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The objective of this paper is to extend some results of pioneers for the nonlinear equation m, = (1/2)(1/mk)xxx -(1/2)(1 /mk)x
introduced by Qiao. The equivalent relationship of the traveling wave solutions between the integrable equation and the generalized
KdV equation is revealed. Moreover, when k = —(p/q) (p#qand p,q € Z"), we obtain some explicit traveling wave solutions by

the bifurcation method of dynamical systems.

1. Introduction

Qiao [1] introduced the following equation:

o 1 < 1 ) 1 ( 1 ) 1)
t_2 m? XXX 2\ m? x,
which is the second positive member in a new completely
integrable hierarchy. Equation (1) possesses a Lax representa-
tion and bi-Hamiltonian structure [1, 2]. In [1, 2] the traveling
wave solutions of (1) were studied. Sakovich [3] found the
transformation
x=v(yt) m(x t)—_—l )
v, (. t)

which relates (1) with the well-known modified KdV equation
and obtained three types of smooth solitons of (1). Moreover,
the equivalence of (1) and the modified CBS equation is
proved in [4]. Yang and Chen [5] obtained two potentials and
two pseudopotentials of (1). Equation (1) is derived from the
two-dimensional Euler equation and proven to have Lax pair
and bi-Hamiltonian structures [6].

To study the bifurcations of traveling wave solutions, Li
and Qiao [7] considered the following nonlinear equation:

1(1) 1(1) 3)
m, = —| — -(=),
! 2 mk xxx 2 mkx

where k € R, k# —1, 0. They used the phase analysis method
of planar dynamical systems and the theory of the singular
traveling wave systems [8-10] to find all possible bounded
traveling wave solutions and their parametric representations
for the cases of |k| = 1/2,2, respectively. In fact, when k = 1/2,
(3) reads as a Harry Dym-type equation, which is actually
the first member in the positive Camassa-Holm hierarchy
[11-13]. The Harry Dym equation is an important integrable
model in soliton theory [13]. It is also related to the classical
string problem and has many applications in theoretical and
experimental physics [14].

Sakovich [3] established the equivalent relationship
between (1) and the modified KdV equation by the transfor-
mation for k = 2. When k > 2, k € Z, one objective of
this paper is to find some transformations which relate the
traveling wave solutions of (3) with that of the generalized
KdV equation [15]:

u +a(u”) +u, =0, (4)

where n is a positive integer and a# 0. For the results of
traveling wave solutions on (4), we refer the readers to [16-
21]. The other objective is to extend the results of Li and
Qiao [7]. We continue to consider the problems on explicit
traveling wave solutions of (3) and their bifurcations, but we
do not use the theory of the singular traveling wave systems.
Instead, we apply the transformations which transform (3)
into a traveling wave system without singular straight line



[21, 22]. Then, by using the bifurcation method of dynamical
systems [21-28], we obtain some explicit traveling wave
solutions of (3) for the case of k = —(p/q) (p+#q and p,q €
Z"). Not only the existence of these solutions are proved, but
also their concrete expressions are presented.

The rest of the paper is organized as follows. In Section 2,
we reveal the equivalent relationship of the traveling wave
solutions between (3) and (4). In Section 3, various planar
systems and their bifurcation phase portraits of (3) are
given. We state the explicit traveling wave solutions of (3)
and present their theoretical derivation in Section 4. Some
conclusions are given in Section 5.

2. Equivalent Relationship of (3) and (4)

In order to study the equivalent relationship of the traveling
wave solutions between (3) and (4), we transform both (3)
and (4) into traveling wave systems.

