
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 695647, 6 pages
http://dx.doi.org/10.1155/2013/695647

Research Article
Linear Simultaneous Equations’ Neural Solution
and Its Application to Convex Quadratic Programming
with Equality-Constraint

Yuhuan Chen,1 Chenfu Yi,2,3 and Jian Zhong1

1 Center for Educational Technology, Gannan Normal University, Ganzhou 341000, China
2 Research Center for Biomedical and Information Technology, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China

3 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China

Correspondence should be addressed to Chenfu Yi; itchenve@gmail.com

Received 7 August 2013; Accepted 18 September 2013

Academic Editor: Yongkun Li

Copyright © 2013 Yuhuan Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A gradient-based neural network (GNN) is improved and presented for the linear algebraic equation solving. Then, such a GNN
model is used for the online solution of the convex quadratic programming (QP) with equality-constraints under the usage of
Lagrangian function and Karush-Kuhn-Tucker (KKT) condition. According to the electronic architecture of such a GNN, it is
known that the performance of the presented GNN could be enhanced by adopting different activation function arrays and/or
design parameters. Computer simulation results substantiate that such aGNN could obtain the accurate solution of theQP problem
with an effective manner.

1. Introduction

A variety of scientific research and practical applications can
be finalized as a matrix equation solving problem [1–6]. For
example, the analysis of stability and perturbation for a con-
trol system could be viewed as the solution of Sylvestermatrix
equation [1, 2]; the stability and/or robustness properties of
a control system could be obtained by the Lyapunov matrix
equations solving [4–6]. Therefore, the real-time solution to
matrix equation plays a fundamental role in numerous fields
of science, engineering, and business.

As for the solution of matrix equations, many numerical
algorithms have been proposed. In general, the minimal
arithmetic operations of numerical algorithms are usually
proportional to the cube of the dimension of the coefficient
matrix, that is,𝑂(𝑁3) [7]. In order to be satisfied with the low
complexity and real-time requirements, recently, numerous
novel neural networks have been exploited based on the
hardware implementation [2, 4, 5, 8–13]. For example, Tank
and Hopfield solved the linear programming problems by
using their proposed Hopfield neural networks (HNN) [9],

which promoted the development of the neural networks in
the optimization and other application problems. Wang in
[10] proposed a kind of recurrent neural networks (RNN)
models for the online solution of the linear simultaneous
equations in parallel-processing circuit-implementation. In
the previous work [2, 4, 5, 11], By Zhang’s design method,
a new type of RNN models is proposed for the solution
of linear matrix-vector equation associated with the time-
varying coefficient matrices in real-time.

In this paper, based on the Wang neural networks [10],
we present an improved gradient-based neural model for the
linear simultaneous equation, and then, such neural model
is applied to solve the quadratic programming with equality-
constraints. Much investigation and analysis on the Wang
neural network have been presented in the previous work
[10, 12, 13]. To make full use of the Wang neural network,
we transform the convex quadratic programming into the
general linear matrix-equation. Moreover, inspired by the
design method of Zhang neural networks [2, 4, 5, 11, 12],
the gradient-based neural network (GNN), that is, the Wang
neural network, is improved, developed, and investigated for

2 Journal of Applied Mathematics

the online solution of the convex quadratic programming
with the usage of Lagrangian function and Karush-Kuhn-
Tucker (KKT) condition. In Section 5, the computer simula-
tion results show that, by improving their structures, we could
also obtain the better performance for the existing neural
network models.

2. Neural Model for Linear
Simultaneous Equations

In this section, a gradient-based neural networks (GNN)
model is presented for the linear simultaneous equations:

𝐴𝑥 = 𝑏, (1)

where the nonsingular coefficient matrix 𝐴 := [𝑎
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛

and the coefficient vector 𝑏 := [𝑏
1
, 𝑏
2
, 𝑏
3
, . . . , 𝑏

𝑛
]
𝑇
∈ 𝑅
𝑛 are

given as constants and 𝑥 ∈ 𝑅
𝑛 is an unknown vector to be

solved to make (1) hold true.
According to the traditional gradient-based algorithm [8,

10, 12], a scalar-valued norm-based energy function 𝜀(𝑥) :=

‖𝐴𝑥 − 𝑏‖
2

2
/2 is firstly constructed, and then evolving along

the descent direction resulting from such energy function, we
could obtain the linear GNNmodel for the solution of linear
algebraic (1); that is,

