
just one nontrivial idempotent element 𝜆. Let’s show that it is
either a uninorm or a nullnorm.

Let 𝑅

(𝑥, 𝑦) = 𝑅(𝜆𝑥, 𝜆𝑦)/𝜆, and 𝑅


(𝑥, 𝑦) = 𝑅((1 −

𝜆)𝑥 + 𝜆, (1 − 𝜆)𝑦 + 𝜆)/(1 − 𝜆), for all 𝑥, 𝑦 ∈ [0, 1].
Obviously, 𝑅 and 𝑅

 are continuous AMC operators. Let’s
show that they are weak uninorms, that is, for each element
𝑥, 𝑢
𝑥
exists.
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Since 𝜆, 0, and 1 are idempotent elements and 𝑅 is
continuous, from Theorem 2.8 in [14] (or Definition 3.1 in
[9]), 𝑅 and 𝑅

 are continuous weak uninorms.
Obviously, they have no nontrivial idempotent elements.

FromTheorem 8, they are 𝑡-norms or 𝑡-conorms.

(1) If 𝑅
 is a 𝑡-normand 𝑅

 is a 𝑡-conorm, then 𝜆 is the
neutral element of 𝑅; that is, 𝑅 is a uninorm.

(2) If 𝑅
 is a 𝑡-conorm and 𝑅

 is a 𝑡-norm, then 𝜆 is
an absorbing element 𝜆 ∈ [0, 1], and for all 𝑥 ∈

[0, 𝜆], 𝑉(𝑥, 0) = 𝑥 and for all 𝑥 ∈ [𝜆, 1], 𝑉(𝑥, 1) = 𝑥;
that is, 𝑅 is a nullnorm.

(3) If both of them are 𝑡-norms, let us show that 𝑅 is
a 𝑡-norm, a special uninorm. It just needs to show
for all𝑥 ∈ [0, 𝜆],

𝑅 (𝑥, 1) = 𝑅 (𝑅 (𝑥, 𝜆) , 1) = 𝑅 (𝑥, 𝑅 (𝜆, 1)) = 𝑅 (𝑥, 𝜆) = 𝑥,

(5)

which could get that 𝑅 and 𝑅
 are 𝑡-norms.

(4) Similarly, if both of themare 𝑡-conorms, 𝑅 is also a 𝑡-
conorm, a special uninorm.

3. Weak Uninorms with No Nontrivial
Idempotent Elements

In this section, wewill give some examples of weak uninorms,
which have no nontrivial idempotent elements. And none of
them is an 𝑛-uninorm; that is, all the examples in this section
are nontrivial weak uninorms.

Example 11. The unit interval [0, 1] is divided into infinitely
many sections as (1 − (1/2

𝑛−1
), 1 − (1/2

𝑛
)], with 𝑛 = 1, 2, . . .

and 1. Let 𝑎
𝑛
= 1 − (1/2

𝑛−1
); define a mapping 𝑅

1
as follows:

𝑅
1
(𝑥, 𝑦)

=

{
{

{
{

{

𝑎
𝑛
+ 2
𝑛−1

(𝑥 − 𝑎
𝑛
) (𝑦 − 𝑎

𝑛
) , if (𝑥, 𝑦) ∈ (𝑎

𝑛
, 𝑎
𝑛+1

]
2

,

1, if 𝑥 = 1, or 𝑦 = 1,

min {𝑥, 𝑦} , otherwise.
(6)

Then, 𝑅
1
is a weak uninorm with no nontrivial idempo-

tent elements; that is, its idempotent elements are just 0 and
1. But it is not an 𝑛-uninorm and thus neither a uninorm nor
a nullnorm.

Actually, for (𝑥, 𝑦) ∈ (𝑎
𝑛
, 𝑎
𝑛+1

]
2, 𝑅
1
(𝑥, 𝑦) = 𝑎

𝑛
+ ((1/2)𝑇

𝑃

(2
𝑛
(𝑥 − 𝑎

𝑛
), 2
𝑛
(𝑦 − 𝑎

𝑛
))/2
𝑛
). For convenience, it is shortly

rewritten as

𝑅
1
(𝑥, 𝑦) =

{
{
{

{
{
{

{

1

2

𝑇
𝑃
, if (𝑥, 𝑦) ∈ (𝑎

𝑛
, 𝑎
𝑛+1

]
2

,

1, if 𝑥 = 1, or 𝑦 = 1,

min {𝑥, 𝑦} , otherwise.