First of all, we substitute m = U(E) with & = x — ct (c#0)
into (3). Then, we get

n !
_CU'=1<L) J(L)) (5)
2\ Uk 2\ Uk

where ¢ is a constant wave speed. Letting k = —s and
integrating (5) once, we have
1 no1
-cU=-(U") -=U'+g, 6
SU) U +g (6)
where g is an integral constant. Letting
U=g'l, 7)
then (6) can be rewritten as
1/s 1 " 1
—c i — 0 +a. 8
e (8)
Letting n = 1/s, we have
¢" +2c9" —p+2g =0. 9)

Next, we also transform (4) into traveling wave system.
Substituting u(x,t) = y(n) with = cx — ct into (4), we
have

1/3

—cy' +acP" + ey’ =o0. (10)

Integrating (10) once and letting a = 2¢°" leads to
v' 42y —y+ g, =0, (11)

where g, is an integral constant.

Finally, according to (9) and (11), we know that, from the
traveling wave solution (3), we can drive the solutions of (4)
for k € Z. When k € Z, one can notice that the traveling
wave system of (4) is more general than (9) because of the
arbitrary coeflicient a. However, the traveling wave solutions
of (3) cannot be derived from the solutions of (4) for k ¢ Z.
Next, we study the traveling wave solutions of (3) and their
bifurcations for k ¢ Z.
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3. Planar Systems and Their Bifurcation
Phase Portraits

In this section, we derive the traveling wave systems of (3)
for the different cases of k and draw their bifurcation phase
portraits which are the basis for constructing nonlinear wave
solutions.

When k = —p/q, that is, n = q/p, putting y = ¢’ and
g = 0, from (9), we obtain the following planar system

dg
aE =
p (12)
d_)E/ =¢- ZC(pq/ P,
Letting
¢ =¢7, (13)
we have
de = pp?~'d¢. (14)
Then, system (12) can be written as
-1
P
dg
(15)
dy »
—= = ¢f — 2c¢7.
=92
Under the transformation dt = d&/p¢?~", we have
d¢
- = y)
d
. i (16)
ay _ 2p-1 2epdl !
dT qu Cp(ls N
System (16) has the first integral
H(¢,y) =h, (17)
where
4c
H($,y) = y2 - ¢ + —2-gi*a (18)

ptq

Next, we discuss the phase portraits of system. (16) for two
different cases of p — gq.

(a) p—gisevenandc > 0.

Letting

£ (@) = p¢™ ™" —2epgP™ i = pg? ! (¢F - 2¢47),  (19)

we have

1) =p@p-1)¢"7 —2p(p+q-1)¢">. (20)
Solving f(¢) = 0, we get

1\ /-9
o=0 d-2(5) )
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FIGURE 1: The phase portraits of Sy. (16). When p — g is even and ¢ > 0, (a) and (b) are the phase portraits of system (16) for p > gand p < g,
respectively. When p — g is odd, (c)-(f) are the phase portraits of system (16) for p > gandc > 0, p > gandc <0, p < gandc > 0, p < gand

¢ < 0, respectively.

At the singular point (¢, 0), it is easy to obtain that the
linearized system of system (16) has the eigenvalues

A ($,0) ==\ f" ().

From (12) and (18), we get the properties of the singular
points (¢;,0) (i = 1,2) as follow.

(22)

(i) If f'(¢;) > 0, then (¢;,0) is a saddle point of system

(16).

(ii) It f '(gbi) < 0, then (¢,,0) is a center point of system
(16).

(iii) If f'(¢;) = 0, then (¢;, 0) is a degenerate singular point
of system (16).

Therefore, we have the following results.

(1) When p > g, (¢,,0) is a center point, and (¢,,,0)
and (¢,_,0) are saddle points. Due to H(¢,,,0) =
H(¢,_,0), the orbits connecting with (¢,,,0) and
(¢,_,0) are heteroclinic orbits.

(2) When p < g, (¢;,0) is a saddle point, and (¢, ,, 0) and
(¢,_,0) are center points.

From the previous discussion, we get the phase portraits
of system (13) as Figures 1(a) and 1(b).

(b) p—qisodd
In this case, f(¢) has two zero points ¢, and ¢,, where

1 )U(P‘Q)

— (23)
2c

$; =0, ¢4:(

Similar to the previous discussion, we obtain the follow-
ing results.