𝑥̇ = −𝛾𝐴
𝑇
(𝐴𝑥 − 𝑏) , (2)

where 𝛾 > 0 denotes the constant design parameter (or
learning rate) used to scale the converge rate. To improve
the convergence performance of neural networks, inspired
by Zhang’s neural networks [2, 4, 5, 11, 12], the linear model
(2) could be improved and reformulated into the following
general nonlinear form:

𝑥̇ = −Γ𝐴
𝑇
𝐹 (𝐴𝑥 − 𝑏) , (3)

where design parameter Γ ∈ 𝑅𝑛×𝑛 is a positive-definitematrix,
which is used to scale the convergence rate of the solution.
For simplicity, we can use 𝛾𝐼 in place of Γ with 𝛾 > 0 ∈ 𝑅

[4, 11]. In addition, the activation-function-array 𝐹(⋅) : 𝑅𝑛 →
𝑅
𝑛 is a matrix-valued mapping, in which each scalar-valued

process unit 𝑓(⋅) is a monotonically increasing odd function.
In general, four basic types of activation functions, linear,
power, sigmoid, and power-sigmoid functions, can be used
for the construction of neural solvers [4, 11]. The behavior
of these four functions is exhibited in Figure 1, which shows
that a different convergence performance could be achieved
by using different activation functions. Furthermore, new
activation functions could also be generated readily based on
the above four activation functions. As for the neural model
(3), we have the following theorem.

Theorem 1. Consider a constant nonsingular coefficient-
matrix 𝐴 ∈ 𝑅

𝑛×𝑛 and coefficient vector 𝑏 ∈ 𝑅
𝑛. If a

monotonically increasing odd activation-function array 𝐹(⋅) is
used, the neural state𝑥(𝑡) of neuralmodel (3), starting fromany
initial state 𝑥(0) ∈ 𝑅

𝑛, would converge to the unique solution
𝑥
∗
= 𝐴
−1
𝑏 of linear equation (1).

Proof. Let solution error 𝑥(𝑡) = 𝑥(𝑡) − 𝑥
∗
(𝑡). For brevity,

hereafter argument 𝑡 is omitted. Then, from (3), we have

̇̂𝑥 = −𝛾𝐴
𝑇
𝐹 (𝐴𝑥) , (4)

where Γ = 𝛾𝐼 for simplicity. Therefore, its entry-form could
be written as

̇̂𝑥
𝑖
= −𝛾

𝑛

∑

𝑗=1

𝑎
𝑗𝑖
𝑓(

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗
𝑥
𝑗
)) , ∀𝑖, 𝑗 ∈ {1, 2, 3, . . . , 𝑛} .

(5)

Then, to analyze subsystem (5), we can define a Lyapunov
candidate function as V

𝑖
(𝑡) = (𝑥

2

𝑖
)/2. Obviously, V

𝑖
(𝑡) >

0 for 𝑥
𝑖
̸= 0, and V

𝑖
(𝑡) = 0 only for 𝑥

𝑖
= 0. Thus, the

Lyapunov candidate function V
𝑖
(𝑡) is a nonnegative function.

Furthermore, combining subsystem (5), we could get the
time-derivative function of V

𝑖
(𝑡) as follows

𝑑V
𝑖
(𝑡)

𝑑𝑡
= 𝑥
𝑖
̇̂𝑥
𝑖
= −𝛾𝑥

𝑖

𝑛

∑

𝑗=1

𝑎
𝑗𝑖
𝑓(

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗
𝑥
𝑗
))

= −𝛾(

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗
𝑥
𝑗
))

𝑇

𝑓(

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗
𝑥
𝑗
)) = −𝛾𝑦

𝑇
𝑓 (𝑦) ,

(6)

where 𝑦 = ∑
𝑛

𝑗=1
(𝑎
𝑖𝑗
𝑥
𝑗
). Since 𝑓(⋅) is an odd monotonically

increasing function, we have 𝑓(−𝑢) = −𝑓(𝑢) and

𝑓 (𝑢)

{{

{{

{

> 0 if 𝑢 > 0,

= 0 if 𝑢 = 0,

< 0 if 𝑢 < 0.

