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We consider the existence of (𝑉, 𝑉)-pullback attractor for nonautonomous primitive equations of large-scale ocean and atmosphere
dynamics in a three-dimensional bounded cylindrical domain by verifying pullbackD condition.

1. Introduction

This paper is concerned with the existence of pullback attrac-
tor for the following nonautonomous primitive equations of
large-scale ocean and atmosphere dynamics:
𝜕V

𝜕𝑡
+ (V ⋅ ∇) V − (∫

𝑧

−ℎ

∇ ⋅ V (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕V

𝜕𝑧
+ ∇𝑝

𝑠
(𝑥, 𝑦, 𝑡)

− ∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁 +
1

Ro
𝑓V⊥ + 𝐿

1
V = 0,

(1)
𝜕𝑇

𝜕𝑡
+ V ⋅ ∇𝑇 − (∫

𝑧

−ℎ

∇ ⋅ V (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑇

𝜕𝑧
+ 𝐿

2
𝑇 = 𝑄,

(2)
with the following boundary conditions:

𝜕V

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0
= 0,

𝜕V

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=−ℎ
= 0,

V ⋅ ⃗𝑛|
Γ𝑙
= 0,

𝜕V

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ𝑙
= 0,

(3)

(
1

𝑅𝑡
2

𝜕𝑇

𝜕𝑧
+ 𝛼𝑇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0
= 0,

𝜕𝑇

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=−ℎ
= 0,

𝜕𝑇

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ𝑙
= 0,

(4)
and the initial data

V (𝑥, 𝑦, 𝑧, 𝜏) = V
0
(𝑥, 𝑦, 𝑧) ,

𝑇 (𝑥, 𝑦, 𝑧, 𝜏) = 𝑇
0
(𝑥, 𝑦, 𝑧) ,

(5)

in the three-dimensional bounded cylindrical domain

Ω = 𝑀 × (−ℎ, 0) , (6)

where 𝑀 is a bounded domain in R2 with smooth bound-
ary 𝜕𝑀 and ℎ is a positive constant, the unknown
functions V(𝑥, 𝑦, 𝑧, 𝑡) = (V

1
(𝑥, 𝑦, 𝑧, 𝑡), V

2
(𝑥, 𝑦, 𝑧, 𝑡)), 𝑇(𝑥, 𝑦,

𝑧, 𝑡), 𝑝
𝑠
(𝑥, 𝑦, 𝑡) denote the horizontal velocity, the temper-

ature, and the pressure at 𝑧 = 0, respectively, V⊥ =

(−V
2
, V

1
), 𝑓 = 𝑓

0
+ 𝛽𝑦 is the Coriolis parameter, Ro is the

Rossby number which measures the significant influence of
the Earth’s rotation to the dynamical behaviour of the ocean,
𝑄(𝑥, 𝑦, 𝑧, 𝑡) is a given heat source, Γ

𝑙
= {(𝑥, 𝑦, 𝑧) ∈ Ω :

(𝑥, 𝑦) ∈ 𝜕𝑀, −ℎ ≤ 𝑧 ≤ 0} denotes the lateral boundary of
Ω, ⃗𝑛 is the normal vector to Γ

𝑙
, and 𝛼 is a positive constant

related with the turbulent heating on the surface of the ocean.
The viscosity and the heat diffusion operators 𝐿

1
and 𝐿

2
are

given by

𝐿
1
= −

1

Re
1

Δ −
1

Re
2

𝜕2

𝜕𝑧2
,

𝐿
2
= −

1

Rt
1

Δ −
1

Rt
2

𝜕2

𝜕𝑧2
,

(7)

where Re
1
, Re

2
are positive constants representing the hor-

izontal and vertical Reynolds numbers, respectively, and
Rt

1
, Rt

2
are positive constants which stand for the horizontal

and vertical eddy diffusivity, respectively. For the sake of
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simplicity, let∇ = (𝜕
𝑥
, 𝜕

𝑦
) be the horizontal gradient operator,

and let Δ = 𝜕2
𝑥
+ 𝜕2

𝑦
be the horizontal Laplacian.

Nonautonomous equations appear in many applications
in the natural sciences, and so they are of great importance
and interest. The long-time behavior of solutions of such
equations has been studied extensively in recent years (see
[1–12], etc.). The first attempt was to extend the notion of
global attractor to the nonautonomous case, leading to the
concept of the so-called uniform attractor (see [13]). It is
remarkable that the conditions ensuring the existence of the
uniform attractor is parallel those for the autonomous case.
However, one disadvantage of the uniform attractor is that
it does not need to be “invariant,” unlike the global attractor
for autonomous systems. Moreover, it is well known that the
trajectories may be unbounded for many nonautonomous
systems when the time tends to infinity, and there does
not exist a uniform attractor for these systems. In order to
overcome this drawback, the concept of pullback attractor
has been introduced for the nonautonomous case.The theory
of pullback attractors has been developed for both nonau-
tonomous and random dynamical systems, and it has been
shown to be very useful in the understanding of the dynamics
of nonautonomous dynamical systems (see [6]).

Large-scale dynamics of oceans and atmosphere is gov-
erned by the primitive equations which are derived from the
Navier-Stokes equations with rotation, coupled to thermo-
dynamics and salinity diffusion-transport equations, which
account for the buoyancy forces and stratification effects
under the Boussinesq approximation. Moreover, due to the
shallowness of the oceans and atmosphere, that is, the depth
of the fluid layer is very small in comparison to the radius
of the Earth, the vertical large-scale motion in the oceans
and atmosphere is much smaller than the horizontal one,
which in turn leads to modeling the vertical motion by the
hydrostatic balance. As a result, one can obtain the system
(1)–(4), which is known as the primitive equations for large-
scale oceans and atmosphere dynamics (see [14–18]). In the
case of ocean dynamics, we know that one has to add the
diffusion-transport equation of the salinity to the system
(1)–(4), but we will omit it here in order to simplify our
mathematical presentation. However, we emphasize that our
results are equally validwhen the salinity effects are taken into
account.

In recent years, the primitive equations of the atmosphere,
the ocean, and the coupled atmosphere-ocean have been
extensively studied from the mathematical point of view
(see [14–16, 19–26], etc.). The mathematical framework of
the primitive equations of the ocean was formulated, and
the existence of weak solutions was proved by Lions et
al. in [15]. In [16], the authors proved the existence and
the uniqueness of local in time strong solutions of the
primitive equations of the ocean. The global existence of
strong solutions of the three-dimensional primitive equations
of large-scale ocean, by assuming that the initial data are small
enough, and the local existence of strong solutions of the
three-dimensional primitive equations of large-scale ocean
for all initial data were proved by Guillén-González et al.
in [27]. In [19], the authors proved the maximum principles

for the primitive equations of the atmosphere. The existence
and uniqueness of strong solutions, global in time, to the
primitive equations in thin domains for a large set of initial
data whose sizes depend inversely on the thickness were
established in [23]. In [28], Temam and Ziane considered the
local existence of strong solutions for the primitive equations
of the atmosphere, the ocean, and the coupled atmosphere-
ocean. Asymptotic analysis of the primitive equations under
the small depth assumption was established in [24]. In [22],
the authors proved the existence of weak solutions and
trajectory attractors for the moist atmospheric equations in
geophysics. The existence and uniqueness of global strong
solutions for the initial boundary value problem of the three-
dimensional viscous primitive equations of large-scale ocean
were established by the authors in [14]. In [20], the authors
considered the long-time dynamics of the primitive equations
of large-scale atmosphere and obtained a weakly compact
global attractor A which captures all the trajectories with
respect to 𝑉-weak topology. Under the assumption of the
initial data (V

0
, 𝑇

0
) ∈ 𝑉 ∩ (𝐻2(Ω))

3, the existence of
compact global attractor in 𝑉 for the primitive equations
of large-scale atmosphere was established by the elliptic
regularity theory in [21]. In [26], the authors proved the
global existence and uniqueness of 𝑧-weak solutions when
the initial conditions satisfy some regularity. The existence
of global attractors in 𝑉 and (𝐻2(Ω))

3 for three-dimensional
viscous primitive equations of large-scale atmosphere in log-
pressure coordinates was established in [29]. In [30], the
authors proved the existence of (𝑉, 𝑉)-global attractor for
the primitive equations of large-scale atmosphere and ocean
dynamics by use of the Aubin-Lions compactness theorem.
Attractor is an important concept in the study of infinite-
dimensional dynamical systems; however, the existence of
pullback attractor for the three-dimensional nonautonomous
viscous primitive equations of large-scale atmosphere and
ocean dynamics remains unsolvable. In this paper, we
prove the existence of pullback attractor for nonautonomous
equations (1)–(5) by verifying pullback D condition. This
paper is organized as follows. In Section 2, we introduce the
mathematical framework of the system (1)–(5) and recall
some auxiliary lemmas used to give some a priori estimates
of strong solutions for (1)–(5) in Section 3, which are used to
obtain the existence of (𝑉, 𝑉)-pullback absorbing set. Finally,
in Section 4,we are devoted to proving the existence of (𝑉, 𝑉)-
pullback attractor for the three dimensional viscous primitive
equations of large-scale ocean and atmosphere dynamics by
verifying pullbackD condition.

