Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2013, Article ID 682413, 12 pages
http://dx.doi.org/10.1155/2013/682413

Research Article

On the Largest Disc Mapped by Sum of Convex and

Starlike Functions

Rosihan M. Ali,' Naveen Kumar Jain,” and V. Ravichandran®

!'School of Mathematical Sciences, Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
? Department of Mathematics, University of Delhi, Delhi 110007, India

Correspondence should be addressed to Rosihan M. Alj; rosihan@cs.usm.my

Received 5 July 2013; Accepted 17 October 2013

Academic Editor: Ferhan M. Atici

Copyright © 2013 Rosihan M. Ali et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For a normalized analytic function f defined on the unit disc D, let ¢(f, f', f";z) be a function of positive real part in D,
w(f, f', f"; 2) need not have that property in D, and y = ¢ + y. For certain choices of ¢ and v, a sharp radius constant p is
determined, 0 < p < 1, so that y(pz)/p maps D onto a specified region in the right half-plane.

1. Introduction

Let &/ be the class of functions f analytic in D = {z €
C : |z| < 1} and normalized by f(0) = 0 = f'(O) -1
Let & be its subclass consisting of univalent functions. For
two analytic functions f and g, the function f is subordi-
nate to g, written f(z) < g(z), if there is an analytic self-
map w: D — D with w(0) = 0 satistying f(z) = g(w(z)).
Given an analytic function p with p(0) = 1 and Re p(z) >
0 in D, denote by ST (p) and €7 (p) the subclasses of
o consisting, respectively, of f satistying zf'(2)/f(z) <
p(z) and 1+ zf”(z)/f’(z) < p(z).

For various choices of p, these classes reduce to well-
known subclasses of starlike and convex functions. For
instance, with p(z) = (1 + (1 - 2a)2)/(1 = 2),0 < a <
1, then T («) and €7 («) are, respectively, the subclasses
consisting of starlike functions of order « and convex func-
tions of order «. The classes ST = $J(0) and €7 :=
E7'(0) are the familiar subclasses of & of starlike and con-
vex functions. For p(z) = (1 + (1 -2B)2)/(1 - 2), B > 1,
M(B) = ST (p) is the class of functions f € o satistying

zf' (2)
f @

studied by Uralegaddi et al. [1]. Various subclasses
of /(f3) have been investigated in [2-5]. For p(z) =

ap={reaire( L) peenl o

(1+2)/(1-2)% 0<y <1, theclass SST (y) := ST (p) is
the class of strongly starlike functions of order y. The
class § = 8T (V1 +z) introduced by Sokol and
Stankiewicz [6] consists of functions f € & satisfying

<zf’ (2) )2 .
@)

Thus, a function f € & is in the class &g if
zf'(2)/ f(z) lies in the region bounded by the right-half of
the lemniscate of Bernoulli given by |w® — 1| < 1. Results
related to the class &', can be found in [3, 7-9].

In investigating the class €7  of uniformly convex

functions, Renning [10] introduced a class & of parabolic
starlike functions. These are functions f € o satistying
o @)

!
Re(zf (z)) N

f @ f(2)

It is important to keep in mind that the qualifier
“parabolic” refers to the geometry of the image of D under
the map zf’(z)/ f(2); that is, the domain necessarily lies
in a parabolic region of the w-plane. It does not convey
the interpretation that the function f maps the disk D onto

a parabolic region. This terminology of parabolic starlike
functions is however widely accepted and used by authors. Ali

<1l (zeD). 2)
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and Ravichandran [11] recently surveyed works on uniformly
convex and parabolic starlike functions.

This paper finds radius estimates for classes of func-
tions in ¢/. The radius of a property P in a given set of
functions . [12, page 119] is the largest number R such
that every function in the set .# has the property P in each
disc D, = {z € C : |z| < r} for every r < R. For example,
the Koebe function k(z) = z/(1 — z)*, which maps D onto
the domain C \ {w € R : w < -1/4}, is starlike but not
convex. However, k maps the disc D, onto a convex domain
for every r < 2 — /3. Indeed, every univalent function f €
& maps D, onto a convex domain for r < 2 — /3 [13,
Theorem 2.13, page 44]. This number is known as the radius
of convexity for .