(7)

Therefore, 𝛾𝑦𝑇𝑓(𝑦) > 0 if 𝑦 ̸= 0, and 𝛾𝑦𝑇𝑓(𝑦) = 0 if and only
if𝑦 = 0. In other words, the time-derivative V̇

𝑖
(𝑡) = −𝛾𝑦

𝑇
𝑓(𝑦)

is nonpositive for any 𝑦. This can guarantee that V̇
𝑖
(𝑡) is a

negative-definite function. By Lyapunov theory [14, 15], each
entry of solution error 𝑥

𝑖
in subsystem (5) can converge to

zero; that is, 𝑥
𝑖
→ 0. This means that solution error 𝑥(𝑡) =

𝑥(𝑡) − 𝑥
∗

→ 0 as time 𝑡 → ∞. Therefore, the neural
state 𝑥(𝑡) of neural model (3) could converge to the unique
solution 𝑥

∗
= 𝐴
−1
𝑏 of linear equation (1). The proof on the

convergence of neural model (3) is thus completed.

3. Problem Formulation on
Quadratic Programming

An optimization problem characterized by a quadratic objec-
tion function and linear constraints is named as a quadratic
programming (QP) problem [16–18]. In this paper, we con-
sider the following quadratic programming problem with
equality-constraints:

minimize 𝑥
𝑇
𝑃𝑥

2
+ 𝑞
𝑇
𝑥,

subject to 𝐴𝑥 = 𝑏,

(8)

Journal of Applied Mathematics 3

−2 −1 0 1 2
−2

−1

0

1

2

(a) Linear function

−1

−2 −1 0 1 2
−2

0

1

2

(b) Sigmoid function

−1

−2 −1 0 1 2
−2

0

1

2

(c) Power function

−1

−2 −1 0 1 2
−2

0

1

2

(d) Power-sigmoid function

Figure 1: Behavior of the four basic activation functions.

where 𝑃 ∈ 𝑅
𝑛×𝑛 is a positive definite Hessian matrix,

coefficients 𝑞 ∈ 𝑅𝑛 and 𝑏 ∈ 𝑅𝑚 are vectors, and 𝐴 ∈ 𝑅
𝑚×𝑛 is a

full row-rankmatrix.They are known as constant coefficients
of the to be solved QP problem (8).

Therefore, 𝑥 ∈ 𝑅
𝑛 is unknown to be solved so as to make

QP problem (8) hold true; especially, if there is no constraint,
(8) is also called quadratic minimum (QM) problem. Mathe-
matically, (8) can be written as minimize𝑓(𝑥) = (1/2)𝑥

𝑇
𝑃𝑥+

𝑞
𝑇
𝑥. For analysis convenience, let 𝑥∗ denote the theoretical

solution of QP problem (8).
To solve QP problem (8), firstly, let us consider the

following general form of quadratic programming:

minimize 𝑓 (𝑥) ,

subject to ℎ
𝑗 (𝑥) = 0, 𝑗 ∈ {1, 2, 3, . . . , 𝑚} .

(9)

As for (9), a Lagrangian function could be defined as

𝐿 (𝑥, 𝜆) = 𝑓 (𝑥) +

𝑚

∑

𝑗=1

𝜆
𝑗
ℎ
𝑗
(𝑥) = 𝑓 (𝑥) + 𝜆

𝑇
ℎ (𝑥) , (10)

where 𝜆 = [𝜆
1
, 𝜆
2
, 𝜆
3
, . . . , 𝜆

𝑚
]
𝑇 denotes the Lagrangian

multiplier vector and equality constraint ℎ(𝑥) = [ℎ
1
(𝑥),

ℎ
2
(𝑥), ℎ
3
(𝑥), . . . , ℎ

𝑚
(𝑥)]
𝑇. Furthermore, by following the

previously-mentioned Lagrangian function and Karush-
Kuhn-Tucker (KKT) condition, we have

𝜕𝐿 (𝑥, 𝜆)

𝜕𝑥
= 𝑃𝑥 + 𝑞 + 𝐴

𝑇
𝜆 = 0,

𝜕𝐿 (𝑥, 𝜆)

𝜕𝜆
= 𝐴𝑥 − 𝑏 = 0.