Throughout this paper, let𝑋 be a Banach space endowed
with the norm ‖ ⋅ ‖

𝑋
, let ‖𝑢‖

𝑝
be the 𝐿𝑝(Ω)-norm of 𝑢, and let

𝐶 be positive constants, which may be different from line to
line.

2. Preliminaries

2.1. Functional Spaces and Some Lemmas. To study problem
(1)–(5), we introduce some function spaces. Let

V
1
= {V ∈ (𝐶

∞

(Ω))
2

:
𝜕V

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0
= 0,

𝜕V

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=−ℎ
= 0,
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V ⋅ ⃗𝑛|
Γ𝑙
= 0,

𝜕V

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ𝑙
= 0,

∫
0

−ℎ

∇ ⋅ V (𝑥, 𝑦, 𝜁) 𝑑𝜁 = 0} ,

V
2
= {𝑇 ∈ 𝐶

∞

(Ω) : (
1

Rt
2

𝜕𝑇

𝜕𝑧
+ 𝛼𝑇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0
= 0,

𝜕𝑇

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=−ℎ
= 0,

𝜕𝑇

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ𝑙
= 0} .

(8)

Denote the closure of V
1
, V

2
by 𝑉

1
, 𝑉

2
with respect to the

following norms, respectively, defined as follows:

‖V‖2 =
1

Re
1

∫
Ω

|∇V|2𝑑𝑥 𝑑𝑦𝑑𝑧 +
1

Re
2

∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑧V
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧,

‖𝑇‖
2

=
1

Rt
1

∫
Ω

|∇𝑇|
2

𝑑𝑥 𝑑𝑦𝑑𝑧 +
1

Rt
2

∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑧𝑇
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

+ 𝛼∫
𝑀

|𝑇 (𝑧 = 0)|
2

𝑑𝑥 𝑑𝑦,

(9)

for any V ∈ V
1
, 𝑇 ∈ V

2
, and let𝐻

1
= the closure ofV

1
with

respect to the norm (𝐿
2

(Ω))
2

, 𝑉 = 𝑉
1
×𝑉

2
, 𝐻 = 𝐻

1
× 𝐿

2

(Ω).
Now, we recall some lemmas used in the sequel.

Lemma 1 (see [13, 31]). Let 𝑦(𝑡), 𝑎(𝑡), ℎ(𝑡) be three positive
locally integrable functions on [𝑡

0
,∞), and for some 𝑟 > 0 and

all 𝑡 ≥ 𝑡
0
, the following inequalities hold:

𝑦
󸀠

≤ 𝑎 (𝑡) 𝑦 + ℎ (𝑡) ,

∫
𝑡+𝑟

𝑡

𝑦 (𝜏) 𝑑𝜏 ≤ 𝑋, ∫
𝑡+𝑟

𝑡

𝑎 (𝜏) 𝑑𝜏 ≤ 𝐴,

∫
𝑡+𝑟

𝑡

ℎ (𝜏) 𝑑𝜏 ≤ 𝐵.

(10)

Then,

𝑦 (𝑡) ≤ (
𝑋

𝑟
+ 𝐵) 𝑒

𝐴

, (11)

for all 𝑡 ≥ 𝑡
0
+ 𝑟.

Lemma 2 (see [14]) (Minkowski inequality). Let (𝑋, 𝜇),
(𝑌, ]) be two measure spaces and 𝑓(𝑥, 𝑦) be a measurable
function about 𝜇 × ] on 𝑋 × 𝑌. If for 𝑎.𝑒. 𝑦 ∈ 𝑌,𝑓(⋅, 𝑦) ∈

𝐿𝑝(𝑋, 𝜇)(1 ≤ 𝑝 ≤ ∞), and ∫
𝑌
‖𝑓(⋅, 𝑦)‖

𝐿
𝑝
(𝑋,𝜇)

𝑑](𝑦) < ∞, then
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑌

𝑓 (⋅, 𝑦) 𝑑] (𝑦)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝑋,𝜇)

≤ ∫
𝑌

󵄩󵄩󵄩󵄩𝑓(⋅, 𝑦)
󵄩󵄩󵄩󵄩𝐿𝑝(𝑋,𝜇) 𝑑] (𝑦) . (12)

2.2. New Formulation. In this subsection, we divide (1) into
two systems with respect to V and Ṽ defined by

V (𝑥, 𝑦) =
1

ℎ
∫
0

−ℎ

V (𝑥, 𝑦, 𝜁) 𝑑𝜁,

Ṽ = V − V.

(13)

Taking the average of (1) in the 𝑧 direction over the
interval (−ℎ, 0) and using the boundary conditions (3), we
obtain

𝜕V

𝜕𝑡
+ (V ⋅ ∇) V + (Ṽ ⋅ ∇) Ṽ + (∇ ⋅ Ṽ) Ṽ + ∇𝑝

𝑠
(𝑥, 𝑦, 𝑡) −

1

Re
1

ΔV

+
1

Ro
𝑓V⊥ − ∫

𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁 = 0,

(14)

with the boundary conditions

∇ ⋅ V = 0, V ⋅ ⃗𝑛|
Γ𝑙
= 0,

𝜕V

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ𝑙
= 0. (15)

Subtracting (14) from (1), we get

𝜕Ṽ

𝜕𝑡
+ (Ṽ ⋅ ∇) Ṽ − (∫

𝑧

−ℎ

∇ ⋅ Ṽ (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕Ṽ

𝜕𝑧

+ (Ṽ ⋅ ∇) V − (Ṽ ⋅ ∇)Ṽ + (∇ ⋅ Ṽ)Ṽ

+ (V ⋅ ∇) Ṽ − ∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁

+ ∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁 +
1

Ro
𝑓Ṽ⊥ + 𝐿

1
Ṽ = 0,

(16)

with the boundary conditions

𝜕Ṽ

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ𝑢
= 0,

𝜕Ṽ

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ𝑏
= 0,

Ṽ ⋅ ⃗𝑛|
Γ𝑙
= 0,

𝜕Ṽ

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ𝑙
= 0.

(17)

3. Some a Priori Estimates of Strong Solutions

3.1. The Well Posedness of Strong Solutions. We start with
the following general existence and uniqueness of solutions
which can be obtained by the standard Fatou-Galerkin
methods [31] and the similar methods established in [14].
Here, we only state the result as follows.

Theorem 3. Suppose that 𝑄 ∈ 𝐿
2

loc(R; 𝐿
2(Ω)). Then for any

𝜏 ∈ R, any initial data (V
0
, 𝑇

0
) ∈ 𝑉, and any T > 0,

there exists a unique solution (V, 𝑇) ∈ 𝐶([0,T]; 𝑉) of (1)–
(5). Furthermore, the solution is continuous with respect to the
initial data in 𝑉.

By Theorem 3, we can define a family of continuous
processes {𝑈(𝑡, 𝜏) : −∞ < 𝜏 ≤ 𝑡 < ∞} in 𝑉 by

𝑈 (𝑡, 𝜏) (V
0
, 𝑇

0
) = (V (𝑡) , 𝑇 (𝑡)) := (V (𝑡; 𝜏, V

0
) , 𝑇 (𝑡; 𝜏, 𝑇

0
)) ,

∀𝑡 ≥ 𝜏,

(18)
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where (V(𝑡), 𝑇(𝑡)) is the solution of (1)–(5) with initial data
(V(𝜏), 𝑇(𝜏)) = (V

0
, 𝑇

0
) ∈ 𝑉. That is, a family of mappings

𝑈(𝑡, 𝜏) : 𝑉 → 𝑉 satisfies

𝑈 (𝜏, 𝜏) = id (identity) ,

𝑈 (𝑡, 𝜏) = 𝑈 (𝑡, 𝑟) 𝑈 (𝑟, 𝜏) ∀𝜏 ≤ 𝑟 ≤ 𝑡.
(19)

3.2. Some a Priori Estimates about Strong Solutions. In this
subsection, assume that 0 < 𝜎 ≤ min{1/(4Rt

2
ℎ
2

+

(4ℎ/𝛼)), 1/2𝐶
𝑀
Re

1
} and sup

𝑟∈R ∫
𝑟

𝑟−1
‖𝑄(𝑠)‖

2

2
𝑑𝑠 < ∞; we give

some a priori estimates of strong solutions which imply the
existence of pullback absorbing set.