(1) When p > gand ¢ > 0, (¢,0) is a center point and
(¢4,0) is a saddle point.

(2) When p > gand ¢ < 0, (¢;,0) is a saddle point and
(¢4,0) is a center point.

(3) When p < gand ¢ > 0, (¢5,0) is a saddle point and
(¢4,0) is a center point.

(4) When p < gand ¢ < 0, (¢5,0) is a saddle point and
(¢4,0) is a center point.

Through the discussion mentioned above, we obtain the
phase portraits of Sy. (16) as Figures 1(c)-1(f).

4. New Exact Solutions and
Theoretical Derivation

When k = —p/q, p#q, p, q € Z*, we have the following
results.

(1) When p > gand p — g is odd, (3) has the following
exact solution:

my (x, 1)

—(x—ct)-X 5 a/(p-a)

€ x—ct 2 X X
=|———l(e = +16cp”e” + 16cpge ,
m@+m* )

(24)

where X = g(x — ct)/p.

(2) When p > g, p—gis even and ¢ > 0, (3) also has the
solution of the same expression as 1, (x, ).



(3) When p < gand p—gqisodd, (3) has the solitary wave
solution

m, (x,t) = [‘D "9 ech? (= p)x-ct) , (25
4cp

q/(q-p)
]

and the blow-up solution

- —ct)] 9ap)
msy (x,t) = — [p+qcsch2(q P C)] . (206)
4cp 2p
(4) When p < g, p —qiseven and ¢ > 0, (3) also has
the solitary wave solution of the same expression as
m,(x,t).

Next, we give the demonstration for the previous results
of (3) by two cases.

Case 1 (p < q). When p < g, p—qisoddandc > 0,
system (16) has two singular points (0,0) and (¢,, 0), where
¢, =(1 /2c)1/ (P9 The singular point (¢,, 0) is a center point,
and (0, 0) is a saddle point.

When p < g, p — g is even and ¢ > 0, system (16)
has three singular points (¢,,0), (0,0) and (—¢,, 0), where
¢, = (1/2¢)"/?™9 The singular points (¢,, 0) and (¢, 0) are
center points, and the singular point (0, 0) is a saddle point.

Assume that (¢, 0) is an initial point of system (13), then
we have the following results.

(1) When 0 < ¢, < ¢, = (4ep/(p + q)"/P™D, the
boundary of the closed orbit denoted by I is a
homoclinic orbit which passes (¢;,0) and connects
with (0, 0) (see Figure 2(a)).

(2) When ¢, < 0, there are two special orbits denoted by
I, and I, which pass through (0, 0) (see Figure 2(a)).

(3) When 0 < ¢, < ¢, we use I to sign the orbit which
passes through (¢5, 0) and connects with (0, 0), where
¢, = (4cp/(p + )PP (see Figure 2(b)).

On the ¢ — y plane, the orbits I'}, I}, and I'; have the same
expression which can be written as

y= i\]qbzf’ - %qw. @7)

Substituting the previous expression into p¢?'d¢p/dE =
y and integrating it along different orbits, we have

¢ pds
=¢| (along T;),
Ll G G 8 Do (28)
¢ pds .
=|¢| (along Ij),
L” s\1- (dep/ (p +q)) 5177 . v
¢ d
J pas =¢| (along Tj). (30)

b 5\[1 = (acp/ (p + q)) s7°*
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In (28), completing the integration and solving the equa-
tion for ¢, it follows that

_[pta,, @ pE)" P
¢, (&) = [ i sech 2 ] ) (31)
Similarly, via (29) we have
_ 1/(q-p)

Via (30), we get the solution of the same expression as
$,(8).

When p < g and ¢ < 0, we can obtain the solutions of the
same expressions as ¢, (&) and ¢,(&).