It is known that 67" ¢ SI(1/2) ¢ {f e o :
Re(f(z)/z) > 1/2,z € D}. The function g(z) = z/(1 - z) is
convex and therefore starlike of order 1/2; it is clear that the
function

29’ (2)
(2) = (4)
¢ 9(2)
has real part greater than 1/2. Now the function
zzgll (Z)
(2) := ©)
v g9(2)

takes values in C \ {w € R : w < —1/2}, and therefore does
not have positive real part for all z € D. Their sum

! 2N
¢(Z)+1//(Z): Zg (Z)+Zg (Z)

g(2) g(2)
! " (6)
_ 29 () <1+Zg (z)>
g(2) g (2)

takes values in {w := x + iy € C : y* > —x/2} and therefore
the sum ¢ + y does not have positive real part in D. This
motivates us to determine the largest radius p such that

zzg” (z)
Re( 72 +

zg' (z)
g(2)

)>a Gasp. @

More generally, let ¢ = ¢(f, f', f"';2) and v = y(f, f',
f";z) be functions satisfying Re¢ > 0 in D, while Rey
need not necessarily be positive in the whole unit disc D. For
certain choices of ¢ and v, a sharp radius constant p is
determined, 0 < p < 1, so that whenever [z] < p, the
sum ¢ + y takes values in specified regions in the complex
plane. The results obtained are shown to reduce those of Singh
and Paul [14] in certain special cases.

2. Main Results

For ¢(z) = ¢(f, f',f";z) = zf’(z)/f(z) and y(z) :=
I/J(f,f',f”;z) = zzf”(z)/f(z), with f € §7(1/2), several
radius results for the sum ¢+ to be in certain regions in the
complex plane are obtained in the following result.
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Theorem 1. Let f € §T(1/2);let x : D — C be defined by

Zf"@ 2 (2
x(2) = @ + o ©
xi (@) =x(pz), i=12,...,6.

Then

(a) Re x,(2) > «, 0 < < 1, where p, is given by

7 — 16a 2+ V13
, 0<a< ——
P = 11 - 16 + 8V2 — 4« 18 )
! 2(1 - a) 2+ 13
— <a<l1.

1+2a+VI+8a
(b) Ix5(2) = 1] < 1, where p, is given by
2(V2-1)

P =
1+2vV2+\1+8V2

(c) Re x5(z) < B, B> 1, where p; is given by

_2(p-)
P 1+2B++/T+8B

(d) Ixu(2) -1l <1-a, 0 < <1, where p, is given by

= 0.112903. (10)

(11)

3 2(1-«)
Pt V1T — 8

(12)

(e) larg(xs(2))l < ym/2, 0 <y < 1 where p; = ps(y) €
(0, 1) is the root of the equation in r:

(1+2(1-7")1) \/4t0 —(1+ty—r2t,)

- (1 +1t, (—1 -3r +2(1 - rz)zto))tan<%> =0,

. 5-7+V9-10r2 +17r*
o 8(1-r%) '
(13)
In particular,
1 1
o (Z) ~0131522,  ps (E) ~ 0266747,
(14)

3
Ps (Z) ~0.409049,  ps (1) = 0.560097.

() Also |xs(z) — 1| < Re y4(z), where pg = 0.23605 ¢
(0, 1) is the root of the following equation in r:

2(1+97%)ty — 1+ (=5 +26r" - 21r) £}
(15)
+a(1-72) (1+32) 8 -4(1-1)'td =0,
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and ty € (1/(1 + r)*,1/(1 = r)?) is the root of the
equation in t:

2(1+9r%) +2(-5+26r" - 217")t
2 4 (16)
+12(1-7%) (1+3°) —16(1-7") £ = 0.

Each radius constant p; is sharp.

For two analytic functions f,g € &, their convolution
or Hadamard product, denoted by f * g, is defined by (f *
9)(z) =z + Y., a,b,z". The following results are needed in
the sequel.

Lemma 2 ([15, Lemma 2.7, page 126; Lemma 3.5, page 130]).
If f €e 7 and g € ST, or f and g belong to ST (1/2),
then
F

L2 98 o) c s (r (o)) W)

f*g
for any function F analytic in D, where co(F(D)) denotes the
closed convex hull of F(D).