3.2.1. 𝐿2(Ω) Estimate of 𝑇. Taking the inner product of (2)
with 𝑇 in 𝐿2(Ω) and combining the boundary conditions (4),
we get

1

2

𝑑

𝑑𝑡
‖𝑇‖

2

2
+ ‖𝑇‖

2

= −∫
Ω

[V ⋅ ∇𝑇 − (∫
𝑧

−ℎ

∇ ⋅ V (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)

×
𝜕𝑇

𝜕𝑧
]𝑇𝑑𝑥𝑑𝑦𝑑𝑧 + ∫

Ω

𝑄𝑇𝑑𝑥𝑑𝑦𝑑𝑧

= ∫
Ω

𝑄𝑇𝑑𝑥𝑑𝑦𝑑𝑧.

(20)

Integrating by parts and using the boundary conditions (3),
we obtain

∫
Ω

[V ⋅ ∇𝑇 − (∫
𝑧

−ℎ

∇ ⋅ V (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑇

𝜕𝑧
]𝑇𝑑𝑥𝑑𝑦𝑑𝑧 = 0.

(21)

Since

‖𝑇‖
2

2
≤ 2ℎ‖𝑇 (𝑧 = 0)‖

2

𝐿
2
(𝑀)

+ 2ℎ
2󵄩󵄩󵄩󵄩𝜕𝑧𝑇

󵄩󵄩󵄩󵄩
2

2
, (22)

it is implied that

‖𝑇‖
2

2

2Rt
2
ℎ2 + (2ℎ/𝛼)

≤
2ℎ‖𝑇(𝑧 = 0)‖

2

𝐿
2
(𝑀)

+ 2ℎ2
󵄩󵄩󵄩󵄩𝜕𝑧𝑇

󵄩󵄩󵄩󵄩
2

2

2Rt
2
ℎ2 + (2ℎ/𝛼)

≤
1

Rt
2

∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑧𝑇
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

+ 𝛼∫
𝑀

|𝑇(𝑧 = 0)|
2

𝑑𝑥 𝑑𝑦

≤ ‖𝑇‖
2

.

(23)

It follows from (20) and (23) that

𝑑

𝑑𝑡
‖𝑇‖

2

2
+ ‖𝑇‖

2

≤ (2Rt
2
ℎ
2

+
2ℎ

𝛼
) ‖𝑄‖

2

2
. (24)

Using (23) again, we get

𝑑

𝑑𝑡
‖𝑇‖

2

2
+

‖𝑇‖
2

2

2Rt
2
ℎ2 + (2ℎ/𝛼)

≤ (2Rt
2
ℎ
2

+
2ℎ

𝛼
) ‖𝑄‖

2

2
. (25)

Therefore, we deduce from (24) and (25) that

𝑑

𝑑𝑡
(𝑒

𝜎𝑡

‖𝑇‖
2

2
) +

1

2
𝑒
𝜎𝑡

‖𝑇‖
2

= 𝑒
𝜎𝑡
𝑑

𝑑𝑡
‖𝑇‖

2

2
+ 𝜎𝑒

𝜎𝑡

‖𝑇‖
2

2
+
1

2
𝑒
𝜎𝑡

‖𝑇‖
2

≤ (𝜎 −
1

4Rt
2
ℎ2 + (4ℎ/𝛼)

) 𝑒
𝜎𝑡

‖𝑇‖
2

2

+ (2Rt
2
ℎ
2

+
2ℎ

𝛼
) 𝑒

𝜎𝑡

‖𝑄‖
2

2

≤ (2Rt
2
ℎ
2

+
2ℎ

𝛼
) 𝑒

𝜎𝑡

‖𝑄‖
2

2
.

(26)

Integrating (26) from 𝜏 to 𝑡, we obtain

𝑒
𝜎𝑡

‖𝑇(𝑡)‖
2

2
+
1

2
∫
𝑡

𝜏

𝑒
𝜎𝑠

‖𝑇(𝑠)‖
2

𝑑𝑠

≤ 𝑒
𝜎𝜏󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩
2

2
+ (2Rt

2
ℎ
2

+
2ℎ

𝛼
)∫

𝑡

𝜏

𝑒
𝜎𝑠

‖𝑄(𝑠)‖
2

2
𝑑𝑠

≤ 𝑒
𝜎𝜏󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩
2

2
+ (2Rt

2
ℎ
2

+
2ℎ

𝛼
)∫

𝑡

−∞

𝑒
𝜎𝑠

‖𝑄(𝑠)‖
2

2
𝑑𝑠

≤ 𝑒
𝜎𝜏󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩
2

2
+ 𝑒

𝜎𝑡

(2Rt
2
ℎ
2

+
2ℎ

𝛼
)

× (1 + 𝜎
−1

) sup
𝑡∈R

∫
𝑡+1

𝑡

‖𝑄(𝑠)‖
2

2
𝑑𝑠,

(27)

where we use the inequality

∫
𝑡

−∞

𝑒
𝜎𝑠

‖𝑄 (𝑠)‖
2

2
𝑑𝑠

= ∫
𝑡

𝑡−1

𝑒
𝜎𝑠

‖𝑄(𝑠)‖
2

2
𝑑𝑠 + ∫

𝑡−1

𝑡−2

𝑒
𝜎𝑠

‖𝑄(𝑠)‖
2

2
𝑑𝑠

+ ∫
𝑡−2

𝑡−3

𝑒
𝜎𝑠

‖𝑄 (𝑠)‖
2

2
𝑑𝑠 + ∫

𝑡−3

𝑡−4

𝑒
𝜎𝑠

‖𝑄 (𝑠)‖
2

2
𝑑𝑠 + ⋅ ⋅ ⋅

+ ∫
𝑡−𝑛+1

𝑡−𝑛

𝑒
𝜎𝑠

‖𝑄(𝑠)‖
2

2
𝑑𝑠 + ⋅ ⋅ ⋅

≤ (𝑒
𝜎𝑡

+ 𝑒
𝜎(𝑡−1)

+ 𝑒
𝜎(𝑡−2)

+ 𝑒
𝜎(𝑡−3)

+ ⋅ ⋅ ⋅ )

× sup
𝑟∈R

∫
𝑟+1

𝑟

‖𝑄(𝑠)‖
2

2
𝑑𝑠

≤
𝑒
𝜎𝑡

1 − 𝑒−𝜎
sup
𝑟∈R

∫
𝑟+1

𝑟

‖𝑄(𝑠)‖
2

2
𝑑𝑠

≤ (1 + 𝜎
−1

) 𝑒
𝜎𝑡sup
𝑟∈R

∫
𝑟+1

𝑟

‖𝑄(𝑠)‖
2

2
𝑑𝑠.

(28)
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That is,

‖𝑇 (𝑡)‖
2

2
≤ 𝑒

𝜎(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑇0
󵄩󵄩󵄩󵄩
2

2
+ (2Rt

2
ℎ
2

+
2ℎ

𝛼
)

× (1 + 𝜎
−1

) sup
𝑡∈R

∫
𝑡+1

𝑡

‖𝑄(𝑠)‖
2

2
𝑑𝑠.

(29)

Let 𝜏 < 𝑡 − 1, for any 𝑟 ∈ [𝜏, 𝑡 − 1]; integrating (24) from 𝑟 to
𝑟 + 1 and combining with (29), we obtain

∫
𝑟+1

𝑟

‖𝑇 (𝑠)‖
2

𝑑𝑠

≤ (2Rt
2
ℎ
2

+
2ℎ

𝛼
)∫

𝑟+1

𝑟

‖𝑄(𝑠)‖
2

2
𝑑𝑠 + ‖𝑇(𝑟)‖

2

2

≤ 𝑒
𝜎(𝜏−𝑟)󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩
2

2
+ (2Rt

2
ℎ
2

+
2ℎ

𝛼
)

× (2 + 𝜎
−1

) sup
𝑡∈R

∫
𝑡+1

𝑡

‖𝑄(𝑠)‖
2

2
𝑑𝑠.