(7)

In this formula, there is a symbol (1/2)𝑇
𝑃
. It means an

injection of the operator (1/2)𝑇
𝑃
, that is, for all (𝑥, 𝑦) ∈

(𝑎
𝑛
, 𝑎
𝑛+1

]
2, 𝑅
1
(𝑥, 𝑦) = 𝑎

𝑛
+((1/2)𝑇

𝑃
(2
𝑛
(𝑥−𝑎
𝑛
), 2
𝑛
(𝑦−𝑎
𝑛
))/2
𝑛
),

instead of 𝑅
1
(𝑥, 𝑦) = (1/2)𝑇

𝑃
(𝑥, 𝑦). Similar for the following

examples.

Proof. Obviously, 𝑅
1
is monotone and commutative. Let’s

show it is associative.
For any 𝑥, 𝑦, 𝑧 ∈ [0, 1], if one of them is 0 or 1, then it is

trivial.
If there is some 𝑛, subject to 𝑥, 𝑦, 𝑧 ∈ (𝑎

𝑛
, 𝑎
𝑛+1

], from the
associativity of 0.5𝑇

𝑃
, 𝑅
1
is associative.

If there are some 𝑚 < 𝑛, subject to 𝑥, 𝑦 ∈ (𝑎
𝑛
, 𝑎
𝑛+1

]

and 𝑧 ∈ (𝑎
𝑚
, 𝑎
𝑚+1

], then we have 𝑅
1
(𝑥, 𝑦) > 𝑎

𝑛
≥ 𝑎
𝑚+1

≥

𝑧, 𝑅
1
(𝑥, 𝑧) = 𝑧 and 𝑅

1
(𝑦, 𝑧) = 𝑧. Therefore,

𝑅
1
(𝑅
1
(𝑥, 𝑦) , 𝑧) = 𝑧 = 𝑅

1
(𝑥, 𝑧) = 𝑅

1
(𝑥, 𝑅
1
(𝑦, 𝑧)) . (8)

If there are some 𝑚 < 𝑛, subject to 𝑥 ∈ (𝑎
𝑛
, 𝑎
𝑛+1

] and
𝑦, 𝑧 ∈ (𝑎

𝑚
, 𝑎
𝑚+1

], then 𝑅
1
(𝑥, 𝑦) = 𝑦, 𝑅

1
(𝑥, 𝑧) = 𝑧 and

𝑅
1
(𝑦, 𝑧) < 𝑎

𝑚+1
≤ 𝑎
𝑛

≤ 𝑥. Thus, 𝑅
1
(𝑥, 𝑅
1
(𝑦, 𝑧)) = 𝑅

1
(𝑦, 𝑧).

Therefore,

𝑅
1
(𝑅
1
(𝑥, 𝑦) , 𝑧) = 𝑅

1
(𝑦, 𝑧) = 𝑅

1
(𝑥, 𝑅
1
(𝑦, 𝑧)) . (9)

The last case is that 𝑥 ∈ (𝑎
𝑛
, 𝑎
{𝑛+1}

], 𝑦 ∈ (𝑎
𝑚
, 𝑎
{𝑚+1}

] and
𝑧 ∈ (𝑎

𝑙
, 𝑎
{𝑙+1}

], with different 𝑙, 𝑚, 𝑛. In this case, the result is
always equal to the smallest element; that is, the associative
law is valid. Now, the associativity of 𝑅

1
has already been

proved.
Next, let us show that 𝑅

1
is a weak uninorm with no

idempotent elements, except 0 and 1.
For any 𝑥 ∈ (0, 1), there is some 𝑛, subject to 𝑥 ∈

(𝑎
𝑛
, 𝑎
𝑛+1

]. Let 𝑦 = 𝑎
𝑛+1

+ (1/2
𝑛+3

), then 𝑅
1
(𝑥, 𝑦) = 𝑥.

Together with 𝑅
1
(0, 0) = 0 and 𝑅

1
(1, 1) = 1, 𝑅

1
is a weak

uninorm.
Since (1/2)𝑇

𝑃
(𝑥, 𝑥) < 𝑥, for all𝑥 ∈ (0, 1], we have

𝑅
1
(𝑦, 𝑦) < 𝑦, for all𝑦 ∈ (0, 1).
As a result, 𝑅

1
is a weak uninorm with idempotent

elements no more than 0 and 1.
It is obvious that it is not an 𝑛-uninorm, thus, neither a

uninorm nor a nullnorm.