Lemma 3 ([7, Lemma 2.2, page 6559]). For 0 < a < V2,
let r, be given by

(Vi@ -(1-a))"", 0<a<2v2/3
r, = (18)

V2 -a, 2V2/3 <a< 2,
and for a > 0, let R, be given by
1
- V2 -a, 01< a< 7 )
a, N <a.
Then,
fw:|w-al <ra}§{w:.w2—1| < 1}
(20)
c{w:|lw-a| <R,}.
Proof of Theorem 1. Let h: D — C be defined by
2 1
h(z):(l_z)z—l_z. (21)

First, for eachi = 1,2,...,6,h(z) = h(p;z) will be
shown to, respectively, satisfy Re hy(z) > a,lh,(z) — 1] <
LRe hy(z) < B,lhy(=z) = 1] < 1 - a,|arghs(2)| < ym/2,
and |hg(z) — 1| < Re hy(z). Then, using Lemma 2, y; is
deduced to satisfy the required condition.

Asin [14], let

1 .
= Re"”, (22)
1-z
so that
1 1
<R<s— (lz|=71),
1+r 1-r
(23)
1+R*-#’R?

3
(a) By (21), (22), and (23), it follows that
Reh(z) = 2R* cos 20 — Rcos 6
1 1 2 2\2,2 2
=5—E(1+3r)t+(l—r )£ (t=R)
= ¢ (t).
(24)

Case (i). Suppose that 0 < a < (2 + V13)/18. We assert
that min ¢(t) > « for |z| < p;, where the minimum is taken
overall £ € (1/(1+7)*1/(1=7)%).Let r < p;. Then

o) 1 2 2\,
7— 2(1+3T)+2(1 r)t—O (25)

if t =t, == (1+3r2)/(4(1 — r*)?), 3*p(t,)/0t* > 0, and that
for r > 4 — V13,

1 1

— <ty < ——. 2
1+r)? " 7 (-1 (26)
Thus,for4—\/ﬁ£r<pl,
72212 — 1t
ming () = ¢ () = ———— > a. (27)
16(1-12)

On the other hand, if < 4 — v/13, then it can be shown
that

. B 1
mln¢(t)_¢<(1+r)2>
_ 1-r N \/E—S
(1+1)” (5-vi3)’

2+ /13
18

(28)

>

Case (ii). For (2 + V13)/18 < «a < 1, then min ¢(t) >
ainlz| < p,t € (1/(1 + )%, 1/(1 = r)?). Indeed for r <
p; < 4— /13, as in the case (i),

! ) Lor . (29)

a+r2)  axr?

ming ()=

The previously mentioned two cases show that Re h,(z) >
o in D. Figure 1illustrates sharpness of the radius p; = /5 -
2 in the case « = 0.5.

(b) For h given by (21), a calculation shows that

2 1
|h(z)—1|=l 5 = —ll
(1-2)° 1l-z
_|_z N 2z i (30)
-z (1-2)
r 2r

< +—2.
I-r (1-7)
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FIGURE 1: Image of |z| < V/5 - 2 touches Re w = 0.5.
By Lemma 3, the function h satisfies
| (2)-1] <1 (31)
provided
- (32)
1-r (1 - r)z -
that is,

V2r' - (1+2V2)r+(V2-1) 20 (33)

This inequality holds if < p,. Figure 2 illustrates sharp-
ness of the radius p, = 0.1129.
(c) From (30), it follows that

r 2r
Reh(z)51+1_r+(1_r)2£ﬁ (34)
provided
Bt —(1+2B8)r—(1-p)=0 (35)

holds, which occurs whenever r < p;. Sharpness of the
radius p; = (4 — V13)/3 in the case B = 1.5 is illustrated
in Figure 3.

(d) Inequality (30) also yields

2r
h(z)-1] < — <l-«a
|h(z) -1 1 (1—r)2 (36)
provided
Pa-2)+r(5-2a)+a—-1<0, (37)

that is, when r < p,. Figure 4 illustrates sharpness of the
radius p, = (4 - 4/13)/3 in the case a = 0.5.
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FIGURE 2: Image of |z| < 0.1129 touches lw?-1] = 1.