(30)

3.2.2.𝐻
1
Estimates of V. Multiplying (1) by V and integrating

by parts over Ω and using the boundary conditions (3), we
deduce

1

2

𝑑

𝑑𝑡
‖V‖2

2
+ ‖V‖2

= ∫
Ω

(∫
𝑧

0

∇𝑇 (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁) ⋅ V 𝑑𝑥 𝑑𝑦𝑑𝑧

≤ ℎ‖𝑇‖
2
‖∇V‖

2

≤
1

2Re
1

∫
Ω

|∇V|2𝑑𝑥 𝑑𝑦𝑑𝑧 +
Re

1
ℎ2‖𝑇‖

2

2

2
.

(31)

That is,

𝑑

𝑑𝑡
‖V‖2

2
+ ‖V‖2 ≤ Re

1
ℎ
2

‖𝑇‖
2

2
. (32)

It follows from ‖V‖2
2
≤ 𝐶

𝑀
‖∇V‖2

2
that

𝑑

𝑑𝑡
‖V‖2

2
+

1

𝐶
𝑀
Re

1

‖V‖2
2
≤ Re

1
ℎ
2

‖𝑇‖
2

2
. (33)

Thanks to (32) and (33), we get

𝑑

𝑑𝑡
(𝑒

𝜎𝑡

‖V‖2
2
) +

1

2
𝑒
𝜎𝑡

‖V‖2

= 𝑒
𝜎𝑡
𝑑

𝑑𝑡
‖V‖2

2
+ 𝜎𝑒

𝜎𝑡

‖V‖2
2
+
1

2
𝑒
𝜎𝑡

‖V‖2

≤ (𝜎 −
1

2𝐶
𝑀
Re

1

) 𝑒
𝜎𝑡

‖V‖2
2
+ Re

1
ℎ
2

𝑒
𝜎𝑡

‖𝑇‖
2

2
.

(34)

Integrating (34) over [𝜏, 𝑡] and using (23) and (27), we have

𝑒
𝜎𝑡

‖V(𝑡)‖2
2
+
1

2
∫
𝑡

𝜏

𝑒
𝜎𝑠

‖V‖2

≤ 𝑒
𝜎𝜏󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩
2

2
+ Re

1
ℎ
2

∫
𝑡

𝜏

𝑒
𝜎𝑠

‖𝑇(𝑠)‖
2

2
𝑑𝑠

≤ 𝑒
𝜎𝜏󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩
2

2
+ Re

1
ℎ
2

(2Rt
2
ℎ
2

+
2ℎ

𝛼
)

× ∫
𝑡

𝜏

𝑒
𝜎𝑠

‖𝑇(𝑠)‖
2

𝑑𝑠

≤ 𝑒
𝜎𝜏󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩
2

2
+ 2(Re

1
ℎ
2

(2Rt
2
ℎ
2

+
2ℎ

𝛼
))

× (𝑒
𝜎𝜏󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩
2

2
+ 𝑒

𝜎𝑡

𝜌
1
) ,

(35)

where

𝜌
1
= (2Rt

2
ℎ
2

+
2ℎ

𝛼
) (1 + 𝜎

−1

) sup
𝑡∈R

∫
𝑡+1

𝑡

‖𝑄(𝑠)‖
2

2
𝑑𝑠. (36)

That is,

‖V (𝑡)‖2
2
≤ 𝑒

𝜎(𝜏−𝑡)󵄩󵄩󵄩󵄩V0
󵄩󵄩󵄩󵄩
2

2
+ 2(Re

1
ℎ
2

(2Rt
2
ℎ
2

+
2ℎ

𝛼
))

× (𝑒
𝜎(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩
2

2
+ 𝜌

1
) .

(37)

Let 𝜏 < 𝑡 − 1, for any 𝑟 ∈ [𝜏, 𝑡 − 1]; integrating (32) from 𝑟 to
𝑟 + 1 and combining with (23), (30), and (37), we obtain

∫
𝑟+1

𝑟

‖V (𝑠)‖2𝑑𝑠

≤ ‖V(𝑟)‖2
2
+ Re

1
ℎ
2

∫
𝑟+1

𝑟

‖𝑇(𝑠)‖
2

2
𝑑𝑠

≤ ‖V (𝑟)‖2
2
+ Re

1
ℎ
2

(2Rt
2
ℎ
2

+
2ℎ

𝛼
)

× ∫
𝑟+1

𝑟

‖𝑇(𝑠)‖
2

𝑑𝑠

≤ 𝑒
𝜎(𝜏−𝑟)󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩
2

2
+ 4(Re

1
ℎ
2

(2Rt
2
ℎ
2

+
2ℎ

𝛼
))

× (𝑒
𝜎(𝜏−𝑟)󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩
2

2
+ 𝜌

1
) .

(38)
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3.2.3. 𝐿6(Ω) Estimates of 𝑇. Taking the inner product of (2)
with |𝑇|

4

𝑇 in 𝐿2(Ω) and using the boundary conditions (4),
we have

1

6

𝑑

𝑑𝑡
‖𝑇‖

6

6
+

5

9Rt
1

∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇|𝑇|

3󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

+
5

9Rt
2

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑧
|𝑇|

3󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

+ 𝛼∫
𝑀

|𝑇(𝑧 = 0)|
6

𝑑𝑥 𝑑𝑦

≤
󵄩󵄩󵄩󵄩󵄩|
𝑇|

3󵄩󵄩󵄩󵄩󵄩

5/3

10/3

‖𝑄‖
2

≤ 𝐶‖𝑄‖
2

󵄩󵄩󵄩󵄩󵄩|
𝑇|

3󵄩󵄩󵄩󵄩󵄩

2/3

2

󵄩󵄩󵄩󵄩󵄩|
𝑇|

3󵄩󵄩󵄩󵄩󵄩𝐻1(Ω)

= 𝐶‖𝑄‖
2
‖𝑇‖

2

6

󵄩󵄩󵄩󵄩󵄩|
𝑇|

3󵄩󵄩󵄩󵄩󵄩𝐻1(Ω)
.

(39)

Using the Young inequality, we obtain

𝑑

𝑑𝑡
(𝑒

𝜎𝑡

‖𝑇‖
2

6
) ≤ 𝜎𝑒

𝜎𝑡

‖𝑇‖
2

6
+ 𝐶𝑒

𝜎𝑡

‖𝑄‖
2

2
. (40)

Integrating (40) from 𝜏 to 𝑡 and combining with (27) and
‖𝑇‖

6
≤ 𝐶‖𝑇‖, we get

𝑒
𝜎𝑡

‖𝑇‖
2

6
≤ 𝑒

𝜎𝜏󵄩󵄩󵄩󵄩𝑇0
󵄩󵄩󵄩󵄩
2

6
+ 𝜎∫

𝑡

𝜏

𝑒
𝜎𝑠

‖𝑇 (𝑠)‖
2

6
𝑑𝑠

+ 𝐶∫
𝑡

𝜏

𝑒
𝜎𝑠

‖𝑄 (𝑠)‖
2

2
𝑑𝑠

≤ 𝑒
𝜎𝜏󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩
2

+ 𝐶∫
𝑡

𝜏

𝑒
𝜎𝑠

‖𝑇 (𝑠)‖
2

𝑑𝑠

+ 𝐶∫
𝑡

𝜏

𝑒
𝜎𝑠

‖𝑄(𝑠)‖
2

2
𝑑𝑠

≤ 𝐶𝑒
𝜎𝜏󵄩󵄩󵄩󵄩𝑇0

󵄩󵄩󵄩󵄩
2

2
+ 𝐶𝑒

𝜎𝑡

(2Rt
2
ℎ
2

+
2ℎ

𝛼
+ 1) (1 + 𝜎

−1

)

× sup
𝑡∈R

∫
𝑡+1

𝑡

‖𝑄(𝑠)‖
2

2
𝑑𝑠.

(41)

Therefore, we have

‖𝑇‖
2

6
≤ 𝐶𝑒

𝜎(𝜏−𝑡)󵄩󵄩󵄩󵄩𝑇0
󵄩󵄩󵄩󵄩
2

2

+ 𝐶(2Rt
2
ℎ
2

+
2ℎ

𝛼
+ 1) (1 + 𝜎

−1

)

× sup
𝑡∈R

∫
𝑡+1

𝑡

‖𝑄(𝑠)‖
2

2
𝑑𝑠.