Note that the transformation m = ¢1(£), we get the
smooth solitary wave solution m,(x,t) and the blow-up
solution m;(x, t) of (3).

Case2(p > q). Whenk =-p/q, p > q, p—qisoddandc > 0,
there is an interesting phenomenon concerning the traveling
wave solutions of (3). Generally speaking, homoclinic orbit
is corresponding to solitary wave solution. However, after
applying the transformation to (3), we do not get solitary
wave solution from homoclinic orbit. Therefore, we have
the reason to believe that the transformation influences
the corresponding relations between bifurcation orbits and
traveling wave solutions.

(1) When p > g, p — gqis odd and ¢ > 0, system
(16) has two singular points (0,0) and (¢, 0), where
¢s = (2¢)"/""?_The singular point (0,0) is a center
point and the singular point (¢, 0) is a saddle point.
The boundary of the closed orbit denoted by T is
a homoclinic orbit which passes through (¢, 0) and
connects with (0,0), where H(0,0) = H(¢s,0) and

¢ = (4cp/(p + )PP (see Figure 3(a)).

(2) When p > g, p —qiseven and ¢ > 0, Sy. (16)
has three singular points (0,0), (¢g,0), and (—¢g,0),
where ¢ = (2¢)"/""?_ The singular points (¢, 0)
and (—¢,0) are saddle points. The singular point
(0,0) is a center point. Due to H(¢, 0) = H(—¢s,0),
the orbits connecting with (¢g,0) and (—¢,0) are
two heteroclinic orbits. Here we only consider two
special orbits which pass through (¢, 0), where ¢, =
(4cp/(p + @))"""P_ We denote the orbits by I (see
Figure 3(b)).

On ¢ — y plane, the orbit I, and the orbits I, have the
same expression

y= i\]qszp - %wq. (33)

We take ((4cp/(p + )" ?™,0), that is, (¢, 0) or (¢,,0)
as an initial point for system (16). Substituting the previous
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FIGURE 2: The phase portraits of Sy. (16). (a) For p < g, p — qis odd and ¢ > 0. (b) For p < g, p—gisevenand c > 0.

N

=

()

/

d4h
N

~¢s

—~

b)

FIGURE 3: The phase portraits of Sy. (16). (a) For p > g, p —gisodd and ¢ > 0. (b) For p > g, p — g is even and ¢ > 0.

expression into p¢?~'d¢/dE = y and integrating it along I;
and I3, respectively, it follows that

pr pst~lds
(eplpea)"" |20 — dep/ (p+ q) 5P

(34)
PSPPI

Jfb
(ep/(p+a)"/ "7 s\/sP-q —4cp/ (p+9q)

8]

In (34), completing the integration and solving the
equation for ¢, it follows that

1/(p-q)

=&
¢ (eg +16cp’e’ + 16cpqe’7) ,

¢, (&) = [m
(35)

where 17 = g&/p.

From the transformation m = ¢7(£), we obtain the
traveling wave solution 1, (x, t) of (3).

The theoretical derivation of the other cases can be
finished similarly. We omit it for convenience. Hereto, we
have completed the demonstrations to the previous results of

(3).

5. Conclusions

In this paper, we find some transformations which relate
(3) with (4). Applying these transformations, we reveal the
relationship of traveling wave solutions between (3) and (4).
By using the bifurcation method of dynamical systems, we

consider the further results on the explicit traveling wave
solutions of (3) for the special case of k = —p/q, where p#q,
P> q € Z". The correctness of these solutions is tested as well
by using the software Mathematica.

Note that in this paper, there are two problems waiting
to solve. The first one is that we only discuss the equivalent
relationship of the traveling wave solutions between (3) and
(4). We do not know whether the relationship of the other
solutions of (3) and (4) is equivalent. The second one is that
we have investigated the traveling wave solutions of (3) for the
special cases of k = —p/q. But the traveling wave solutions of
(3) for the other cases of k await further study.
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