(e) For the function h given by (21), it follows from (22)
and (23) that

argh (z)
< 2Rsin 20 — sin 6 )
= arctan
2R cos 28 — cos 6
_ arctan (4Rcosf —1)sinf
- 2R (2co0s?0 — 1) — cos O
(1+2(1-7)R \/4R2 1+(1-1r2)R?)
= arctan
1-(1+3r2)R2 +2(1 — 12)°R¢
(1+2(1-7) \/4t—(1+ (1-12)t)
= arctan
1-(1 +3r2)t+2( - r2)’2
:= arctan (¢ (t)),

(38)

t e (1/(1 +7r)?1/(1 = r)?). A calculation shows that </>'(t) =
0 where

t=t,
55—+ V9-10r% + 17r* ( 1 1 )
) 8(1-r%) (1+r)? (1-r)
(39)
Now ¢'(t) > 0 for t < t,, ¢'(t) < 0 if t > t,, and
1 1

(o) o () @
Thus
max ¢ () = ¢ (t,)

(2 (1)) Vatg - (14 (1- 1) 1,)’
B 1= (1+3r2) 1, +2(1 - r2)°¢2

(41)
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0.8 1.0 1.2 1.4 1.6 1.8

FIGURE 3: Image of |z| < (4 - V13)/3 touches Re w = 1.5.

Evidently, (38) and (41) give

|argh(z)|
1+2(1-) to)\/4t0 —(1+(1=r2)1,)
< |arctan 5
1-(1+3r)ty+2(1-1r2)t]
P
2
(42)
provided

(1+2(1-7%)ty) \/4t0 —(1+(1=12)¢,)
- (1 + 1ty (—1 -3+ 2(1 - rz)zto))tan(?) (43)
<0.

Figure 5 illustrates sharpness of the radius p; =
0.266747 in the case y = 0.5.

(f) The inequality
lh(z) = 1] < Re h(z) (44)
holds if
(2R2 c0s20 — RcosO — 1)2 + (2R2 sin 260 — R sin 6)2
2 (45)
< (2R2 c0s 260 — R cos 9) ,
or, with ¢ = R?,
¢t)=2(1+97)t -1+ (-5+26r" —21r") £
(46)

ra(1-72) (1+37) 2 —4(1-r2)"t <0,

5
0.4
0.2
0.0
-0.2
-0.4
0.6 0.8 1.0 1.2 1.4
FIGURE 4: Image of |z| < (4 - V13)/3 touches |w — 1| = 0.5.
2
-2
0.0 0.5 1.0 1.5 2.0
FIGURE 5: Image of |z| < 0.266747 touches |argw| = 7/4.
t e (1/(1+7r)%,1/(1 = r)*). Then,
¢ (1) =2(1+97%)+2(-5+26r" —21r" )¢
(47)

12(1-r2) (1+32) 2 - 16(1 - )P
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FIGURE 6: Image of |z| < 0.23605 touches |w — 1| = Re w.
Let r < pg. Since
, 1 )
¢ ( (1+7)?
4(—3 +11r+6r° + 71° — r4)
= > >0 ifr>0.234722,
1+7)
,< ] ) 4(3+11r—6r" +7r +r')
= - <0,
¢ (1-r)? (1-r)?
(48)
there exists a unique t, € (1/(1 + % 1/(1 - r)%) such

that </5'(t0) =0 and max ¢(t) = ¢(t,).
Thus, max ¢(t) = ¢(t,) < 0 for 0.234722 < r < p;.
When r < 0.234722,

1 )Z 4(4r-1+1%) co (49)

max ¢ () :¢<(1+r)2 (1 +r)

hence, ¢(t) < 0 for r < p,. Figure 6 illustrates sharpness of
the radius p; = 0.23605.

Next, consider g;(z) = z/(1-p;z) € 67 < ST (1/2), i =
1,2,...,6. Then,

f(2) * g, (2) h; (2)
f(2) * g (2)
 f@#(2/ (1-p2)) (2p2/(1 - p2) +1/(1 - p2))
B f(@)%(z/(1- pz))

Abstract and Applied Analysis

f@ (29270 - p2)’ +2/(1- p2)’)
f(2) = (z/ (1-pz))

_ P2 f" (p2) + piaf’ (p2)
f(p2)
=x(pz) =X -

(50)

Lemma 2, together with (50) and the corresponding
inequality for the function h;, shows that each function
x; satisfies the required condition. For sharpness, consider
the function f,(z) =z/(1 -2) € €7 ¢ ST (1/2). Then,

Zh@rzhE 2
7o @) (1-2° 1-z

Sharpness of the numbers p; is now evident in view of the
definition h. O

=h(z). (51)

Fora =
corollary.