(42)

3.2.4. (𝐿6(Ω))2 Estimates of Ṽ. Multiplying (16) by |Ṽ|4Ṽ and
integrating by parts over Ω, we deduce

1

6

𝑑

𝑑𝑡
‖Ṽ‖6

6
+

1

Re
1

∫
Ω

|∇Ṽ|2|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑧Ṽ
󵄨󵄨󵄨󵄨
2

|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧

+
4

9Re
1

∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇|Ṽ|3

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

+
4

9Re
2

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑧
|Ṽ|3

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶∫
Ω

|V| |∇Ṽ| |Ṽ|5𝑑𝑥 𝑑𝑦𝑑𝑧

+ 𝐶∫
𝑀

(∫
0

−ℎ

|𝑇| 𝑑𝑧)(∫
0

−ℎ

|∇Ṽ| |Ṽ|4𝑑𝑧)𝑑𝑥𝑑𝑦

+ 𝐶∫
𝑀

(∫
0

−ℎ

|Ṽ|2𝑑𝑧)(∫
0

−ℎ

|∇Ṽ| |Ṽ|4𝑑𝑧)𝑑𝑥𝑑𝑦.

(43)

It follows from interpolation inequality and Lemma 2 that

∫
Ω

|V| |∇Ṽ| |Ṽ|5𝑑𝑥 𝑑𝑦𝑑𝑧

≤ ∫
𝑀

|V| (∫
0

−ℎ

|∇Ṽ|2|Ṽ|4𝑑𝑧)
1/2

(∫
0

−ℎ

|Ṽ|6𝑑𝑧)
1/2

𝑑𝑥 𝑑𝑦

≤ (∫
𝑀

|V|4𝑑𝑥 𝑑𝑦)
1/4

(∫
Ω

|∇Ṽ|2|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧)
1/2

× (∫
0

−ℎ

(∫
𝑀

|Ṽ|12𝑑𝑥 𝑑𝑦)
1/2

𝑑𝑧)

1/2

,

(44)

∫
𝑀

|Ṽ|12𝑑𝑥 𝑑𝑦 = ∫
𝑀

󵄨󵄨󵄨󵄨󵄨|
Ṽ|3

󵄨󵄨󵄨󵄨󵄨

4

𝑑𝑥 𝑑𝑦

≤ 𝐶∫
𝑀

|Ṽ|6𝑑𝑥 𝑑𝑦∫
𝑀

󵄨󵄨󵄨󵄨󵄨
∇|Ṽ|3

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦,

(45)

which implies that

(∫
0

−ℎ

(∫
𝑀

|Ṽ|12𝑑𝑥 𝑑𝑦)
1/2

𝑑𝑧)

1/2

≤ 𝐶(∫
Ω

|Ṽ|6𝑑𝑥 𝑑𝑦𝑑𝑧)
1/4

(∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇|Ṽ|3

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧)
1/4

.

(46)

We deduce from (44) and (46) that

∫
Ω

|V| |∇Ṽ| |Ṽ|5𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶‖Ṽ‖3/2
6

‖V‖1/2
2

‖∇V‖1/2
2

(∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇|Ṽ|3

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧)
1/4

× (∫
Ω

|∇Ṽ|2|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧)
1/2

.

(47)
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Repeating the similar process with the previously mentioned,
we have

∫
𝑀

(∫
0

−ℎ

|𝑇| 𝑑𝑧)(∫
0

−ℎ

|∇Ṽ| |Ṽ|4𝑑𝑧)𝑑𝑥𝑑𝑦

≤ 𝐶‖𝑇‖
6
(∫

Ω

|∇Ṽ|2|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧)
1/2

‖Ṽ‖2
6
,

∫
𝑀

(∫
0

−ℎ

|Ṽ|2𝑑𝑧)(∫
0

−ℎ

|∇Ṽ| |Ṽ|4𝑑𝑧)𝑑𝑥𝑑𝑦

≤ 𝐶(∫
Ω

|∇Ṽ|2|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧)
1/2

‖Ṽ‖3
6
‖Ṽ‖

𝐻
1
(Ω)

,

(48)

where we use the inequality ‖Ṽ‖8
𝐿
8
(𝑀)

≤ 𝐶‖Ṽ‖6
𝐿
6
(𝑀)

‖Ṽ‖2
𝐻
1
(𝑀)

.
We deduce from (43) and (47)–(48) that

𝑑

𝑑𝑡
‖Ṽ‖6

6
+

2

Re
1

∫
Ω

|∇Ṽ|2|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧

+
2

Re
2

∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑧Ṽ
󵄨󵄨󵄨󵄨
2

|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧

+
2

Re
1

∫
Ω

󵄨󵄨󵄨󵄨󵄨
∇|Ṽ|3

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

+
2

Re
2

∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑧
|Ṽ|3

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶 (‖V‖2
2
‖∇V‖2

2
+ ‖Ṽ‖2

𝐻
1
(Ω)

) ‖Ṽ‖6
6

+ 𝐶‖𝑇‖
2

6
‖Ṽ‖4

6
,

(49)

which implies that

𝑑

𝑑𝑡
(𝑒

𝜎𝑡

‖Ṽ‖2
6
)

≤ 𝐶𝑒
𝜎𝑡

(1 + ‖V‖2
2
‖∇V‖2

2
+ ‖Ṽ‖2

𝐻
1
(Ω)

) ‖Ṽ‖2
6

+ 𝐶𝑒
𝜎𝑡

‖𝑇‖
2

6
.

(50)

Therefore, it follows from (35)–(38), (42), and Lemma 1 that
there exists a positive constant 𝜌

2
, 𝜌

3
independent of 𝑡 and a

constant 𝜏
1
= 𝜏

1
(𝑡) such that

‖Ṽ‖2
6
≤ 𝜌

2
, (51)

∫
𝑡+1

𝑡

𝑒
𝜎𝑠

∫
Ω

|∇Ṽ|2|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝑠 ≤ 𝜌
3
, (52)

for any 𝜏 ≤ 𝜏
1
. For brevity, we omit writing out explicitly

these bounds here, and we also omit writing out other similar
bounds in our future discussion for all other uniform a priori
estimates.

3.2.5. (𝐻
1(𝑀))

2 Estimates of V. Taking the 𝐿2(Ω) inner
product of (14) with −ΔV and combining the boundary
conditions (15), we deduce

1

2

𝑑

𝑑𝑡
‖∇V‖2

𝐿
2
(𝑀)

+
1

Re
1

∫
𝑀

|ΔV|2𝑑𝑥 𝑑𝑦

≤ 𝐶∫
𝑀

|V| |∇V| |ΔV| 𝑑𝑥 𝑑𝑦

+ 𝐶∫
𝑀

(∫
0

−ℎ

|∇Ṽ| |Ṽ| 𝑑𝑧) |ΔV| 𝑑𝑥 𝑑𝑦

+ 𝐶∫
𝑀

|V| |ΔV| 𝑑𝑥 𝑑𝑦

+ 𝐶∫
𝑀

(∫
0

−ℎ

|∇𝑇| 𝑑𝑧) |ΔV| 𝑑𝑥 𝑑𝑦.

(53)

We give the estimates of each term of the right-hand side of
(53) as follows:

∫
𝑀

|V| |∇V| |ΔV| 𝑑𝑥 𝑑𝑦

≤ 𝐶(∫
𝑀

|V|4𝑑𝑥 𝑑𝑦)
1/4

(∫
𝑀

|∇V|4𝑑𝑥 𝑑𝑦)
1/4

× (∫
𝑀

|ΔV|2𝑑𝑥 𝑑𝑦)
1/2

≤ 𝐶(∫
𝑀

|V|2𝑑𝑥 𝑑𝑦)
1/4

(∫
𝑀

|∇V|2𝑑𝑥 𝑑𝑦)
1/2

× (∫
𝑀

|ΔV|2𝑑𝑥 𝑑𝑦)
3/4

,

∫
𝑀

(∫
0

−ℎ

|Ṽ| |∇Ṽ| 𝑑𝑧) |ΔV| 𝑑𝑥 𝑑𝑦

≤ 𝐶(∫
Ω

|∇Ṽ|2|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧)
1/4

‖∇Ṽ‖1/2
2

× (∫
𝑀

|ΔV|2𝑑𝑥 𝑑𝑦)
1/2

,

∫
𝑀

|V| |ΔV| 𝑑𝑥 𝑑𝑦

≤ 𝐶(∫
𝑀

|V|2𝑑𝑥 𝑑𝑦)
1/2

(∫
𝑀

|ΔV|2𝑑𝑥 𝑑𝑦)
1/2

,

∫
𝑀

(∫
0

−ℎ

|∇𝑇| 𝑑𝑧) |ΔV| 𝑑𝑥 𝑑𝑦

≤ 𝐶(∫
Ω

|∇𝑇|
2

𝑑𝑥 𝑑𝑦𝑑𝑧)
1/2

(∫
𝑀

|ΔV|2𝑑𝑥 𝑑𝑦)
1/2

.