(11)

Then, (11) could be further formulated as the following
matrix-vector form:

𝑃̃𝑥 = −𝑞, (12)

where 𝑃̃ := [𝑃 𝐴
𝑇

𝐴 0𝑚×𝑚] ∈ 𝑅
(𝑛+𝑚)×(𝑛+𝑚), 𝑥 := [

𝑥

𝜆
] ∈ 𝑅
(𝑛+𝑚), and

𝑞 := [
𝑞

−𝑏
] ∈ 𝑅
(𝑛+𝑚). Therefore, we can obtain the solution 𝑥 ∈

𝑅
𝑛 of (8) by transforming QP problem (8) into matrix-vector

equation (12). In otherwords, to get the solution𝑥 ∈ 𝑅
𝑛 of (8),

QP problem (8) is firstly transformed into the matrix-vector
equation (12), which is a linearmatrix-vector equation similar

4 Journal of Applied Mathematics

to the linear simultaneous equations (1), and then,we thus can
make full use of the neural solvers presented in Section 2 to
solve the QP problem (8). Moreover, the first 𝑛 elements of
solution 𝑥(𝑡) of (12) compose the neural solution 𝑥(𝑡) of (8),
and the Lagrangian vector 𝜆 consists of the last𝑚 elements.

4. Application to QP Problem Solving

For analysis and comparison convenience, Let 𝑥∗ = [𝑥
∗
𝑇

,

𝜆
∗
𝑇

]
𝑇 denote the theoretical solution of (12). Since QP

problem (8) could be formulated into the matrix-vector form
(12), we can directly utilize the neural solvers (2) and (3) to
solve problem (12). Therefore, neural solver (2) used to solve
(12) can be written as the following linear form:

̇̃𝑥 = −𝛾𝑃̃
𝑇
𝑃̃𝑥 − 𝛾𝑃̃

𝑇
𝑞 = −𝛾𝑃̃

𝑇
(𝑃̃𝑥 + 𝑞) . (13)

If such linear model is activated by the nonlinear function
arrays, we have

̇̃𝑥 = −Γ𝑃̃
𝑇
𝐹 (𝑃̃𝑥 + 𝑞) . (14)

In addition, according to model (14), we can also draw its
architecture for the electronic realization, as illustrated in
Figure 2. From model (14) and Figure 2, we readily know
that different performance of (14) can be achieved by using
different activation function arrays𝐹(⋅) and design parameter
Γ. In the next section, the previously-mentioned four basic
functions are used to simulatemodel (14) for achieving differ-
ent convergence performance. In addition, from Theorem 1
and [4, 12], we have the following theoremon the convergence
performance of GNN model (14).

Theorem 2. Consider the time-invariant strictly-convex
quadratic programming problem (8). If a monotonically
increasing odd activation-function array 𝐹(⋅) is used, the
neural state𝑥(𝑡) := [𝑥

𝑇
, 𝜆
𝑇
]
𝑇 of GNNmodel (14) could globally

converge to the theoretical solution 𝑥∗(𝑡) := [𝑥
∗
𝑇

, 𝜆
∗
𝑇

]
𝑇 of the

linear matrix-vector form (12). Note that, the first 𝑛 elements
of 𝑥(𝑡) are corresponding to the theoretical solution 𝑥

∗ of
QP problem (8), and the last 𝑚 elements are those of the
Lagrangian vector 𝜆.

5. Simulation and Verification

In this section, neural model (14) is applied to solve the QP
problem (8) in real-time for verification. As an illustrative
example, consider the following QP problem:

minimize 𝑥
2

1
+ 2𝑥
2

2
+ 𝑥
2

3
− 2𝑥
1
𝑥
2
+ 𝑥
3
,

subject to 𝑥
1
+ 𝑥
2
+ 𝑥
3
= 4,

2𝑥
1
− 𝑥
2
+ 𝑥
3
= 2,

𝑥
1
> 0, 𝑥

2
> 0, 𝑥

3
> 0.

(15)

F(·)∑

+

+q̃
P̃
T

P̃

ẋ̃
∫−Γ

x̃

Figure 2: Block diagram of the GNNmodel (14).

0 5 10 15
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time t (s)

x̃(t)

Figure 3: Neural state 𝑥(𝑡) of QP problem (15) by the GNN model
(14) with the usage of power-sigmoid function and design parameter
𝛾 = 1.

Obviously, we can write the equivalent matrix-vector form of
QP problem (8) with the following coefficients:

𝑃 = [

[

2 −2 0

−2 4 0

0 0 2

]

]

, 𝑞 = [

[

0

0

1

]

]

,

𝐴 = [
1 1 1

2 −1 1
] , 𝑏 = [

2

4
] .