0, Theorem 1(a) reduces to the following

Corollary 4 ([14, Theorem 5, page 724]). If f € ST (1/2),

then
sz” (z) Zf, (Z)
Re( @ + @ ) >0 (52)

in|z| < p = \8V2 — 11 = 0.56. The number p is sharp.

Theorem 5. Let f € ST (1/2) and xy : D — C be defined
by

f @)

z

+f' (), i=1,2,3.

(53)

x(z) = xi (2) = x (pz) s

Then
(a) Re y,(2) >, 0 < < 1, where p; is given by

7 - 8a 7+ 47
, 0<a<—-,

oy = 5-8a+4V2V1-«a 18 (54)
! 4-2a 7HaVT
20— 1+VI+4a L

(b) larg x,(2)| < ym/2, 0 < y < 1, where p, = p,(y) €
(0,1) is the root of the equation

(promarm-2)
» J16r2+(3+3r2_ o2

+< 9+5r2(r2=2) - 11 - 11r* + 5¢

X (2 + 19+ 572 (r? - 2)>)tan(?) =0.

(55)
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In particular,

1 1
P (4_1> =~ (.257136, P (5) = (.487998,

3 ) 7
— ) =0.674274, 1) = \|————= = 0.810465.
P2 <4 P2 (1) \IS +42
(56)

(c) Also |x;(z) — 1| < Re y3(z), where p; = 0.44915 is
given by the equation in r

24ty - 8+ (-1 + 187 —17r") 15

5 A (57)
+2(1-77) (-1437) g - (1-7) t5 =0
and t is given by the equation in t
24 +2(-1+ 1877 = 177")t
) A (58)
+6(1-7) (-1+37) 2 -4(1-7") £ =0.
Each radius constant p; is sharp.
Proof. Let
1
h(z) = — (z e D). (59)

+—
l-z (1-2)

Each h;(z) = h(p;z), i = 1,2, 3, is shown to, respectively,
satisfy Re hy(z) > a, |argh,(2)| < ym/2, and |hs(2z) — 1| <
Re h3(z). Then, it follows from Lemma 2 that y; satisfies the
required condition.

(a) We claim that Re h(z) > « in |z|] < p;. By (22) and
(23),

Re h(z) = RcosB + R* cos 20

s1e s (-3 e (1)) (=R

=¢().
(60)

Case (i). Suppose 0 < a < (7 + 41/7)/18. In this case, it is
shown that min¢(t) > « for |z| < p, over all ¢t in (1/(1 +
13 1/(1=1)?). Let r < p;- It can be verified that

@:%(1—3%”(1—#)%):0 (61)

if £ =ty = (3 = 1)/(2(1 - %), P(ty) /0> = (1 - 17)" > 0,
and that for r > V7 - 2,

1 1

(1+7r)? == (1-r? (©2
Thus for V7 -2 <r < p,,
. 710" -1
min ¢ (t) = ¢ (t,) = Trrl); > a. (63)

7
10
5
0
-5
-10
0 5 10 15 20
FIGURE 7: Image of |z] < \/% touches Re w = 0.5.
On the other hand, if r < /7 — 2, then
min¢(t):¢((1:r)2>:(12:rr)2' (64)

Since g(r) = 2+ r)/(1 + r)?is a decreasing function

in (0, V7 - 2),

@+r) 2++7-2
1+ (14v7-2)

\7 =4\/7+7>(x
(vi-1) 18

min ¢ (t) =

(65)

Case (ii). For (7+4+7)/18 < a < 1, we prove that min ¢(t) >
ain|z| < p,te (1/(1+7r)%1/(1=r)%). Let r < P < V7-2.
As in Case (i), then

! )— 20 o (66

min ¢ () = ( =
pH=9 (1+7r)?/)  (1+7)?
It is evident from the previous two cases that Re h,(z) >
« in D. Figure 7 shows that, for « = 0.5, the radius p, =
\/3/5 is sharp.