(54)
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It follows from (53)–(54) that

𝑑

𝑑𝑡
(𝑒

𝜎𝑡

‖∇V‖2
𝐿
2
(𝑀)

) +
1

Re
1

𝑒
𝜎𝑡

∫
𝑀

|ΔV|2𝑑𝑥 𝑑𝑦

≤ 𝐶 (1 + ‖V‖2
𝐿
2
(𝑀)

‖∇V‖2
𝐿
2
(𝑀)

) 𝑒
𝜎𝑡

‖∇V‖2
𝐿
2
(𝑀)

+ 𝐶𝑒
𝜎𝑡

‖∇𝑇‖
2

2
+ 𝐶𝑒

𝜎𝑡

‖V‖2
2

+ 𝐶𝑒
𝜎𝑡

∫
Ω

|∇Ṽ|2|Ṽ|4𝑑𝑥 𝑑𝑦𝑑𝑧 + 𝐶𝑒
𝜎𝑡

‖∇Ṽ‖2
2
.

(55)

In view of (27), (35)–(38), (52), and Lemma 1, we obtain

‖∇V‖2
𝐿
2
(𝑀)

≤ 𝜌
4
, (56)

for any 𝜏 ≤ 𝜏
1
− 1.

3.2.6. (𝐿2(Ω))2 Estimates of V
𝑧
. Denote 𝑢 = V

𝑧
. It is clear that

𝑢 satisfies the following equation obtained by differentiating
(1) with respect to 𝑧:

𝜕𝑢

𝜕𝑡
+ 𝐿

1
𝑢 + (V ⋅ ∇) 𝑢 − (∫

𝑧

−ℎ

∇ ⋅ V (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
𝜕𝑢

𝜕𝑧

+ (𝑢 ⋅ ∇) V − (∇ ⋅ V) 𝑢 +
1

Ro
𝑓𝑢

⊥

− ∇𝑇 = 0,

(57)

with the boundary conditions

𝑢|
𝑧=0

= 0, 𝑢|
𝑧=−ℎ

= 0,

𝑢 ⋅ ⃗𝑛|
Γ𝑙
= 0,

𝜕𝑢

𝜕 ⃗𝑛
× ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Γ𝑙
= 0.

(58)

Multiplying (57) by 𝑢, integrating over Ω, and using the
boundary conditions (58), we get

1

2

𝑑

𝑑𝑡
‖𝑢‖

2

2
+

1

Re
1

∫
Ω

|∇𝑢|
2

𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑧𝑢
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

= −∫
Ω

[(𝑢 ⋅ ∇) V − (∇ ⋅ V) 𝑢 − ∇𝑇] ⋅ 𝑢 𝑑𝑥 𝑑𝑦 𝑑𝑧

≤ 𝐶∫
Ω

|V| |𝑢| |∇𝑢| 𝑑𝑥 𝑑𝑦 𝑑𝑧 + ∫
Ω

|𝑇| |∇𝑢| 𝑑𝑥 𝑑𝑦 𝑑𝑧.

(59)

We estimate the right-hand side of (59) term by term as
follows:

∫
Ω

|𝑇| |∇𝑢| 𝑑𝑥 𝑑𝑦 𝑑𝑧 ≤ ‖𝑇‖
2
‖∇𝑢‖

2
,

∫
Ω

|V| |𝑢| |∇𝑢| 𝑑𝑥 𝑑𝑦 𝑑𝑧 ≤ ‖V‖
6
‖𝑢‖

3
‖∇𝑢‖

2

≤ 𝐶‖V‖
6
‖𝑢‖

1/2

2
(‖∇𝑢‖

2
+
󵄩󵄩󵄩󵄩𝜕𝑧𝑢

󵄩󵄩󵄩󵄩2)
3/2

.

(60)

It follows from (59)–(60) that

𝑑

𝑑𝑡
‖𝑢‖

2

2
+

1

Re
1

∫
Ω

|∇𝑢|
2

𝑑𝑥 𝑑𝑦𝑑𝑧 +
1

Re
2

∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑧𝑢
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶‖V‖4
6
‖𝑢‖

2

2
+ 𝐶‖𝑇‖

2

2
.

(61)

Therefore, we have

𝑑

𝑑𝑡
(𝑒

𝜎𝑡

‖𝑢‖
2

2
) +

1

Re
1

𝑒
𝜎𝑡

∫
Ω

|∇𝑢|
2

𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

𝑒
𝜎𝑡

∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑧𝑢
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶 (1 + ‖V‖4
6
) 𝑒

𝜎𝑡

‖𝑢‖
2

2
+ 𝐶𝑒

𝜎𝑡

‖𝑇‖
2

2
.

(62)

It is shown in [30] that

‖V‖
6
≤ 𝐶ℎ

−1/3

‖V‖
2
+ 𝐶ℎ

1/6

‖∇V‖
2
+ ‖Ṽ‖

6
, (63)

which implies that

‖V‖2
6
≤ 𝜌

5
, (64)

for any 𝜏 ≤ 𝜏
1
− 1.

By virtue of Lemma 1, from (23), (27)–(29), and (35), we
deduce

󵄩󵄩󵄩󵄩𝜕𝑧V
󵄩󵄩󵄩󵄩
2

2
≤ 𝜌

6
, (65)

1

Re
1

∫
𝑡+1

𝑡

∫
Ω

󵄨󵄨󵄨󵄨∇V𝑧
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝑠

+
1

Re
2

∫
𝑡+1

𝑡

∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑧V𝑧
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝑠 ≤ 𝜌
7
,

(66)

for any 𝜏 ≤ 𝜏
1
− 2.

3.2.7. (𝐿2(Ω))
2 Estimates of ∇V. Taking the 𝐿2(Ω) inner

product of (1) with −ΔV and combining the boundary
conditions (3), we deduce

1

2

𝑑

𝑑𝑡
‖∇V‖2

2
+

1

Re
1

∫
Ω

|ΔV|2𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

󵄨󵄨󵄨󵄨∇𝜕𝑧V
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶∫
𝑀

(∫
0

−ℎ

|∇V| 𝑑𝑧)(∫
0

−ℎ

󵄨󵄨󵄨󵄨𝜕𝑧V
󵄨󵄨󵄨󵄨 |ΔV| 𝑑𝑧) 𝑑𝑥 𝑑𝑦

+ 𝐶∫
𝑀

(∫
0

−ℎ

|∇𝑇| 𝑑𝑧)(∫
0

−ℎ

|ΔV| 𝑑𝑧) 𝑑𝑥 𝑑𝑦

+ 𝐶∫
Ω

|V| |∇V| |ΔV| 𝑑𝑥 𝑑𝑦 𝑑𝑧

+ 𝐶∫
Ω

|V| |ΔV| 𝑑𝑥 𝑑𝑦 𝑑𝑧.

(67)
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We estimate each term in the right-hand side of (67) as
follows

∫
Ω

|V| |∇V| |ΔV| 𝑑𝑥 𝑑𝑦 𝑑𝑧

≤ 𝐶‖V‖
6
‖∇V‖

3
‖ΔV‖

2

≤ 𝐶‖V‖
6
‖∇V‖1/2

2
(
󵄩󵄩󵄩󵄩∇𝜕𝑧V

󵄩󵄩󵄩󵄩2 + ‖ΔV‖
2
)
3/2

,

∫
𝑀

(∫
0

−ℎ

|∇V| 𝑑𝑧)(∫
0

−ℎ

󵄨󵄨󵄨󵄨𝜕𝑧V
󵄨󵄨󵄨󵄨 |ΔV| 𝑑𝑧) 𝑑𝑥 𝑑𝑦

≤ 𝐶
󵄩󵄩󵄩󵄩V𝑧

󵄩󵄩󵄩󵄩
1/2

2

󵄩󵄩󵄩󵄩∇V𝑧
󵄩󵄩󵄩󵄩
1/2

2
‖∇V‖1/2

2
‖ΔV‖3/2

2
,

∫
𝑀

(∫
0

−ℎ

|∇𝑇| 𝑑𝑧)(∫
0

−ℎ

|ΔV| 𝑑𝑧) 𝑑𝑥 𝑑𝑦 ≤ 𝐶‖∇𝑇‖
2
‖ΔV‖

2
,

∫
Ω

|V| |ΔV| 𝑑𝑥 𝑑𝑦 𝑑𝑧 ≤ 𝐶‖V‖
2
‖ΔV‖

2
.