(16)

For analysis and compassion, we can utilize the MATLAB
routine “quadprog” to obtain the theoretical solution of QP
(15), that is, 𝑥∗ = [1.9091, 1.9545, 0.1364]

𝑇.
According to Figure 2, GNN model (14) is applied to the

solution of QP problem (15) in real-time, together with the
usage of power-sigmoid function array and design parameter
𝛾 = 1. As shown in Figure 3, we know that, when starting
from randomly-generated initial state 𝑥

0
= [−2, 2] ∈ 𝑅

5,
the neural state 𝑥(𝑡) of GNN model (14) is fit well with the
theoretical solution after 10 seconds or so. That is, GNN
model (14) could achieve the exact solution. Note that the first
𝑛 = 3 elements of neural solution are corresponding to the
theoretical solution 𝑥∗ = [1.9091, 1.9545, 0.1364]

𝑇, while the
last𝑚 = 2 elements are the Lagrangian multiplier vector.

In addition, the residual error ‖𝑃̃𝑥 + 𝑞‖2
𝐹
could be used to

track the solution-process. The trajectories of residual error
could be shown in Figure 4, which is generated by GNN
model (14) solving QP problem (15) activated by different
activation function arrays, that is, linear, power, sigmoid,
and power-sigmoid functions, respectively. Obviously, under

Journal of Applied Mathematics 5

0 5 10 15
0

2

4

6

8

10

12

11 12 13

Sigmoid
Power-sigmoid Power

Linear

−0.5
0

0.5
1

1.5

Time t (s)

||P̃x̃ + q̃||2F

Figure 4: Online solution of QP problem (15) by GNN (14) with
design parameter 𝛾 = 1 and the four basic activations.

Table 1: Performance of GNN model by using different design
parameter 𝛾 and activations.

𝛾 GNNlin GNNpower GNNsig GNNps

1 1.74 × 10
−2

0.267 2.07 × 10
−2

3.68 × 10
−3

10 1.89 × 10
−3

8.93 × 10
−2

2.56 × 10
−3

1.03 × 10
−3

100 7.24 × 10
−4

2.65 × 10
−2

9.12 × 10
−4

3.32 × 10
−4

the same simulation environments (such as, design parameter
and GNN model (14)), different convergence performance
could be achieved when different activation function arrays
are used. As shown in Table 1, we use GNNlin , GNNpower,
GNNsig, and GNNps to denote the performance of residual
error obtained by GNNmodel (14) activated by linear, power,
sigmoid, and power-sigmoid function arrays and have the
following simulative results.

(i) When the same design parameter 𝛾 is used, the
performance of GNNps is the best, while the residual-
error ofGNNpower is bigger. For example, whendesign
parameter 𝛾 = 1, (GNNps = 3.68×10

−3
) < (GNNlin =

1.74×10
−2
) < (GNNsig = 2.07×10

−2
) < (GNNpower =

0.267).
(ii) When the same activation functions are used, the

performance of residual-error would be better with
the increase of the value of design parameter 𝛾. For
example, when linear functions are used, the values
of residual-error are 1.74 × 10

−2, 1.89 × 10
−3, and

7.24 × 10
−4 corresponding to 𝛾 = 1, 𝛾 = 10, and

𝛾 = 100, respectively.

Among the four basic activation functions, we could
achieve the best convergence performance when using
power-sigmoid functions under the same situations. There-
fore, GNNmodel (14) has the best convergence performance
when using power-sigmoid function, while when using
power function, there exist apparent residual errors between

the neural state 𝑥(𝑡) and theoretical solution 𝑥
∗. We thus

generally use power-sigmoid activation function to achieve
the superior convergence performance, as shown in Figure 3.

6. Conclusions

On the basis of the Wang neural network, an improved
gradient-based neural network has been presented to the
solution of the convex quadratic programming problem in
real-time. Compared to the other three activation functions,
the power-sigmoid function is the best choice for the superior
convergence performance. Computer simulation results fur-
ther substantiate that the presented GNN model could solve
the convex QP problem with accuracy and efficiency, and
the convergence performance could be obtained by using the
power-sigmoid activation function.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thiswork is supported by theNational Natural Science Foun-
dation of China under Grant 61363076 and the Programs
for Foundations of Jiangxi Province of China (GJJ13649,
GJJ12367, GJJ13435, and 20122BAB211019) and partially sup-
ported by the Shenzhen Programs (JC201005270257A and
JC201104220255A).