(b) Let h(reit) = u + iv. Then,

2(1 +r2+r2cos2t)—r(5+r2)cost
u= R
(1 +12—2rcost)’

(67)
r(3 +72 —4rcost) sint

v= >
(1+72-2rcost)



By (67), it follows that

argh (reit)
r(3 +72 —4rcost) sint
= t .
arctan 2(1+7>+r2cos2t) —r(5+71?)cost
(68)
Let g: [-1,1] — R be defined by
r(3+r2 —4rx) V1 - x2
g(x) = (69)

2-r(5+7r2)x+4r2x>
(The case —V1 — x? is similar.) A calculation shows that

r(l N 2rx) (r (7+r2) —6x(1 +r2) +4rx2)

!
g (x)=
\/1——x2(2—r(5+r2)x+4r2xz)2
(70)
Let
2 _~\9- 1072 4
x0=3+3r 9 —10r" + 5r €(0,1]. (71)

4r

Then, g'(xo) =0, g'(x) > 0 for x < x,, and g'(x) <
0 for x > x,. Thus,

g(x) < max g (x) = g (xo). (72)

Now (68) and (72) show that

|argh (reit)| < %T (73)
provided
r (347 —4rxy) /1 - x2
( 0) 0 sm(ﬂ); (74)
2-r(5+712) x, + 4r’x} 2
that is,

tan(¥)_r(3+r2—4rx0)'\'1—x§ >0‘ (75)

2-r(5+7r2)xy +4r:x3

Abstract and Applied Analysis

0 1 2 3 4 5

FIGURE 8: Image of |z| < 0.487998 touches |argw| = 7/4.

Thus, |argh,(z)] < yn/2 in D. Figure 8 shows that,
for y = 0.5, the radius p, = 0.487998 is sharp.
(c) Proceeding similarly as in part (a),

|h(z) - 1] <Re h(z), (76)
provided

24r’R* -8 + (187" -1 - 17¢") R*

2 4 (77)
—2(1-7) (1-37)R° - (1-7") R® <.
Let ¢: (1/(1 +7)%1/(1 =7)*) — R be defined by
¢(t)=24r"t -8+ (18" =1 - 17r") ¥
2 4 (78)
—2(1-7) (1-372)F - (1-7) ¢
Now
¢ (1) =24r" +2(18° -1 - 17" )¢t
(79)

—6(1-72) (1-32) 2 —4(1- )P,



Abstract and Applied Analysis

0 1 2 3 4 5

FIGURE 9: Image of |z| < 0.44915 touches |w — 1| = Re w.

Let r < p;. Since

¢,((1+1r)2)

4(—3 +7r+ 127 + 7% + r4)
= >0

(1+7)?
¢ ((1 —lr)z)

4(=3-7r+1277 =77 + 1)
= 5 <0,
(1-7)

if r > 0.27606,

(80)

there exists a unique t, € (1/(1 + % 1/(1 = r)?) such
that ¢'(t,) = 0 and max $(t) = ¢(t,).
Then, for 0.27606 < + < p;,

max (1) = ¢ (t,) < 0. (81)

When r < 0.27606,

<0. (82)

~ 1 B 4 (—3 + rz)
max¢(t)—¢<(1+r)2)_ (1+7)
Evidently, ¢(t) < 0 forr < p;and hence |h;(z) —

1| < Re h4(z) in D. Figure 9 shows that the radius p; =
0.44915 is sharp.

Now, with g(z) =z € §7(1/2),i=1,2,3,

f(2) * zh; (2)
f2)*z

f@xz(1/(1-p2)+1/(1 - p2)’)
B f@)xz (83)

L8 )

= x(pz) = x:i (2).

Lemma 2, together with (83) and the corresponding
inequality for the function /;, shows that each function
X; satisfies the required condition. For sharpness, consider
the function f,(z) =z/(1 —2) € €7 ¢ ST (1/2). Clearly

fo(Z) +f(;(Z) _ 1

+ 2
z -z (1-2)

=h(z);  (84)

hence the fact that the number p; is sharp follows from the
definition of h. O

Fora =
corollary.

0, Theorem 5(a) reduces to the following

Corollary 6 ([14, Theorem 3, page 722]). If f € §T(1/2),
then

Re(& +f (z)) >0 (85)

z

in |z| < p = \4V2 - 5 = 0.81. The number p is sharp.

Theorem 7. Let f € €7/, x: D — C be defined by
zf" (2) ) L1
f'(2) f'(z) (86)
x@=x(pz), i=12

x(z) = (1+

Then,

(a) Re x;(2) > a, 0 <« < 1, where p; = \|3 — V5 + 20;

(b) larg x,(2)| < y7/2, 0 <y < 1, where p, = p(y) €
(0, 1) is the root of the equation in r

2rZM(r - (3 + rz)xo + eré) +tan<?)