(68)

We derive from (67)–(68) that

𝑑

𝑑𝑡
‖∇V‖2

2
+

1

Re
1

∫
Ω

|ΔV|2𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

∫
Ω

󵄨󵄨󵄨󵄨∇𝜕𝑧V
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶 (‖V‖4
6
+
󵄩󵄩󵄩󵄩𝜕𝑧V

󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩∇𝜕𝑧V
󵄩󵄩󵄩󵄩
2

2
) ‖∇V‖2

2

+ 𝐶‖∇𝑇‖
2

2
+ 𝐶‖V‖2

2
.

(69)

Therefore, we have

𝑑

𝑑𝑡
(𝑒

𝜎𝑡

‖∇V‖2
2
) +

1

Re
1

𝑒
𝜎𝑡

∫
Ω

|ΔV|2𝑑𝑥 𝑑𝑦𝑑𝑧

+
1

Re
2

𝑒
𝜎𝑡

∫
Ω

󵄨󵄨󵄨󵄨∇𝜕𝑧V
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧

≤ 𝐶 (1 + ‖V‖4
6
+
󵄩󵄩󵄩󵄩𝜕𝑧V

󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩∇𝜕𝑧V
󵄩󵄩󵄩󵄩
2

2
) 𝑒

𝜎𝑡

‖∇V‖2
2

+ 𝐶𝑒
𝜎𝑡

‖∇𝑇‖
2

2
+ 𝐶𝑒

𝜎𝑡

‖V‖2
2
.

(70)

By virtue of (27), (35), (64)–(66), and Lemma 1, we get

‖∇V‖2
2
≤ 𝜌

8
, (71)

1

Re
1

∫
𝑡+1

𝑡

∫
Ω

|ΔV|2𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏

+
1

Re
2

∫
𝑡+1

𝑡

∫
Ω

󵄨󵄨󵄨󵄨∇𝜕𝑧V
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑦𝑑𝑧 𝑑𝜏 ≤ 𝜌
9
,

(72)

for any 𝜏 ≤ 𝜏
1
− 3.

3.2.8.𝐻1(Ω)Estimates of𝑇. Multiplying (2) by 𝐿
2
𝑇, integrat-

ing over Ω, and combining the boundary conditions (4), we
deduce

1

2

𝑑

𝑑𝑡
‖𝑇‖

2

+
󵄩󵄩󵄩󵄩𝐿2

𝑇
󵄩󵄩󵄩󵄩
2

2

≤ 𝐶∫
Ω

|V| |∇𝑇| 󵄨󵄨󵄨󵄨𝐿2
𝑇
󵄨󵄨󵄨󵄨

+ 𝐶∫
Ω

(∫
𝑧

−ℎ

∇ ⋅ V (𝑥, 𝑦, 𝜁, 𝑡) 𝑑𝜁)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑇

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐿2
𝑇
󵄨󵄨󵄨󵄨

+ ∫
Ω

|𝑄|
󵄨󵄨󵄨󵄨𝐿2

𝑇
󵄨󵄨󵄨󵄨 .

(73)

We give the estimates of each term in the right-hand side
of (73) as follows

∫
Ω

|V| |∇𝑇| 󵄨󵄨󵄨󵄨𝐿2
𝑇
󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦 𝑑𝑧 ≤ ‖V‖

6
‖∇𝑇‖

3

󵄩󵄩󵄩󵄩𝐿2
𝑇
󵄩󵄩󵄩󵄩2

≤ 𝐶‖V‖
6
‖∇𝑇‖

1/2

2

󵄩󵄩󵄩󵄩𝐿2
𝑇
󵄩󵄩󵄩󵄩
3/2

2
,

∫
𝑀

(∫
0

−ℎ

|∇V| 𝑑𝑧)(∫
0

−ℎ

󵄨󵄨󵄨󵄨𝜕𝑧𝑇
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐿2

𝑇
󵄨󵄨󵄨󵄨 𝑑𝑧) 𝑑𝑥 𝑑𝑦

≤ 𝐶‖∇V‖1/2
2

‖ΔV‖1/2
2

󵄩󵄩󵄩󵄩𝜕𝑧𝑇
󵄩󵄩󵄩󵄩
1/2

2

󵄩󵄩󵄩󵄩𝐿2
𝑇
󵄩󵄩󵄩󵄩
3/2

2
,

∫
Ω

|𝑄|
󵄨󵄨󵄨󵄨𝐿2

𝑇
󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦 𝑑𝑧 ≤ 𝐶‖𝑄‖

2

󵄩󵄩󵄩󵄩𝐿2
𝑇
󵄩󵄩󵄩󵄩2.

(74)

We derive from (73)–(74) that

𝑑

𝑑𝑡
(𝑒

𝜎𝑡

‖𝑇‖
2

)

≤ 𝐶 (1 + ‖V‖4
6
+ ‖∇V‖2

2
‖ΔV‖2

2
) 𝑒

𝜎𝑡

‖𝑇‖
2

+ 𝐶𝑒
𝜎𝑡

‖𝑄‖
2

2
.

(75)

Using (27), (64), (71), (72), and Lemma 1, we get

‖𝑇‖
2

≤ 𝜌
10
, (76)

∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝐿2
𝑇(𝑠)

󵄩󵄩󵄩󵄩
2

2
𝑑𝑠 ≤ 𝜌

11
, (77)

for any 𝜏 ≤ 𝜏
1
− 4.

4. The Existence of the Pullback Attractor

In this section, we recall some definitions and lemmas about
pullback attractor and prove the existence of (𝑉, 𝑉)-pullback
attractor.

Definition 4 (see [13, 32]). Let 𝑋 be a complete metric space.
A two-parameter family of mappings {𝑈(𝑡, 𝜏)}

𝜏≤𝑡
is said to be

a continuous process in𝑋 if

(i) 𝑈(𝜏, 𝜏) = Id for any 𝜏 ∈ R,
(ii) 𝑈(𝑡, 𝑟)𝑈(𝑟, 𝜏) = 𝑈(𝑡, 𝜏), 𝑡 ≥ 𝑟 ≥ 𝜏,
(iii) 𝑈(𝑡, 𝜏)𝑥

𝑛
→ 𝑈(𝑡, 𝜏)𝑥, if 𝑥

𝑛
→ 𝑥 in𝑋.
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Definition 5 (see [11, 13, 33]). Let 𝑋,𝑌 be two Banach spaces.
Then, the family Â = {𝐴(𝑡) : 𝑡 ∈ R} is said to be a
(𝑋, 𝑌)-pullback attractor for {𝑈(𝑡, 𝜏)}

𝑡≥𝜏
, if

(i) 𝐴(𝑡) is closed in𝑋 and compact in 𝑌 for any 𝑡 ∈ R,
(ii) 𝑈(𝑡, 𝜏)𝐴(𝜏) = 𝐴(𝑡) for any 𝜏 ≤ 𝑡 (invariance

property),
(iii) it pullback attracts every bounded subsets of𝑋 in the

topology of 𝑌 ((𝑋,𝑌)-pullback attracting), that is, for
any nonempty class of bounded subsets {𝐷(𝑡) : 𝑡 ∈

R} ⊂ 𝑋,

lim
𝜏→−∞

dist
𝑌
(𝑈 (𝑡, 𝜏)𝐷 (𝜏) , 𝐴 (𝑡)) = 0, (78)

for any 𝑡 ∈ R.

Definition 6 (see [31, 33]). The process {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

is said to
be pullback asymptotically compact if for any 𝑡 ∈ R and any
nonempty class of bounded subsets {𝐷(𝑡) : 𝑡 ∈ R} ⊂ 𝑋,
any sequence 𝜏

𝑛
→ −∞, and any sequence 𝑥

𝑛
∈ 𝐷(𝜏

𝑛
), the

sequence {𝑈(𝑡, 𝜏
𝑛
)𝑥

𝑛
} is relatively compact in𝑋.