Note that it is not difficult to find that ([0, 1), 𝑅
1
|
[0,1)
2), in

which 𝑅
1
|
[0,1)
2 is the restriction of the weak uninorm 𝑅

1
on

the square [0, 1)
2, is the ordinal sum [16] of the

semigroups (((1− (1/2
𝑛−1

), 1− (1/2
𝑛
)], 𝑇
𝑃
))
𝑛∈𝑁

. But 𝑅
1
itself

is not. Actually, similar to the proof of Example 11, we can
obtain the following property.

Theorem 12. Let 𝑅 be an AMC operator on [0, 1] with
𝑅(1, 1) = 1. If ([0, 1), 𝑅|

[0,1)
2) is the ordinal sum of the semi-

groups ((𝑋
𝛼
, 𝑇
𝛼
))
𝛼∈𝐴

, in which 𝐴 is an infinite set, each 𝑋
𝛼
is

in the form (𝑎, 𝑏], and each 𝑇
𝛼
is Archimedean, then 𝑅 is a

weak uninorm with no idempotent elements, except 0 and 1.

Next, let us construct some more examples of weak
uninorms. In these examples, if the ordinal sums are replaced
as in this theorem, then they are still weak uninorms with no
idempotent elements.

Example 13. The unit interval [0, 1] is divided into infinitely
many sections as [1/2

𝑛−1
, 1/2
𝑛
), with 𝑛 = 1, 2, . . . and 0.
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Then, the following defined 𝑅
2
is a weak uninorm with no

non trivial idempotent elements:

𝑅
2
(𝑥, 𝑦) =

{
{
{

{
{
{

{

0.5 + 0.5𝑆
𝑃
, if (𝑥, 𝑦) ∈ [

1

2
𝑛
,

1

2
𝑛−1

)

2

,

0, if 𝑥 = 0, or 𝑦 = 0,

max {𝑥, 𝑦} , otherwise;

(10)

that is, for (𝑥, 𝑦) ∈ [1/2
𝑛
, 1/2
𝑛−1

)
2, 𝑅
2
(𝑥, 𝑦) = (1/2

𝑛
) + (0.5 +

0.5𝑆
𝑃
(2
𝑛
(𝑥 − (1/2

𝑛
)), 2
𝑛
(𝑦 − (1/2

𝑛
)))/2
𝑛
).

𝑅
2
is the dual of 𝑅

1
. Thus, it is a weak uninorm.

Example 14. For some given 𝑛
0
, define a mapping 𝑅

3
as

follows:

𝑅
3
(𝑥, 𝑦)

= {

min {𝑥, 𝑦} , if 𝑥 = 1, 𝑦 ≤ 𝑎
𝑛
0

or 𝑦 = 1, 𝑥 ≤ 𝑎
𝑛
0

,

𝑅
1
(𝑥, 𝑦) , otherwise,

(11)

in which 𝑎
𝑛
0

= 1 − (1/2
𝑛
0
). Then, 𝑅

3
is a weak uninorm with

idempotent elements 0 and 1 only.
Note that, in this example, if 𝑎

𝑛
0

̸= 1 − (1/2
𝑛
0
), the asso-

ciativity will not be valid; that is, 𝑅
3
will no longer be a weak

uninorm.

Example 15. In 𝑅
1
, if 𝑇
𝑃
is replaced by 𝑇

𝐿
, denoted as 𝑅



1
,

then it will no longer be a weak uninorm. Since the associa-
tivity is not valid,

𝑅


1
(0.2, 𝑅



1
(0.6, 0.6)) = 𝑅



1
(0.2, 0.5) < 0.2,

𝑅


1
(𝑅


1
(0.2, 0.6) , 0.6) = 𝑅



1
(0.2, 0.6) = 0.2.

(12)

This example shows that 𝑇
𝑃
could not be replaced by any

Archimedean 𝑡-norm.

Example 16. The following is a weak uninorm with only
trivial idempotent elements:

𝑅
4
(𝑥, 𝑦) =

{
{

{
{

{

𝑅
1
, if (𝑥, 𝑦) ∈ [0, 0.5)

2
,

1, if (𝑥, 𝑦) ∈ [0.5, 1]
2
,

max {𝑥, 𝑦} , otherwise.
(13)

The demarcation point of 𝑅
4
is 0.5.