X (2 i 4rxg + (61’2 + 2r4) x(z) - 4r3x(3)) =0,
(87)
and x, € [-1,1] is the root of the equation
6-5r" —4r* —r°+ (—6r +157° + 7r5) X

+(-12-8r7 —16r*) xy + (24r +16r° ) x;  (88)

- 16r2x3 =0.
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In particular,
o (%) ~06355,  p(1)=\3-+5  (89)
The radii are sharp.
Proof. Let

h(z) = LZ+(1—2)—1 (z € D). (90)

(a) We claim that Re h(z) > « in |z| < p;. By (22) and
(23), it follows that

cos 20
R2

Re h(z) =2RcosO -1+

_ 1+t2+r4t2+2f3;2”2(t+t2+t3) (t :=R2)
2t

= (1).

(o1

A calculation shows that qb'(t) =0ift=t,=1e(1/(1+
1% 1/(1=1)%), ¢ (t,) = 3 — 2% > 0, and that

min¢ () = ¢ (1) = (4 6r’ +r)>(x (92)

overall t € (1/(1+7)%1/(1-1)% provided
rt—6r’ +4-2a>0. (93)

This inequality reduces to r < p;. Thus, Re h;(z) >

a in D. Figure 10 shows that, for &« = 0.5, the radius p; =

\/3 — V6 is sharp.

(b) Let h(re") = u + iv. Then
= (2(1-rcost) + (r* (cos’t — sin’t) - 2r cost)
x (1+7% = 2rcost))
x (1+7% = 2rcost) &4

2rsint(1 —(1 —rcost)(l +72 —2rcost))

V:
1412 —2rcost

By (94), it follows that
argh (re")
= arctan ( (27 (~r + cost (3 +1” — 2r cost) ) sint)
x (242" —r(4+3r") cost

r’ (3 + rz) cos 2t — 1 cos 3t)_1) .
(95)

Abstract and Applied Analysis

Let
g(x) = <2r2 (—r +x (3 +r7 - 2rx)) M)

x(2+2r2—r(4+3r2)x

r (3 + rz) (2x2 - 1) -7 (4x3 - 396))71

(96)

A calculation shows that there exists x, € [0, 1] such
that g'(xo) =0 and g"(xo) < 0. Thus
gx)<g(x), xel-11]. (97)

By (95), (96), and (97), evidently

h(ret)| < 22
Jarg s (re")| < 3 ©8)
if

2r? (—r + X, (3 +r° - 2rx0)) \1-x5

212 —rt—drxy + (6r% + 2rt) x3 — 4r3x] (99)
< tan (E>,
2

that is,

2r24[1 - %( - 3+r x0+2rx0)
+tan<g> —r2—r —4rx, + (6r2+2r4) —4r3x(3))
> 0.

(100)

Thus, |argh,(z)| < yn/2 in D. Figure 11 shows that,
for y = 0.5, the radius p, = 0.6335 is sharp.

To conclude the proof, let g(z) = z/(1 - p,-z)2 € 8T.
Then,

f @« (2/(1-p2)") 1 (2)
f @) = (2/(1-pz)’)
f(z)*(z/(l—p,z))( (1- )—1+(1—p,z))
f @) = (2/(1 - p2)*)
f@)x (22/(1- pz) +z-z/(1- p,-z)z)
B f (@) * (z/ (1~ pi2))

i (1 ' pi?:é%ﬂ o

=X (2).

= x(pz)
(101)

As in the earlier proofs, Lemma 2 together with (101)
and the corresponding inequality for the function h; shows
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F1GURE 10: Image of |z| < /3 — /6 touches Re w = 0.5.

0 1 2 3 4

FIGURE 11: Image of |z| < 0.6335 touches | argw| = /4.

that the function y; satisfies the required condition. For
sharpness, consider fi(z) = z/(1 —z) € €7 c §T(1/2).
Then,

(1+Z(;’(Z))+ 12
i) fild 1-z

—1+(1-2)*=h(z).

(102)
O

For a = 0, Theorem 7(a) reduces to the following result.

1

Corollary 8 ([14, Theorem 4, page 723]). If f € €Y/, then

e( (122!

0
@ ) F (z)) g
inlz|<p= \3 - V5 = (5 - 1)/V2 = 0.874032. The result

is sharp.

(103)
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