Lemma 7 (see [33]). Let {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

be a continuous process
such that {𝑈(𝑡, 𝜏)} is pullback asymptotically compact. If there
exists a family of pullback absorbing sets 𝐵 = {𝐵(𝑡) : 𝑡 ∈ R},
then {𝑈(𝑡, 𝜏)}

𝑡≥𝜏
has a unique pullback attractor Â = {A(𝑡) :

𝑡 ∈ R} and

A (𝑡) = ⋂
𝑠≤𝑡

⋃
𝜏≤𝑠

𝑈(𝑡, 𝜏)𝐵(𝜏). (79)

Definition 8 (see [33]). A process {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

is said to satisfy
pullback D condition (PDC), if for any fixed 𝑡 ∈ R, any
bounded subset 𝐷 of a Banach space 𝑋 and any 𝜂 > 0, there
exist a time 𝜏

0
= 𝜏

0
(𝐷, 𝜂, 𝑡) ≤ 𝑡 and a finite-dimensional

subspace𝑋
1
of𝑋 such that

(i) 𝑃(⋃
𝜏≤𝜏0

𝑈(𝑡, 𝜏)𝐷) is bounded,

(ii) (Id − 𝑃)𝑦 ≤ 𝜂 for any 𝑦 ∈ ⋃
𝜏≤𝜏0

𝑈(𝑡, 𝜏)𝑥 and any
𝑥 ∈ 𝐷,

where 𝑃 : 𝑋 → 𝑋
1
is a bounded projection and Id is the

identity.

Lemma 9 (see [33]). A process {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

satisfying pullback
D condition (PDC) is pullback asymptotically compact.

From (29), (37), (65), (71), and (76), we get the following
theorem.

Theorem 10. Assume that 𝑄 ∈ 𝐿2loc(R; 𝐿
2(Ω)) satisfies

sup
𝑡∈R

∫
𝑡+1

𝑡

‖𝑄(𝑠)‖
2

2
𝑑𝑠 < ∞. (80)

Then, for any 0 < 𝜎 ≤ min{1/(4Rt
2
ℎ2 + (4ℎ/𝛼)), 1/2𝐶

𝑀
Re

1
},

there exists a (𝑉, 𝑉)-pullback absorbing set for the processes
{𝑈(𝑡, 𝜏)}

𝑡≥𝜏
associated with (1)–(5).

Thanks to the knowledge of functional analysis, we know
that the operator 𝐴 = (𝐿

1
, 𝐿

2
) : 𝑉 → 𝑉󸀠 with domain

D (𝐴) = 𝑉 ∩ (𝐻
2

(Ω))
3 (81)

is a positive self-adjoint operator with compact inverse.
Therefore, the space 𝐻 possesses an orthonormal basis
{(𝜔

𝑘
, 𝜂

𝑘
)}
∞

𝑘=1
of eigenfunctions of the operator 𝐴 such that

(𝐿
1
𝜔
𝑘
, 𝐿

2
𝜂
𝑘
) = (𝜆

𝑘
𝜔
𝑘
, 𝜇

𝑘
𝜂
𝑘
) , (82)

where

0 < 𝜆
1
≤ 𝜆

2
≤ ⋅ ⋅ ⋅ ,

lim
𝑘→∞

𝜆
𝑘
= ∞,

0 < 𝜇
1
≤ 𝜇

2
≤ ⋅ ⋅ ⋅ ,

lim
𝑘→∞

𝜇
𝑘
= ∞.

(83)

Let 𝐻
𝑚

= span{(𝜔
1
, 𝜂

1
), (𝜔

2
, 𝜂

2
), . . . , (𝜔

𝑚
, 𝜂

𝑚
)}, and let 𝑃

𝑚
:

𝐻 → 𝐻
𝑚
be the 𝐿2(Ω) orthogonal projection onto𝐻

𝑚
.

In the following, we prove that the process {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

associated with (1)–(5) is pullback asymptotically compact in
𝑉 by verifying the pullbackD condition.

Theorem 11. Assume that 𝑄 ∈ 𝐿2loc(R; 𝐿
2(Ω)) satisfies

sup
𝑡∈R

∫
𝑡+1

𝑡

‖𝑄(𝑠)‖
2

2
𝑑𝑠 < ∞. (84)

Then, for any 0 < 𝜎 ≤ min{1/(4Rt
2
ℎ2 + (4ℎ/𝛼)), 1/2𝐶

𝑀
Re

1
},

the process {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

associated with (1)–(5) is pullback
asymptotically compact in 𝑉.

Proof. Let 𝐵 be a bounded subset of 𝐻(Ω), (V(𝑡), 𝑇(𝑡)) =

𝑈(𝑡, 𝜏)(V
𝜏
, 𝑇

𝜏
) = (V

1
+ V

2
, 𝑇

1
+ 𝑇

2
), where (V

𝜏
, 𝑇

𝜏
) ∈

𝐵, (V
1
, 𝑇

1
) = 𝑃

𝑚
(V, 𝑇), and (V

2
, 𝑇

2
) = (Id − 𝑃

𝑚
)(V, 𝑇) =

𝑄
𝑚
(V, 𝑇).
Taking the inner product of (1) with 𝐿

1
V
2
, we have

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝐿1

V
2

󵄩󵄩󵄩󵄩
2

2

≤ ‖V‖
6
‖∇V‖

3

󵄩󵄩󵄩󵄩𝐿1
V
2

󵄩󵄩󵄩󵄩2

+ 𝐶‖∇V‖1/2
2

‖ΔV‖1/2
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕V

𝜕𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/2

2

󵄩󵄩󵄩󵄩∇V𝑧
󵄩󵄩󵄩󵄩
1/2

2

󵄩󵄩󵄩󵄩𝐿1
V
2

󵄩󵄩󵄩󵄩2

+ 𝐶‖∇𝑇‖
2

󵄩󵄩󵄩󵄩𝐿1
V
2

󵄩󵄩󵄩󵄩2 + 𝐶‖V‖
2

󵄩󵄩󵄩󵄩𝐿1
V
2

󵄩󵄩󵄩󵄩2.

(85)

From the Young inequality, we obtain

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

+ 𝜆
𝑚

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

≤ 𝐶‖V‖2
6
‖∇V‖2

3
+ 𝐶‖∇V‖2

2
‖ΔV‖2

2

+ 𝐶
󵄩󵄩󵄩󵄩V𝑧

󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩∇V𝑧
󵄩󵄩󵄩󵄩
2

2

+ 𝐶‖∇𝑇‖
2

2
+ 𝐶‖V‖2

2
.

(86)
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By virtue of Lemma 1, we get

󵄩󵄩󵄩󵄩V2(𝑡 + 𝑟)
󵄩󵄩󵄩󵄩
2

≤ 𝑒
−𝜆𝑚 (∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩V2 (𝑠)
󵄩󵄩󵄩󵄩
2

𝑑𝑠 + ∫
𝑡+1

𝑡

𝑏 (𝑠) 𝑑𝑠) , (87)

where

𝑏 (𝑠) = 𝐶‖V‖2
6
‖∇V‖2

3
+ 𝐶‖∇V‖2

2
‖ΔV‖2

2

+ 𝐶
󵄩󵄩󵄩󵄩V𝑧

󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩∇V𝑧
󵄩󵄩󵄩󵄩
2

2

+ 𝐶‖∇𝑇‖
2

2
+ 𝐶‖V‖2

2
.

(88)

Therefore, we obtain

󵄩󵄩󵄩󵄩V2(𝑡)
󵄩󵄩󵄩󵄩
2

≤
𝜖

2
, (89)

for any 𝜖 > 0, 𝑡 ∈ R, and any 𝜏 ≤ 𝜏
2
− 1, if 𝑚

1
is sufficiently

large.
Similarly, we get

󵄩󵄩󵄩󵄩𝑇2(𝑡)
󵄩󵄩󵄩󵄩
2

≤
𝜖

2
, (90)

for any 𝜖 > 0, 𝑡 ∈ R, and any 𝜏 ≤ 𝜏
2
− 2, if 𝑚

2
is sufficiently

large. Hence,

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑇2(𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝜖, (91)

for any 𝜖 > 0, 𝑡 ∈ R, and any 𝜏 ≤ 𝜏
2
− 2, if𝑚 ≥ max{𝑚

1
, 𝑚

2
}.

From Theorems 10 and 11 and Lemma 7, we obtain the
following mainTheorem.

Theorem 12. Assume that 𝑄 ∈ 𝐿
2

loc(R; 𝐿
2(Ω)) satisfies

sup
𝑡∈R

∫
𝑡+1

𝑡

‖𝑄(𝑠)‖
2

2
𝑑𝑠 < ∞. (92)

Then, for any 0 < 𝜎 ≤ min{1/(4Rt
2
ℎ2 + (4ℎ/𝛼)), 1/2𝐶

𝑀
Re

1
},

the process {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

associated with the solutions of (1)–(5)
possesses a (𝑉, 𝑉)-pullback attractor Â = {A(𝑡) : 𝑡 ∈ R}.
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