Example 17. Let 𝑅
5
be defined by

𝑅
5
(𝑥, 𝑦)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑅
1
, if (𝑥, 𝑦) ∈ [0, 0.5)

2
,

min {𝑥, 𝑦} , if (𝑥, 𝑦) ∈ [0.5, 1] × [0, 0.25]

∪ [0, 0.25] × [0.5, 1] ,

1, if (𝑥, 𝑦) ∈ [0.5, 1]
2
,

max {𝑥, 𝑦} , otherwise.

(14)

Then, 𝑅
5
is a weak uninorm with nontrivial idempotent

elements. See Figure 1.

(0,0)

(0,1)

(1,0)

(1,1)

0.5

0.5

Min

Min

Max

Max

1

R1

Figure 1: Graphical representation of 𝑅
5
.

4. Examples of Weak Uninorms with One or
More Nontrivial Idempotent Elements

Example 18. The following defined 𝑅
6
and 𝑅

7
are weak uni-

norms, with just one nontrivial idempotent element 0.5:

𝑅
6
(𝑥, 𝑦) =

{
{
{
{

{
{
{
{

{

𝑅
1
, if (𝑥, 𝑦) ∈ [0, 0.5)

2
,

𝑅
1
, if (𝑥, 𝑦) ∈ [0.5, 1)

2
,

1, if 𝑥 = 1, or 𝑦 = 1,

0.5, otherwise,

𝑅
7
(𝑥, 𝑦) =

{
{

{
{

{

𝑅
1
, if (𝑥, 𝑦) ∈ [0, 0.5)

2
,

𝑇
𝐿
, if (𝑥, 𝑦) ∈ (0.5, 1]

2
,

0.5, otherwise.

(15)

Example 19. Define a mapping 𝑅
8
by

𝑅
8
(𝑥, 𝑦) =

{
{

{
{

{

𝑇
𝑃
, if (𝑥, 𝑦) ∈ [0, 0.5)

2
,

𝑅
1
, if (𝑥, 𝑦) ∈ (0.5, 1]

2
,

min {𝑥, 𝑦} , otherwise.
(16)

Then,𝑅
8
is a weak uninormwith idempotent elements 0, 0.5,

and 1.

Examples 18 and 19 are constructed by 𝑅
1
. The next

example is not in this case.

Example 20. Define mappings 𝑅
9
and 𝑅

10
(see Figure 2) as

follows:

𝑅
9
(𝑥, 𝑦)

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑇
𝑃
, if (𝑥, 𝑦) ∈ [0.6, 1]

2
,

𝑆
𝑃
, if (𝑥, 𝑦) ∈ [0.3, 0.6]

2

min {𝑥, 𝑦} , if 𝑥 < 0.3, 𝑦 = 1; or 𝑥 = 1, 𝑦 < 0.3,

0.6, if (𝑥, 𝑦) ∈ [0.6, 1] × [0.3, 0.6]

∪ [0.3, 0.6] × [0.6, 1] ,

0, otherwise,
(17)
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(0,0)

(0,1)

(1,0)

(1,1)

0.6

0.6

0.3

0.3

Min

Min

0.6

0.6

0

0

0

0

(R2)
Sp

Tp

Figure 2: Graphical representation of 𝑅
9
(or 𝑅

10
).

𝑅
10

(𝑥, 𝑦)

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑇
𝑃
, if (𝑥, 𝑦) ∈ [0.6, 1]

2
,

𝑅
2
, if (𝑥, 𝑦) ∈ (0.3, 0.6]

2

min {𝑥, 𝑦} , if 𝑥 ≤ 0.3, 𝑦 = 1; or 𝑥 = 1, 𝑦 ≤ 0.3,

0.6, if (𝑥, 𝑦) ∈ [0.6, 1] × [0.3, 0.6]

∪ [0.3, 0.6] × [0.6, 1] ,

0, otherwise.
(18)

Then 𝑅
9
is a weak uninorm with two nontrivial idempotent

elements 0.3 and 0.6; 𝑅
10

is a weak uninorm with just one
nontrivial idempotent element 0.6.

5. Conclusion

In this paper, it is proved that there are no nontrivial contin-
uous weak uninorms with none or one idempotent element.
Moreover, some nontrivial examples of weak uninorms are
given. These examples are with no more than two nontrivial
idempotent elements, which is a positive answer to the
question in [14].
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