References

[1] P. Liu, S. Zhang, and Q. Li, “On the positive definite solutions of
a nonlinear matrix equation,” Journal of Applied Mathematics,
vol. 2013, Article ID 676978, 6 pages, 2013.

[2] Y. Zhang, D. Jiang, and J.Wang, “A recurrent neural network for
solving sylvester equation with time-varying coefficients,” IEEE
Transactions on Neural Networks, vol. 13, no. 5, pp. 1053–1063,
2002.

[3] Y. Li, M. Reisslein, and C. Chakrabarti, “Energy-efficient video
transmission over a wireless link,” IEEE Transactions on Vehic-
ular Technology, vol. 58, no. 3, pp. 1229–1244, 2009.

[4] C. Yi, Y. Chen, and X. Lan, “Comparison on neural solvers for
the Lyapunov matrix equation with stationary & nonstationary
coefficients,” Applied Mathematical Modelling, vol. 37, no. 4, pp.
2495–2502, 2013.

[5] F. Ding and T. Chen, “Gradient based iterative algorithms
for solving a class of matrix equations,” IEEE Transactions on
Automatic Control, vol. 50, no. 8, pp. 1216–1221, 2005.

[6] M. A. Ghorbani, O. Kisi, and M. Aalinezhad, “A probe into the
chaotic nature of daily streamflow time series by correlation
dimension and largest Lyapunov methods,” Applied Mathemat-
ical Modelling, vol. 34, no. 12, pp. 4050–4057, 2010.

[7] Y. Zhang and W. E. Leithead, “Exploiting Hessian matrix
and trust-region algorithm in hyperparameters estimation of
Gaussian process,” Applied Mathematics and Computation, vol.
171, no. 2, pp. 1264–1281, 2005.

[8] X. Zou, Y. Tang, S. Bu, Z. Luo, and S. Zhong, “Neural-network-
based approach for extracting eigenvectors and eigenvalues of

6 Journal of Applied Mathematics

real normal matrices and some extension to real matrices,”
Journal of Applied Mathematics, vol. 2013, Article ID 597628, 13
pages, 2013.

[9] D. W. Tank and J. J. Hopfield, “Simple neural optimization
networks: an A/D converter, signal decision circuit, and a
linear programming circuit,” IEEE Transactions on Circuits and
Systems, vol. 33, no. 5, pp. 533–541, 1986.

[10] J. Wang, “Electronic realisation of recurrent neural network for
solving simultaneous linear equations,” Electronics Letters, vol.
28, no. 5, pp. 493–495, 1992.

[11] Y. Zhang, C. Yi, and W. Ma, “Simulation and verification of
Zhang neural network for online time-varying matrix inver-
sion,” Simulation Modelling Practice and Theory, vol. 17, no. 10,
pp. 1603–1617, 2009.

[12] C. Yi and Y. Zhang, “Analogue recurrent neural network for
linear algebraic equation solving,”Electronics Letters, vol. 44, no.
18, pp. 1078–1080, 2008.

[13] K. Chen, “Robustness analysis of Wang neural network for
online linear equation solving,” Electronic Letters, vol. 48, no.
22, pp. 1391–1392, 2012.

[14] Y. Zhang, “Dual neural networks: design, analysis, and appli-
cation to redundant robotics,” in Progress in Neurocomputing
Research, pp. 41–81, Nova Science Publishers, New York, NY,
USA, 2008.

[15] Y. Zhang and J. Wang, “Global exponential stability of recur-
rent neural networks for synthesizing linear feedback control
systems via pole assignment,” IEEE Transactions on Neural
Networks, vol. 13, no. 3, pp. 633–644, 2002.

[16] N. Petrot, “Some existence theorems for nonconvex variational
inequalities problems,” Abstract and Applied Analysis, vol. 2010,
Article ID 472760, 9 pages, 2010.

[17] S. Burer and D. Vandenbussche, “A finite branch-and-bound
algorithm for nonconvex quadratic programming via semidefi-
nite relaxations,”Mathematical Programming, vol. 113, no. 2, pp.
259–282, 2008.

[18] Z. Dostál and R. Kučera, “An optimal algorithm for minimiza-
tion of quadratic functions with bounded spectrum subject to
separable convex inequality and linear equality constraints,”
SIAM Journal on Optimization, vol. 20, no. 6, pp. 2913–2938,
2010.

